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Erdos-Renyi Laws

Suppose (T, X, ) is an ergodic dynamical system and ¢ : X — R
is an observable, [ ¢du = 0.

Erdos-Renyi laws give the almost sure behavior of averages over
time windows of varying length. Define

n—1

Sa(x) =) _¢oT(x)

j=0

Define the maximum average over a window of length k(n) up to
time n, 0(n, k(n)) , by

0(n, k(n)) := Oggnafk(n) O
o If k(n) =1 then for y a.e. x, 6(n, k(n))(x) — essup ¢.

e If k(n) = n then by the ergodic theorem for 1 a.e. x,
6(n, k(n))(x) — 0.



Erdos-Renyi Law for [ID processes

The Erdos-Rényi law was first given for iid random variables by
Erdos and Rényi in “ On a new law of large numbers” (1970):
Proposition (Erdos-Rényi)

Let (Xn)n>1 be an iid sequence of centered non-degenerate random
variables, and let S; = X1 + ... + Xj. Assume that the moment
generating function Ee exists in some interval U containing

t = 0. For each a > 0, define 1, (t) = e “tEet™ . For those a for
which 1), attains its minimum at a point t,, € U, set

I(a) = at, — log EetaX1. Then almost surely

lim max{(Sj4fiog n/1(a))=5j)/[log n/1(@)] : 1 < j < n—[log n/I(a)]} = a.



Example

Suppose X; is an iid sequence taking the values +1 with equal
probability %
Recall S S

O(n, k(n)) :=  max Zitkin) = 2

0<j<n—k(n)  k(n)

0(n, k(n)) is the maximal average gain over a time window of
length k(n).
A calculation using the strong law of large numbers shows that if

limp—oo % = 00 then P a. s.

lim 6(n, k(n)) =0

n—o0



If, however, k(n) < clog, n with 0 < ¢ < 1 then for large n with
probability one there is at least one j < n — k(n) such that
Xig1=Xjgo=...= +k(n) = 1 (an application of the
Borel-Cantelli lemma) so P a. s.

Tim 0(n. k(n)) =1
So for a fair game the Erdos-Rényi law gives information on the

maximal average gain of a player when the length of the time
window ensures

S k(m — S;
lim max Zitk(n) =i
n—o00<j<n—k(n)  k(n)

has a non-degenerate limit. In this case /(o) = 1 — h(15%) where
h(x) = —xlogy x — (1 — x) logy(1 — x).



Erdos-Renyi laws for deterministic dynamical systems

Suppose T : (X, un) — (X, ) is an ergodic measuring preserving
map and

p: X =R
is an integrable function (observable).
The sequence {¢ o T/} is a stationary stochastic process.

Is there an almost sure limit for maximal average gain?



Large deviations theory

Suppose

/ngduzo

Let Sp(x) :=d(x) + o T +...+¢o T"1(x).
If (T, X, p) is ergodic then

im >0 _ g

n—o00 n

for pa. e x€X.
Large deviations theory gives information on the rate of
convergence by estimating

w(x : Sp(x) > na)

as a function of n and a > 0.



Definition (Rate function)

A mean-zero observable ¢ : X — R is said to satisfy a local large
deviation principle with rate function /(«), if there exists a
neighbourhood U of 0 and a strictly convex function / : U — R,
which is non-negative and vanishing only at & = 0, such that

lim %Iog,u(x 1 Sp(x) > na) = —I(«) (1)

n—oo

for all &« > 0 in U and

lim ! log pu(x : Sp(x) < na) = —I(«a) (2)

n—oo n
foralla < 0in U.

For a given € > 0 for large n

e—n(l(a)+e) < pu(x : Sn(x) > na) < e~ n(@)—e)



Proposition ( adapted from Erdds and Rényi.)

(a) Suppose that ¢ satisfies a large deviation principle with rate
function | defined on the open set U. Let o > 0 and let

Ly = Ln(a) = ['/"(gaﬂ neN.

Then the Upper Erdés-Rényi law holds and

limsup max{S;,(¢)o T//L,:0<j<n—L,} <a.

n—oo

(b) If for each interval A there exists C > 0,7 > 1 such that

n—Lp

u( () {5L,(#) o T € A}) < Clu(St, € A/

m=0

then the Lower Erdos-Rényi law holds and

liminf max{S;, (¢)o T//L,:0<j<n—L,}>a.

n—oo



Remark
If both upper and lower Erdés-Rényi laws hold then

. S, oT™
im[ max ———]=a
n—00"0<m<n—L, L,

where

Ly = Lo(a) = ['/"(iﬂ neN.



