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Entropy production rate in a simple Markov chain
A system consisting of a token and two chambers can be in 4 states:
8 = {Blue-Left, Blue-Right, Red-Left, Red-Right}.

It can transition between states with the following probabilities:
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Transition matrix and stationary probabilities

» The transition probabilities matrix is:

BL BR RL RR
BL 0 1-— P p 0
BR p 0 0 1-p

| 1—p 0 0 p
RR 0 p 1—p O

» The stationary probability vector m = P, where
m = [r(BL), m(RL), m(RL), 7(RR)],

IS given by

for all values of p # 0, 1.



Time irreversibility

> Suppose the Markov chain is stationary and defined by (7, P).

» We wish to compare the probabilities of forward chain segments

and backward chain segments
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Time irreversibility

> Suppose the Markov chain is stationary and defined by (7, P).

» We wish to compare the probabilities of forward chain segments

and backward chain segments

SniSne1h- S1, So.

» The probabilities of forward chains are
Pi(s,..., sn) = m(s1)P(s1, $2) -

and of backward chains are

-+ P(Sp—1,Sn)

P, (s1,..., Sn) = 7(sp)P(Sn, Sn—1) - - - P(s2,51).



How to compare probability distributions?

» The Kullback-Leibler divergence (or relative entropy):

Dit (PE(P7) ZP* gln ES;

» This is a kind of (non-symmetric) distance between distributions.

> It is always non-negative and equals zero exactly when Pj =P, .
Definition (Entropy production rate)
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How to compare probability distributions?

» The Kullback-Leibler divergence (or relative entropy):

Dit (PE(P7) ZP* gln Es;

» This is a kind of (non-symmetric) distance between distributions.

> It is always non-negative and equals zero exactly when Pj =P, .
Definition (Entropy production rate)

1 _
€ = n||—>ngo EDKL (]Pﬁ”lpn) 5

» A calculation for Markov chains gives:

Z(ws, (5:5) = 7(5)P(s;.5)) log T ) - o

() P(s), 50)



Entropy production rate

> ¢, = 0 & chain satisfies the detailed balance property:

Definition (Detailed balance) J

m and P are in detailed balance if 7(s;)P(s;, ;) = 7(s;)P(s;, s;) for all s;, s;.
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Entropy production rate

> ¢, = 0 & chain satisfies the detailed balance property:

Definition (Detailed balance)

7 and P are in detailed balance if 7(s;)P(si, s;) = 7(s;)P(s;, si) for all s;, s;.

> For the example: e, = (2p — 1) log 125

—
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> For the example, if p > 1/2, there is overall rotation counterclockwise.
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Random billiards

» |n ordinary billiard, particle velocity at collision undergoes mirror-reflection.

standard billiard system random billiard system

» |n random billiard, velocity scatters randomly upon collision with wall.
> Post-collision velocity has probability distribution Py, = Pqy(:|v).

> Given initial (g, v), we obtain a Markov chain

(Qo, Vo), (@1, V1), (@, V2), ...
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Introducing boundary temperature

» Define the surface Maxwell-Boltzman distribution of velocities as

2
/C Ng, U exp{ ;m|_1;| }dVoI(u).
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dCq(v, w) = dug(v)dPg . (w).
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Introducing boundary temperature

» Define the surface Maxwell-Boltzman distribution of velocities as
1 m|ul?
/ Cy(ng, u exp{ 2 kT, } dVol(u).

» Define probability measure ¢ on pairs:

dCq(v, w) = dug(v)dPg . (w).

» Detailed balance:
d¢q(v, w) = d{q(—w, —V).

Definition (Boundary has temperature T, at point q)

P, and the Maxwell-Boltzmann distribution ., satisfy detailed balance.

» P is said to satisfy reciprocity (in Boltzmann Equation literature.)

15/3



v

v

v

v

Physical definition of boundary temperature

Enclose particle m in perfectly reflecting and rigid small cup open at gq.

Velocity distribution eventually becomes stationary.
Stationary distribution is Maxwell-Boltzmann with temperature T.

We also assume equilibrium is time-reversible.



Side remark: deriving P from microstructure

molecule system scattering process molecﬁle system
before collision L after collision

wall system with fixed
Gibbs state, 3., = 1/xT

» Sample pre-collision condition of wall system from fixed Gibbs state
» Compute trajectory of deterministic Hamiltonian system

» Obtain post-collision state of molecule system.



Side remark: deriving P from microstructure

molecu-l-e system scattermg process molec;.;l‘e system
before collision DY after collision
wall system with fixed
Gibbs state, 3., = 1/xT

» Sample pre-collision condition of wall system from fixed Gibbs state
» Compute trajectory of deterministic Hamiltonian system

» Obtain post-collision state of molecule system.

Theorem (Cook-F)

Resulting P satisfies reciprocity. The stationary distribution is given by Gibbs
state of molecule system with same parameter B as the wall system.




Example: One-dimensional billiard thermostat

» Mass my is bound to wall. It moves freely within short interval.

