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Intro Non-autonomous systems and MET Stability

Motivation

� To develop mathematical tools –analytical and numerical– to
analyse and understand transport and mixing phenomena in
(non-autonomous) dynamical systems.
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Transfer Operators

� Powerful analytical tool to investigate global properties of
dynamical systems, by considering densities, or ensembles of
trajectories.

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

Lf

x

f

Tx

� Linear operators encoding the global dynamics, acting on a
linear (Banach, Hilbert) space X,

L : X → X,

∫
f · g ◦ T dm =

∫
Lf · g dm.

Cecilia González Tokman (UQ) Stability results for non-autonomous dynamical systems



Intro Non-autonomous systems and MET Stability

Transfer Operators

� Very useful for numerical analysis of dynamical systems,
e.g. via Markovian models.

Numerical
approximations to
invariant measure of a
dynamical system via
transfer operators (blue)
and long trajectories
(red).

� Ulam discretisation scheme: P = {B1, . . . , Bk} partition of the
state space into bins,

EP(f) =
k∑
j=1

1

m(Bj)

(∫
1Bj f dm

)
1Bj .
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Transfer Operators, Quasi-compactness

� Also useful for the analytical study of transport phenomena
in dynamical systems.

� L is quasi-compact if there exists 0 ≤ k < 1, called essential
spectral radius of L, such that, outside the disc of radius k:

◦ The spectrum of L consists of isolated
eigenvalues:

1 = γ1, . . . , γm, m ≤ ∞,
such that |γ1| ≥ |γ2| ≥ · · · ≥ |γm| > k, and

◦ Finite-dimensional corresponding
generalised eigenspaces:

E1, . . . , Em.
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Transfer Operators, Spectral Properties

� It is now known that for a rich class of transformations T
(including piecewise smooth expanding/hyperbolic maps) and
appropriate X, L is quasi-compact. Furthermore,

1 = γ1 simple ! Ergodic system;

f1 ∈ E1 ! Density of physical invariant measure.

lim
n→∞

1

n

n−1∑
j=0

g(T jx) =: lim
n→∞

1

n
Sng(x) =

∫
gf1dm,m a.e. x ∈ I.
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Transfer Operators, Spectral Properties

Dellnitz, Deuflhard, Junge and collaborators in the 1990’s
suggested the connection

f2 ∈ E2 ! Almost-invariant sets.

+1 −1

Cecilia González Tokman (UQ) Stability results for non-autonomous dynamical systems



Intro Non-autonomous systems and MET Stability

Transfer Operators, Spectral Properties

Dellnitz, Deuflhard, Junge and collaborators in the 1990’s
suggested the connection

f2 ∈ E2 ! Almost-invariant sets.

+1 −1

c©Froyland et al. PRL 2007
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Non-Autonomous Dynamical Systems: Introduction

� The evolution rule,

Tω : D → D, ω ∈ Ω,

is dictated by an external driving
system σ : Ω→ Ω.

� Analogy:

autonomous ! picture
non-autonomous ! movie

� Also known as:
• Skew products, cocycles
• Forced, time-dependent, and random

dynamical systems (RDS).
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The Driving System

σ : (Ω,P)→ (Ω,P)
• Invertible;
• Probability preserving:

P(σ−1E) = P(E) for all measurable E ⊂ Ω;

• Ergodic:
E = σ−1(E)⇒ P(E) = 0 or P(E) = 1.

� Examples
• Autonomous system:

Ω = {ω0}, P = δω0
, σ = Id.

• Deterministic forcing:

Ω = S1, P = Leb, σ(ω) = ω + α (mod 1), α 6∈ Q.

• Stationary noise:

Ω = [−ε, ε]Z, P = product of uniform measures, σ = shift.
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Non-Autonomous Systems

� External driving system

σ : Ω→ Ω,

measure preserving transformation of (Ω,F ,P).

� Several, possibly uncountably many, evolution rules

Tω : D → D, ω ∈ Ω.

� Associated transfer operators,

Lω ∈ L(X), ω ∈ Ω.

� Random dynamical system,

R = (Ω,F ,P, σ,X,L).

L(ω, n) = L(n)
ω := Lσn−1ω ◦ · · · ◦ Lσω ◦ Lω.
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Multiplicative Ergodic Theorems: Introduction

Spectral type decompositions for non-autonomous dynamical systems.
(Into non-linear time-varying modes, in order of decay rate.)