Earlier results establishing Erdos-Rényi laws include:

(a) Subshifts of finite type (Grigull, 1973)
b) Uniformly expanding 1-d maps (Chazottes and Collet, 2005)

(b)
(c) Gibbs-Markov systems (Denker and Kabluchko, 2007)
(d)

d) Non-uniformly expanding maps with exponential decay of

correlations (Denker and N., 2013)

(e) In certain averaging setups and for nonconventional sums
(Kifer, 2016 and 2017).



Theorem

Suppose that (T, X, i) is a dynamical system modeled by a
Young Tower with exponential tails i.e. (i) T admits a Markov
tower extension with properties (P1)-(P5) in Young's 1998 paper;
(ii) the return time function R satisfies (R > n) = O(e™?") for
some 3 > 0.
Assume ¢ : X — R is Holder with [ ¢ dpu=0and o # o T — 1)
for any ¢ € L*(p).
Define Sp(x) = > 75 L o(TIx). It is known that ¢ satisfies a local
large deviation principle with nondegenerate rate function | defined
on an open set U C R containing 0.
Let o« > 0 and define

log n
L,=1L N
=[] ne
Then .
. 5Ln o TJ(X)
lim max ————= =q.
n—00 0<j<n—L, L,

for p a.e. x € X.



Sketch of proof:
(1) In this setting

limsupmax{S; (¢)o T//L,:0<j<n—1L,} <a.

n—o00

so we need only prove

liminf max{S;, (¢)o T//L,:0<j<n—L,}>a.

n—oo



(2) A local large deviation with rate function allows us to estimate
p{St, < Lp(cv — €)} from below.

For any §; > O for large n we have
I(a—e€)+6,

M{SL,, > Ln(OK — 6)} > e~ Ln(l(a—€)+61) > e—( o) )Iogn.
For large n this implies

1- M{SL,, < Ln(a — e)} > e*(1*5z)|ogn

for some 0 < dp < 61.

Hence
w{Se, < Ip(a—e€)} <1— e (1=0)logn



(3) For e >0 let
Cm(€) :={S1, 0o T" < Ly(a—¢€)}

and
n—Lp

Bn(e) = [ Cmle)
m=0

We use decay of correlations and intercalate by blocks of length
(logn)™, 7 > 6. We define

[(n—(log n)7)/(log n)7)]
En(é) = ﬂ Cm[(logn)T](E)

m=0



The proof uses technical approximations e.g. take S;, as constant
on stable manifolds and take Lipschitz approximations to indicator
functions...

In the end we can estimate,

WES(S) < C[1- e-myioga] "B

= O(exp(—n™))

where d3 is any 0 < d3 < 5. This is summable so the
Borel-Cantelli lemma gives

liminf max{S;,(¢) o TV/L,: 0<j<n—1L,}>a.

n—o0



Local large deviations for unbounded observables.

As an application of Erdos-Rényi limit laws, the next example
shows that if an observable is unbounded we should not expect
exponential large deviations with a rate function.

Example

Suppose ¢ is a continuous observable on (0, 1] such that
limy—0 p(x) = 00, [ @dx =0 and ¢ > —p for some p > 0. Let
(T,X,m) be the tent map

7o [ 2 if0<x<3;
Tl 2x-1 ifi<x<l

Then the stationary stochastic process {¢ o T/} does not satisfy
exponential large deviations with a rate function.



Sketch of proof:
If ¢ satisfies a large deviation principle with rate function / defined
on an open set U then:

if « € U and

Ly = Ly(a) = ['f(i'{] neN

the upper Erd6s-Rényi law holds, that is, for ;1 a.e. x € X

limsup max{S;,(¢) o TH(x)/L,:0<j<n—L,} <a.

n—o0

Fix @ > 0in U and let M > %&Oﬁp). Choose N large enough

that ¢(x) > M for all x < ﬁ



Phillipp showed that the tent map satisfies the Borel Cantelli
property and that T"(x) € [0, %] infinitely often almost surely since
S0, L diverges.

If T"(x) € [0, %] then T"H(x) € [0, %] for at least j > ;ng’;

iterates j (this estimate comes from solving 2/1 = ﬁ)
Moreover if T"H(x) € [0, %] and n > N then o(T"H(x)) > M.
We take now n > N.

If T"x € [0, 1] then Sy, () o T"(x) > M(3%5) — p82) (as

p>—=p). As M > %ﬁgﬂ) this implies that

max{S; (p) o T/(x)/L,:0<j<n—L,} >«

which is a contradiction to the upper Erdés-Rényi law.
Hence exponential large deviations with a rate function cannot
hold for this observable.



Exponential local large deviations without a rate function.