» Mass m, can freely enter domain of m;.

my ma
A\ i ~

Choose velocity of my ~ N(0,0?)

k=01

Let masses interact deterministically

Reset velocity of m; from N(0,02)



Example: Maxwell-Smolukowski reflection model

> g Maxwell-Boltzmann distribution of velocities with temperature T(q).

> «a(q) probability of diffuse reflection.

» Define

P diffuse reflection (~ uq) with probability a(q)
A specular reflection with probability 1 — a(q).
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Time reversal in random billiard Markov chains

> States: (Q, V) specifies position and post-collision velocity.

» Forward chain segment:

(Qo, Vo) = (@1, V1) = -+ = (Qn, Vi)

> Time-reversal is a sequence of pre-collision states (velocities flipped):

(Qn: _Vn) = (anly _anl) = (QOy _VO)



Irreversibility and entropy production

Given the random billiard map and stationary probability measure v define

> IP’[JB i probability measure on space of chain segments

> IP’[*O i probability measure on space of reversed chain segments

Definition (Entropy production rate)

€p = liMp00 2 Dkt (P[T),n]”P[B,n]) where the relative entropy Dy, is defined by

+ - dP[JB,n] +
Dk (P[O,n]HP[O,n]> ::/Dlog = dPp




Irreversibility and entropy production
> Define measure non D = {(Q, V), (Q, W) : Q"= Q+ tV} by
| dn(x.y) == du(x)dB.(y)|

where B is the random billiard map, x = (Q, V), y = (Q', W).

> Define n~ := R.n where R is the proper reversal map (flip velocities!).

Proposition
The entropy production rate for the random billiard chain satisfies

1 _ dn
ep:E/D[dn—dn ]Iog(dn_) > 0.

» This is the continuous state counterpart of

_1 1(sVP(s: s) — 7(s)\P(s: s))lo n(si)P(si. 5)
& = 5 2 (M()P(s:.) = m(s)P(s;. ) log 2 2

iJ

for countable states Markov chains.



Bringing in temperature. Recall:

Definition (Maxwellian at temperature T)

The Maxwell-Boltzmann distribution at g € OM at temperature T(q) is the
probability measure u € P(NZ) having density

pq(v) =2m <5(2q%> N (v, mg)| exp {—B(Q)mTVE’}

with respect to the volume measure dV,(v), where 5(q) = 1/kT(q).

> Define (g € P (N, x NJ) by
dlq(u, v) = duq_(u) dPg,u(v)-
Definition (Reciprocity)

The reflection operator P has the property of reciprocity if at each g € OM the
probability measure (, is invariant under the proper time-reversal map.




Main result
/
Given stationary v € P(NT) define m := m.v € P(OM). &

Let vq € P(N;) be obtained by disintegrating v along m, so that
v(-) = / vg(+) dm(q).
oM

Let Vg be the Riemannian volume measure on Nj.

Let T7: NT — N~ be the free-motion part of billiard map.

Let v~ := T,v and v" := v pre- and post-collision velocity distributions.

E(q,v):= %m||v||f, particle kinetic energy.



Main result

Theorem (Chumley-F.)

Let v € P(NT) be the stationary measure for the random billiard map. Suppose
the associated measures m and n— on D are equivalent. Then

i 7m(;/\/l) /W K,—/}(q) [v§ (E) = vg (B)] dm(q) > 0

where m == m.uv.

> Thatis, e, is the average over boundary of M of

vg-mean heat transferred to wall at a collision point g
wall temperature at g '

» Core problem: given a random billiard system, obtain v.




Example: Two plates

» M =T? x [0, 1]; boundary given Maxwell-Smolukowski thermostat.

Ty,

N

T, an



Example: Two plates

> Q: the heat flow (mean energy tranfer per collision) from plate 1 to 2.
» Then ep:Q(%TQ*%TI) > 0.

» We recover Clausius form of second law: Heat flows from hot to cold.

Ty, on \ Ty, az

> Q= C(kT1—kT2) where C:= sr—723%5—5 = thermal conductivity.




Carnot’s theory of heat engines

Need good examples to study entropy production, heat flow, work, efficiency, . ..
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Carnot’s theory of heat engines

Tl m T2

A thermophoretic motor.



Carnot’s theory of heat engines

Billiard system for the thermophoretic motor.
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No-slip billiards

Richard L. Garwin's 1969 paper Kinematics of an Ultraelastic Rough Ball.

No-slip condition was used to explain bouncing of a Wham-O Super Ball®

Further work by Wojtkowski and Broomhead-Gutkin 1993.
No-slip dynamics being developed with Hongkun Zhang and Chris Cox.

Conservative, reversible planar billiards: only the standard and no-slip.



A billiard heat engine with no-slip contact

> We assume contact between disc and moving wedge is no-slip (rubbery).




The corresponding billiard system

/
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(scaled) angular displacement of disc



velocity of rotation

entropy production rate

Numerical results

entropy production rate

temperature of horizontal thermostat

temperature of horizontal thermostat

efficiency




Thank you!
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