Autonomous

� L quasi-compact operator

� γi isolated eigenvalues

� Ei (generalised) eigenspaces

E2

E1

Non-autonomous

� R quasi-compact RDS

� λi Lyapunov exponents

� Yi(ω) Oseledets spaces

Y2(ω)

Y1(ω)
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Multiplicative Ergodic Theorems: Introduction

Spectral type decompositions for non-autonomous dynamical systems.
(Into non-linear time-varying modes, in order of decay rate.)

Autonomous

� L quasi-compact operator

� γi isolated eigenvalues

� Ei (generalised) eigenspaces

E2

E1

Non-autonomous

� R quasi-compact RDS

� λi Lyapunov exponents

� Yi(ω) Oseledets spaces

Y1(σω)

Y2(σω)
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Multiplicative Ergodic Theorems: Introduction

Spectral type decompositions for non-autonomous dynamical systems.
(Into non-linear time-varying modes, in order of decay rate.)

Autonomous

� L quasi-compact operator

� γi isolated eigenvalues

� Ei (generalised) eigenspaces

E2

E1

Non-autonomous

� R quasi-compact RDS

� λi Lyapunov exponents

� Yi(ω) Oseledets spaces

Y1(σ2ω)

Y2(σ2ω)
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Multiplicative Ergodic Theorems: Introduction

Spectral type decompositions for non-autonomous dynamical systems.
(Into non-linear time-varying modes, in order of decay rate.)

Autonomous

� L quasi-compact operator

� γi isolated eigenvalues

� Ei (generalised) eigenspaces

E2

E1

Non-autonomous

� R quasi-compact RDS

� λi Lyapunov exponents

� Yi(ω) Oseledets spaces

Y1(σ3ω)

Y2(σ3ω)
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Multiplicative Ergodic Theorems: Introduction

Spectral type decompositions for non-autonomous dynamical systems.
(Into non-linear time-varying modes, in order of decay rate.)

Autonomous

� L quasi-compact operator

� γi isolated eigenvalues

� Ei (generalised) eigenspaces

E2

E1

Non-autonomous

� R quasi-compact RDS

� λi Lyapunov exponents

� Yi(ω) Oseledets spaces

Y2(σ4ω)

Y1(σ4ω)
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Multiplicative Ergodic Theorems: Introduction

Spectral type decompositions for non-autonomous dynamical systems.
(Into non-linear time-varying modes, in order of decay rate.)

Autonomous

� L quasi-compact operator

� γi isolated eigenvalues

� Ei (generalised) eigenspaces

E2

E1

Lei = γiei

Non-autonomous

� R quasi-compact RDS

� λi Lyapunov exponents

� Yi(ω) Oseledets spaces

Y2(σ4ω)

Y1(σ4ω)

Lω(Yi(ω)) = Yi(σω)

1
n

log ‖L(n)
ω yi(ω)‖ → λi
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Multiplicative Ergodic Theorems: History

Oseledets splittings:
� For invertible (injective) operators:

• Oseledets ’68, Raghunathan ’79 (matrices);
• Ruelle ’79 (Hilbert spaces);
• Mañé ’83, Thieullen ’87, Lian–Lu ’10, Blumenthal ’16

(Banach spaces).

(In the non-invertible case, the above show existence of
Oseledets filtration.)

� For semi-invertible operators: (σ invertible)
• Froyland–Lloyd–Quas ’10 (matrices);
• Froyland–Lloyd–Quas ’13 (restricted type of operators);
• GT–Quas ’14, ’15 (separable Banach spaces).
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Multiplicative Ergodic Theorem: Setting

� Let (X, ‖ · ‖) be a Banach space with separable dual.

� Let R = (Ω,F ,P, σ,X,L) be a random dynamical system with
ergodic and invertible base σ.

� Integrability: log+ ‖L(ω)‖ ∈ L1(P).

� Strong measurability: For each f ∈ X, ω 7→ Lωf is measurable.

� Quasi-compactness: λ∗ > κ∗.

