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Plan of talk

I Entropy production rate and irreversibility

I Random billiard dynamical systems

I Billiard systems with wall temperature

I Entropy production in random billiards

I The second law of thermodynamics

I Billiard heat engines
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Entropy production rate in a simple Markov chain

A system consisting of a token and two chambers can be in 4 states:

S = {Blue-Left,Blue-Right,Red-Left,Red-Right}.

It can transition between states with the following probabilities:
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Transition matrix and stationary probabilities

I The transition probabilities matrix is:

I The stationary probability vector π = πP, where

π = [π(BL), π(RL), π(RL), π(RR)] ,

is given by

π =

[
1
4
,
1
4
,
1
4
,
1
4

]
for all values of p 6= 0, 1.
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Time irreversibility

I Suppose the Markov chain is stationary and defined by (π,P).

I We wish to compare the probabilities of forward chain segments

S1,S2, . . . ,Sn−1,Sn

and backward chain segments

Sn,Sn−1, . . . ,S1,S0.

I The probabilities of forward chains are

P+n (s1, . . . , sn) = π(s1)P(s1, s2) · · ·P(sn−1, sn)

and of backward chains are

P−n (s1, . . . , sn) = π(sn)P(sn, sn−1) · · ·P(s2, s1).
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How to compare probability distributions?

I The Kullback-Leibler divergence (or relative entropy):

DKL
(
P+n ‖P−n

)
= −

∑
s

P+n (s) log
P−n (s)
P+n (s)

.

I This is a kind of (non-symmetric) distance between distributions.

I It is always non-negative and equals zero exactly when P+n = P−n .

Definition (Entropy production rate)

ep = lim
n→∞

1
n
DKL

(
P+n ‖P−n

)
.

I A calculation for Markov chains gives:

ep =
1
2

∑
i ,j

(π(si )P(si , sj)− π(sj)P(sj , si )) log
π(si )P(si , sj)
π(sj)P(sj , si )

≥ 0.
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Entropy production rate

I ep = 0 ⇔ chain satisfies the detailed balance property:

Definition (Detailed balance)
π and P are in detailed balance if π(si )P(si , sj) = π(sj)P(sj , si ) for all si , sj .

I For the example: ep = (2p − 1) log p
1−p .

I For the example, if p > 1/2, there is overall rotation counterclockwise.
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Random billiards
I In ordinary billiard, particle velocity at collision undergoes mirror-reflection.

standard billiard system random billiard system

I In random billiard, velocity scatters randomly upon collision with wall.

I Post-collision velocity has probability distribution Pq,v = Pq(·|v).
I Given initial (q, v), we obtain a Markov chain

(Q0,V0), (Q1,V1), (Q2,V2), . . .
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Introducing boundary temperature
I Define the surface Maxwell-Boltzman distribution of velocities as

µq(U) =

∫
U

Cq〈nq, u〉 exp
{
−
1
2
m|u|2

κTq

}
dVol(u).

I Define probability measure ζ on pairs:

dζq(v ,w) = dµq(v)dPq,v (w).

I Detailed balance:
dζq(v ,w) = dζq(−w ,−v).

Definition (Boundary has temperature Tq at point q)
Pq and the Maxwell-Boltzmann distribution µq satisfy detailed balance.

I P is said to satisfy reciprocity (in Boltzmann Equation literature.)

12 / 38



Introducing boundary temperature
I Define the surface Maxwell-Boltzman distribution of velocities as

µq(U) =

∫
U

Cq〈nq, u〉 exp
{
−
1
2
m|u|2

κTq

}
dVol(u).

I Define probability measure ζ on pairs:

dζq(v ,w) = dµq(v)dPq,v (w).

I Detailed balance:
dζq(v ,w) = dζq(−w ,−v).

Definition (Boundary has temperature Tq at point q)
Pq and the Maxwell-Boltzmann distribution µq satisfy detailed balance.

I P is said to satisfy reciprocity (in Boltzmann Equation literature.)

13 / 38



Introducing boundary temperature
I Define the surface Maxwell-Boltzman distribution of velocities as

µq(U) =

∫
U

Cq〈nq, u〉 exp
{
−
1
2
m|u|2

κTq

}
dVol(u).

I Define probability measure ζ on pairs:

dζq(v ,w) = dµq(v)dPq,v (w).

I Detailed balance:
dζq(v ,w) = dζq(−w ,−v).

Definition (Boundary has temperature Tq at point q)
Pq and the Maxwell-Boltzmann distribution µq satisfy detailed balance.

I P is said to satisfy reciprocity (in Boltzmann Equation literature.)

14 / 38



Introducing boundary temperature
I Define the surface Maxwell-Boltzman distribution of velocities as

µq(U) =

∫
U

Cq〈nq, u〉 exp
{
−
1
2
m|u|2

κTq

}
dVol(u).

I Define probability measure ζ on pairs:

dζq(v ,w) = dµq(v)dPq,v (w).

I Detailed balance:
dζq(v ,w) = dζq(−w ,−v).

Definition (Boundary has temperature Tq at point q)
Pq and the Maxwell-Boltzmann distribution µq satisfy detailed balance.

I P is said to satisfy reciprocity (in Boltzmann Equation literature.)

15 / 38



Physical definition of boundary temperature

I Enclose particle m in perfectly reflecting and rigid small cup open at q.

I Velocity distribution eventually becomes stationary.

I Stationary distribution is Maxwell-Boltzmann with temperature Tq.

I We also assume equilibrium is time-reversible.
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Side remark: deriving P from microstructure

molecule system

before collision

wall system with fixed

Gibbs state, 

molecule system

after collision

scattering process

I Sample pre-collision condition of wall system from fixed Gibbs state

I Compute trajectory of deterministic Hamiltonian system

I Obtain post-collision state of molecule system.