Examples exist in the literature (by Bradley, Orey and Pelikan,Bryc
and Smolenski, Chung) of stationary processes which have
exponential large deviations but a rate function does not exist i.e.
defining S, = ZJ'-’:_OI X; for all € > 0, there exists a constant C(e)
such that P(|22] > €) < C(e)e™", giving exponential convergence
in the strong law of large numbers yet there is no rate function
I(€) controlling the rate of decay.

In particular there is an example of a mean zero bounded function
f taking only 3 values on an aperiodic recurrent Markov chain (X,)
with a countable state space such that the system has exponential
large deviations but does not have a rate function.



Bradley (1989) produced an example of a stationary, pairwise
independent, absolutely regular stochastic process for which
the central limit theorem does not hold.

Orey and Pelikan (1988) presented this system as an example
of a strongly mixing shift for which the large deviation
principle with rate function failed.

Bryc and Smolenski (1993) showed that in this example there
is in fact also an exponential convergence in the strong law of
large numbers.

Bryc and Smolenski's work was recast by Chung (2011) into

dynamical systems language, and the system was expressed as
a Young Tower (F,A,v).



We recast as a dynamical system and show that f is a coboundary,
in fact f =1 o F — ¢ where 1) is unbounded but ¢ € L?. This
seems to have been overlooked in the literature.



Let Ag be the base of a Young Tower A with Ag partitioned into
intervals Ag, A1, ... ,/}k...,.

Take m(Ag) = Ce'> where C is a normalization constant.
Define the

return time function R on Ay by Rp, := R(k) = (2)12*

We now build the Tower A above the base. We write Ay o 1= Ay
and define, for 0 < j < R(k) — 1 the levels Ay j of the Tower lying
above Ay by

A= U {(x,)) : x € Nox}

kENF,0<j<R,—1

with the tower map F : A — A given by

Flx.)) = (x,j+1) ifx€ Mo, j<R(k)—1
= (Tix,0)  if x € Ago,j=R(k)—1"

where T has constant derivative and maps Ay g onto Ag.
F maps Ag o bijectively onto Ag.



If k # 0 we define f : A\ ; = {—1,0,1} by

F(x.)) 1 if x € A, j <12k —1
X7 = . . *
J —1 ifxeA,12k<j<212k—1

if k =0 we take f(0,0) = 0. This is the model of Bradley, Orey,
Pelikan, Bryc and Chung.



Now define a function ), which will be a coboundary for f, by
. J if x € A, 0<j <12k
2125 —j  if x € N\, 125 < j <212 -1

and (0,0) = 0.
It is easy to check that

f=voF —1

As far as we know there is no example of a non-degenerate
bounded observable on a dynamical system which has exponential
large deviations and yet no rate function.



Example

Let p(x) = —log x on the probability space ([0, 1], m). Then

[ @dx =1 and E[e*?] = [° e™e *dx exists for t < 1.

If X; is a sequence of i.i.d random variables with the same
distribution function as ¢ and S, = Z}’Zl Xj then for0 < e <1

lim — Iog P(~i >14¢€)=—c+log(l+¢€)=I(e)

n—oo N

This is a simple large deviations calculation.



Example

Let o(x) = — log x be an observable on the tent map (T, X, ).
It is possible to show that p(x) = — log x has exponential decay of
autocorrelations.

| [eo T =1 - 1) dxl < ceo"

However {¢ o T"} has strictly stretched exponential large
deviations.



Sketch of proof:

It is easy to show that for all € > 0 for all § > 0 and all sufficiently
large n, (S, — n > ne) > e~

To see this note that if x € [0, e
1<j<nl/?t 2xeloe —nt/2%0
|Sn(x) — n| > n1t20 —p,

In the other direction, using results of Kessebohmer and Schindler
(2017) on trimmed sums it is possible to show for any 6 > 0

—n1/21%(log 2+1) )] then for

], so that

m(|S, — n| > ne) < Ce /7"

Does -log |x — p| have exponential large deviations for ‘generic’ p?



Open questions and applications.

e Investigate exponential local large deviations for unbounded
integrable observables on chaotic systems (e.g. -log |DT,| in
systems with singularities).

Applications to time-series.

e We have also proven Erdos-Rényi type fluctuation laws for
a-mixing processes of polynomial rate and a class of intermittent
maps also with polynomial mixing rate.

e This suggests a simple test, based on the Erdos-Rényi limit law,
to estimate the rate of convergence to the ergodic average of a
stationary ergodic time-series of measurements {X;} on a physical
system.

e The advantage of the test is that it only needs a given
time-series, not a large number of repeat measurements (ensemble
averages) and seems to work well in applications.