λ∗(R) := limn→∞
1
n

log ‖L(n)
ω ‖

maximal Lyapunov exponent (analog of the spectral radius);

κ∗(R) := limn→∞
1
n

log ic(L(n)
ω )

index of compactness (analog of the essential spectral radius)

ic(L) := inf
{
r > 0 :

L(BX) can be covered with
finitely many balls of radius r

}
.
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Multiplicative Ergodic Theorem

Theorem (Semi-invertible Oseledets theorem [GT-Quas ’14])

R has an Oseledets splitting:
There are at most countably many exceptional Lyapunov exponents,
λ1 > λ2 > . . . > λl > κ∗; and there exists a unique measurable and
equivariant splitting of X,

X = V (ω)⊕
l⊕

j=1

Yj(ω), defined for P a.e. ω ∈ Ω,

with V (ω) closed and Yj(ω) finite dimensional, such that:

� For every v ∈ Yj(ω) \ {0}, limn→∞ n
−1 log ‖L(n)

ω v‖ = λj.

� For every v ∈ V (ω), limn→∞ n
−1 log ‖L(n)

ω v‖ ≤ κ∗.
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Approximation and Identification of Coherent Structures

w ¼ vP̂May;6, is plotted in Fig. 3, where high values denote a high
concentration of mass. This visualization of the distribution of
mass starting in AMay shows a pathway of water escaping North-
Eastwards from the Ring and also demonstrates that most of the
mass remains coherent after 6 months.

4.1.2. Parameters and sensitivity analysis
In this section, the sensitivity of our results to changes of some

parameters of the technique is tested. We have calculated the sin-
gular vectors and values corresponding to PMay;1 and P̂May;3 ¼
PMay;1 " PJune;1 " PJuly;1, respectively to check the robustness of the
choice of the parameter s for one and three months. The 1#month
analysis is displayed in Fig. 4(a) and (b) where (a) shows the sur-
face slice of the normalized left singular vector indicating the Agul-
has Ring and (b) shows the thresholded Ring and Fig. 4(c) and (d)
show similar results for the investigation over three months. Both
1-month and 3-months flows identify initial coherent structures
that are similar to the 6-months flow results shown in Figs. 2(a)
and 3, indicating that the transfer operator (or transition matrix)
approach is reasonably robust with respect to flow time.

Additionally the sensitivity of the product approach has been
investigated using different temporal subdivisions. We have also
chosen 12 transition matrices over half a 1-month each and two
matrices over 3-months each. The singular vectors indicate very
similar structures, attesting of the robustness of our method.

4.2. Surface characterization: a comparative study

To benchmark these identified structures we compare our
results with three standard techniques used in the detection of

Agulhas Rings, based on Sea Surface Height (SSH), the relative vor-
ticity criterium (RV) and the Okubo-Weiss parameter (OW). These
techniques have been developed for the detection of eddies in the
ocean surface. In our investigation we also analyze the three-
dimensional shape of an Agulhas Ring and therefore extend the
surface techniques along the vertical direction for comparison.
The surface boundary of AMay and ANovember is shown in Fig. 2(b).
It also shows the ring edge as defined by the other techniques
i.e. maximum SSH gradient, RV and OW. For the calculation we
used the 5-day averaged data on May 1st and the average of the
last 5-days in October, respectively. Let uðx; yÞ and vðx; yÞ be the
velocity of a particle ðx; yÞ on the surface in longitude and latitude
direction, respectively. RV is given by RVðx; yÞ ¼ @v

@x #
@u
@y and the OW

parameter by OWðx; yÞ ¼ @u
@x #

@v
@y

! "2
þ @v

@x þ
@u
@y

! "2
þ RVðx; yÞ2. The

calculation of the RV and the OW parameter is done after interpo-
lation of the advection field onto the same grid as the transfer
operators. We use a commonly used threshold coefficient to define
the edge of the rings, where RV is 0.2 times the maximum RV value
at the surface and OW is 0.2 times the standard deviation of OW at
the surface (Chaigneau et al., 2008). Fig. 2(b) demonstrates that the
different techniques identify similar surface structures.

4.3. Comparison of coherence ratios

To examine the coherence of the three-dimensional structures
defined using these techniques, we extend the surface shape down
to the depth where the set AMay ends (i.e. approx. 300 m). We cal-
culated the OW and RV field for May and November 2000 at each
depth level within our box discretization fB1; . . . ;Bmg. We use a
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Fig. 4. (a) Surface slice of the normalized left singular vector of the one month analysis indicating the Agulhas Ring at May 2000. (b) The initial set of the detected coherent
pair over 1 month. (c) Surface slice of the normalized left singular vector of the three month analysis indicating the Agulhas Ring at May 2000. (d) The initial set of the
detected coherent pair over 3 months.