Theorem (Cook-F)
Resulting P satisfies reciprocity. The stationary distribution is given by Gibbs
state of molecule system with same parameter β as the wall system.
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Example: One-dimensional billiard thermostat

I Mass m1 is bound to wall. It moves freely within short interval.

I Mass m2 can freely enter domain of m1.

Choose velocity of 

Let masses interact deterministically 

Reset velocity of from 
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Example: Maxwell-Smolukowski reflection model

I µq Maxwell-Boltzmann distribution of velocities with temperature T (q).

I α(q) probability of diffuse reflection.

I Define

Pq,v =

{
diffuse reflection (∼ µq) with probability α(q)

specular reflection with probability 1− α(q).
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Time reversal in random billiard Markov chains

I States: (Q,V ) specifies position and post-collision velocity.

I Forward chain segment:

(Q0,V0) 7→ (Q1,V1) 7→ · · · 7→ (Qn,Vn)

I Time-reversal is a sequence of pre-collision states (velocities flipped):

(Qn,−Vn) 7→ (Qn−1,−Vn−1) 7→ · · · 7→ (Q0,−V0)
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Irreversibility and entropy production

Given the random billiard map and stationary probability measure ν define

I P+[0,n] probability measure on space of chain segments

I P−[0,n] probability measure on space of reversed chain segments

Definition (Entropy production rate)

ep := limn→∞
1
nDKL

(
P+[0,n]‖P

−
[0,n]

)
where the relative entropy DKL is defined by

DKL

(
P+[0,n]‖P

−
[0,n]

)
:=

∫
D

log

(
dP+[0,n]
dP−[0,n]

)
dP+[0,n]

22 / 38



Irreversibility and entropy production
I Define measure η on D = {(Q,V ), (Q ′,W ) : Q ′ = Q + tV } by

dη(x , y) := dν(x)dBx (y)

where B is the random billiard map, x = (Q,V ), y = (Q ′,W ).

I Define η− := R∗η where R is the proper reversal map (flip velocities!).

Proposition
The entropy production rate for the random billiard chain satisfies

ep =
1
2

∫
D

[
dη − dη−

]
log
(

dη
dη−

)
≥ 0.

I This is the continuous state counterpart of

ep =
1
2

∑
i ,j

(π(si )P(si , sj)− π(sj )P(sj , si )) log
π(si )P(si , sj)
π(sj )P(sj , si )

for countable states Markov chains.
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Bringing in temperature. Recall:

Definition (Maxwellian at temperature T )
The Maxwell-Boltzmann distribution at q ∈ ∂M at temperature T (q) is the
probability measure µ±q ∈ P(N±q ) having density

ρq(v) = 2π
(
β(q)m
2π

) n+1
2

|〈v ,nq〉| exp
{
−β(q)

m|v |2q
2

}
with respect to the volume measure dVq(v), where β(q) = 1/κT (q).

I Define ζq ∈ P
(
N−q × N+

q

)
by

dζq(u, v) := dµ−q (u) dP(q,u)(v).

Definition (Reciprocity)
The reflection operator P has the property of reciprocity if at each q ∈ ∂M the
probability measure ζq is invariant under the proper time-reversal map.
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Main result

I Given stationary ν ∈ P(N+) define m := π∗ν ∈ P(∂M).

I Let νq ∈ P(N+
q ) be obtained by disintegrating ν along π, so that

ν(·) =
∫
∂M
νq(·) dm(q).

I Let Vq be the Riemannian volume measure on Nq.

I Let T : N+ → N− be the free-motion part of billiard map.

I Let ν− := T∗ν and ν+ := ν pre- and post-collision velocity distributions.

I E (q, v) := 1
2m‖v‖

2
q particle kinetic energy.
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Main result

Theorem (Chumley-F.)
Let ν ∈ P(N+) be the stationary measure for the random billiard map. Suppose
the associated measures η and η− on D are equivalent. Then

ep = −
1

m(∂M)

∫
∂M

1
κT (q)

[
ν+q (E )− ν−q (E )

]
dm(q) ≥ 0

where m := π∗ν.

I That is, ep is the average over boundary of M of

νq-mean heat transferred to wall at a collision point q
wall temperature at q

.

I Core problem: given a random billiard system, obtain ν.
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Example: Two plates

I M = T2 × [0, 1]; boundary given Maxwell-Smolukowski thermostat.
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Example: Two plates

I Q: the heat flow (mean energy tranfer per collision) from plate 1 to 2.

I Then ep = Q
(

1
κT2
− 1

κT1

)
> 0.

I We recover Clausius form of second law: Heat flows from hot to cold.

I Q = C (κT1 − κT2) where C := α1α2
2[1−(1−α1)(1−α2)]

= thermal conductivity.
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Carnot’s theory of heat engines

Need good examples to study entropy production, heat flow, work, efficiency, . . .

pin tip

lower rail

temperature T 1

temperature T 2

ga
s 

m
ol

ec
ul

e
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Carnot’s theory of heat engines

A thermophoretic motor.

32 / 38



Carnot’s theory of heat engines

Billiard system for the thermophoretic motor.
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No-slip billiards

I Richard L. Garwin’s 1969 paper Kinematics of an Ultraelastic Rough Ball.

I No-slip condition was used to explain bouncing of a Wham-O Super Ball R©

I Further work by Wojtkowski and Broomhead-Gutkin 1993.

I No-slip dynamics being developed with Hongkun Zhang and Chris Cox.

I Conservative, reversible planar billiards: only the standard and no-slip.
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A billiard heat engine with no-slip contact

I We assume contact between disc and moving wedge is no-slip (rubbery).
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The corresponding billiard system
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Numerical results
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Thank you!
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