G. Froyland et al. / Ocean Modelling 52–53 (2012) 69–75 73

c©Froyland et al ’12

� The Oseledets spaces Yj(ω) can be
approximated using a singular value
decomposition (SVD) type construction.
[Froyland–Santitisadeekorn–Monahan
’10, GT–Quas ’15]

c©Froyland–Horenkamp–Rossi–van Sebille ’15
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Stability?

Question

How does spectral data from transfer operators (Lyapunov
exponents, Oseledets splitting) change when the dynamical system
is perturbed?

� Relevant perturbations:
• Model errors.
• Noise.
• Numerical approximations: Ulam and Fourier-based methods.

� Early work, autonomous setting:
• Keller–Liverani ’99:

Stability of spectral data for quasi-compact operators
(isolated eigenvalues and corresponding eigenspaces).
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Stability for non-autonomous systems

� Setting: Perturbations
• Initial system:

R = (Ω,P, σ,X,L).

• Perturbations:

Rk = (Ω,P, σ,X,Lk), Lk ‘close to’ L.

� Previous positive stability results, closest to our setting:
• Ledrappier–Young ’91, Ochs ’99;
• Baladi–Kondah–Schmitt ’96, Bogenschütz ’00.

� Warning! Negative stability results:
• Bochi ’02, Bochi–Viana ’05.
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(I)
Stability of random

absolutely continuous invariant measures
for piecewise expanding interval maps
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Setting: Lasota–Yorke Maps

� Let LY be the set of non-singular,
finite-branched, piecewise monotonic
and piecewise smooth interval maps,

T : I → I.

� For each T ∈ LY ,
• µ(T ):= essinfx∈I |T ′(x)|
• N(T ):= number of branches of T
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Setting: Random Lasota–Yorke Maps

� σ : Ω 	 ergodic, invertible P-preserving transformation.

� A good random Lasota–Yorke map T is a function

T : Ω→ LY,

ω 7→ Tω, such that

• (ω, x) 7→ Tω(x) is measurable.

• Expansion: limK→∞
∫

Ω log min(µ(Tω),K)dP > 0.

• Number of branches: log+(N(Tω)/µ(Tω)) ∈ L1(P).

• Distortion: log+(var(1/|T ′ω|)) ∈ L1(P).
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Random Lasota–Yorke Maps: Existence of Random acims

Definition

A random acim for
R = (Ω,P, σ, BV,L) is a non-negative
measurable function F : Ω× I → R, with
fω := F (ω, ·) ∈ BV , such that ‖fω‖1 = 1
and for every ω ∈ Ω, Lωfω = fσω.

Theorem (Buzzi ’99)

Let R be a good random Lasota–Yorke
map. Then, R has at least one and at
most finitely many random acims.
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Perturbations: the Ulam Scheme

� Ulam discretisations

Lk,ω = Ek ◦ Lω

Ek is the conditional expectation with respect to the uniform
partition of I into k intervals Pk = {B1, . . . , Bk},

Ek(f) =
k∑
j=1

1

m(Bj)

(∫
1Bj f dm

)
1Bj ,

• Very effective numerical approximation scheme.
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Perturbations: Convolutions

� Convolutions

Lk,ωf(x) = Qk ∗ Lωf(x) =

∫
Qk(y)Lωf(x− y)dy

{Qk}k∈N are densities on S1, with Qk → δ0 weakly.

• Uniform densities: Model of iid noise (on average)

Qk =
1

2εk
1[−εk,εk].

• Fejér kernels: Cesàro average of partial sums of Fourier series

Qk(x) =
sin(πkx)2

k sin(πx)2
.
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Stability Theorem Application: Static Perturbations

� Static perturbations

Each Tω is perturbed to a nearby map Tk,ω,
Lk,ω is the transfer operator of Tk,ω.

• Modelling errors
• Model iid additive noise:

Ξ = [−1, 1]Z, equipped with the product of uniform measures,
s left shift on Ξ.
Set Ω̄ = Ω× Ξ, σ̄ = σ × s and for (ω, ξ) ∈ Ω̄,

Tk,(ω,ξ)(x) = Tω(x) + εkξ0.
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Stability Theorem for Random Acims

Theorem (Froyland–GT–Quas ’14 & Froyland–GT–Murray ’17)

� Let R be a covering good random Lasota–Yorke map.
� Let {Rk} be either

• The sequence of Ulam discretisations, corresponding to uniform
partitions Pk (∗), or

• A sequence of random perturbations by convolution with Qk, with
Qk → δ0 weakly.

• A sequence of static perturbations of size εk → 0.

Then, for each sufficiently large k, Rk has a unique random acim.
Let {Fk}k∈N be the sequence of random acims for Rk.
Then, limk→∞ Fk = F fibrewise in | · |1.
(That is, for P-a.e. ω ∈ Ω, limk→∞ |fω − fk,ω|1 = 0.)
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Comments on the Proof

� Convergence is established in a strong sense.

� Previous stability results deal with small perturbations of an
autonomous expanding system.
(Baladi, Kondah, Schmidt, Bogenschütz)

� The proof combines ergodic theoretical tools with classical
functional analysis tools for autonomous systems (Buzzi, Blank,
Keller, Liverani), including quantitative control on the skeleton of
(random) periodic turning points.
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Stability: Numerical Example
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� σ : S1 	 be a rigid rotation by angle α = 1/
√

2

Tω(x) =

{
3(x− ω)− 2.9(x− ω)(x− ω − 1

3
), ω ≤ x < ω + 1

3
;

−3(x− ω) + 1− 2.9(x− ω − 1
3
)(x− ω − 2

3
), ω + 1

3
≤ x < ω + 2

3
;

7
3
(x− ω − 2

3
) + 2ω/9, ω + 2

3
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Stability: Numerical Example

I := [0, 1], ω ∈ Ω := S1, P :=Leb, σ(ω) := ω + ρ (mod 1), ρ 6∈ Q.

fω(x) :=

{
2.1 (x− 2ω) (mod 1) if ω ∈ [0, 1/2),
0.5 (x− 2(ω − 0.5)) (mod 1) if ω ∈ [1/2, 1).
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(II)
Stability of Oseledets splittings

in an infinite dimensional (Hilbert space) setting
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Stochastic Stability of Oseledets Splittings: Setting

� H separable Hilbert space, with basis e1, e2, . . . .

� Hilbert–Schmidt and strong Hilbert–Schmidt norms, for A ∈ H:

‖A‖2
HS :=

∑
i,j

〈Aei, ej〉2, ‖A‖2
SHS :=

∑
i,j

22(i+j)〈Aei, ej〉2.

SHS := {A ∈ H : ‖A‖SHS <∞} ⊂ HS ⊂ K(H).

� Hilbert space cocycle: (Ω,P, σ, SHS, A), with
σ ergodic, P-preserving and invertible;
A : Ω→ SHS, with log-integrable norm;

A(n)
ω := A(σn−1ω)A(σn−2ω) · · ·A(ω).
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Stochastic Stability of Oseledets Splittings: Setting

� Lyapunov exponents (with multiplicity):
∞ > µ1 ≥ µ2 ≥ . . . ≥ µn ≥ · · · ≥ −∞.

� d1, d2, . . . , dp, . . . the corresponding multiplicities;

� D0 := 0, Di := d1 + . . .+ di,
so that µj = µj′ if Di−1 < j, j′ ≤ Di.

� The notions of singular vectors and singular values apply to
compact operators, as in the finite-dimensional case.
For A ∈ K(H), let s1(A) ≥ s2(A) ≥ . . . be the singular values
(with multiplicity).
The maximal logarithmic rate of k-dimensional volume growth is
given by

Ξk(A) := log(s1(A) · · · sk(A)).
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Perturbations

� Ω̄ := Ω× SHSZ,

� σ̄ := σ × s, where s is the shift on SHSZ.

� P̄ := P× γZ where γ is the multi-variate normal distribution on
SHS with centred, normal (i, j)th entry with standard deviation
3−(i+j), and independent entries.

� For ε > 0, define the new cocycle Aε : Ω̄→ SHS, with generator

Aε(ω, (∆n)n∈Z) = A(ω) + ε∆0, (∆n ∼ γ).

� Goal: compare splittings of R = (Ω,P, σ, A) and
Rε = (Ω̄, P̄, σ̄, Aε), as ε→ 0.
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Stochastic Stability of Oseledets Splittings

Theorem (Froyland–GT–Quas, to appear)

(i) Convergence of Lyapunov exponents:
Let the Lyapunov exponents of the perturbed matrix cocycle
(Ω̄, P̄ , σ̄, Aε) be

µε1 ≥ µε2 ≥ . . . ≥ µεd,

with multiplicity. Then µεi → µi for each i as ε→ 0.

(ii) Convergence in probability of Oseledets spaces:
Let N = (µi− δ, µi + δ), with µi > −∞ and µj /∈ N if µj 6= µi.
Let ε0 be such that for each ε ≤ ε0,
µεj ∈ N for each Di−1 < j ≤ Di.
For ε < ε0, let Y ε

i (ω̄) denote the sum of the Oseledets spaces of
Aε having exponents in N .
Then Y ε

i (ω̄) converges in probability to Yi(ω) as ε→ 0.
(Convergence in the Grassmannian of H.)
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Strategy of the Proof: Stability of Lyapunov Exponents

Goal: obtain a lower bound for the sum of the k top perturbed
Lyapunov exponents (maximal logarithmic growth rate of k-volumes).

� For ε > 0, define a block length, N ∼ | log ε|.
� For large n, estimate the top exponents of the product Aε

(nN)
ω̄ , a

perturbed block of length nN .
� Replace the (sub-additive) logarithmic k-volume growth, Ξk(·) by

a related approximately super-additive quantity,

Ξ̃k(A) = EΞk(Πk∆A∆′Πk),

where Πk is the orthogonal projection onto 〈e1, . . . , ek〉, and
∆,∆′ ∼ γ are independent.

� Use this super-additivity to split Aε
(nN)
ω̄ into good super-blocks

(of length a multiple of N) and bad blocks (of length N − 2):

Ξk(A
ε(nN)
ω̄ ) & Ξ̃k(A

ε(nN)
ω̄ ) &

∑
Ξ̃k(blocks).

Cecilia González Tokman (UQ) Stability results for non-autonomous dynamical systems



Intro Non-autonomous systems and MET Stability

Strategy of the Proof: Stability of Lyapunov Exponents

� Show Ξk(G
ε) & Ξk(G), where G represents a good super-block

and Gε its perturbed version.

� Show EΞ̃k(B
ε) & Ξ̃k(B) where B is a bad block and Bε is its

perturbed version.

� Show Ξ̃k(B) & Ξk(B) and Ξ̃k(G
ε) & Ξk(G

ε).

� Re-assemble the pieces using sub-additivity of Ξk and account for
the errors.
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Strategy of the Proof: Stability of Oseledets Spaces

� Assume µk > 0 > µk+1. Let δ0 < 1, Eε
k(ω̄) = ⊕kj=1Y

ε
j (ω̄) and

Uε =
{
ω̄ : ∠

(
Eε
k(ω̄), Ek(ω)

)
> 2δ0

}
, Wε = σ̄−NUε ∩ Ḡ.

To show: ∀0 < η < 1 and small ε > 0, P̄(Wε) < η.

� (Convergence of Y ε
k (ω̄) to Y 0

k (ω) then follows from the identity
Y ε
k (ω̄) = Eε

k(ω̄) ∩ F ε
k−1(ω̄) and duality.)

� If ω̄ ∈ Ḡ, and ∠(Eε
k(σ̄

N ω̄), Ek(σ
Nω)) > 2δ, then

⊥(Eε
k(ω̄), Fk(A

(N)
ω )) < 4δ−1e−(µk−τ)N .

� If ε is sufficiently small so that 4δ−1 + 2 < ekτN , ω̄ ∈ Ḡ and

⊥(Eε
k(ω̄), Fk(A

(N)
ω )) < 4δ−1e−(µk−τ)N , we have

Ξk(A
ε(N)
ω̄ |Eεk(ω̄)) ≤ (µ1 + . . .+ µk−1 + 2kτ)N.
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Strategy of the Proof: Stability of Oseledets Spaces

�

µε1 + . . .+ µεk = lim
n→∞

1

n

∫
Ξk(A

ε(n)
ω̄ |Eεk(ω̄)) dP̄(ω̄)

≤ 1

N

∫
Wε

Ξk(A
ε(N)
ω̄ |Eεk(ω̄)) dP̄(ω̄) +

1

N

∫
W c
ε

Ξk(A
ε(N)
ω̄ ) dP̄(ω̄)

≤ (µ1 + . . .+ µk−1 + 2kτ)P̄(Wε) + (µ1 + · · ·+ µk)P̄(W c
ε ) + 2τ.

Hence,

µkP̄(Wε) ≤ (µ1 + . . .+ µk)− (µε1 + . . .+ µεk) + 4kτ.

In particular, using convergence of the Lyapunov exponents, for
sufficiently small ε, we have P̄(Wε) ≤ 5kτ/µk < η.
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