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Intro Non-autonomous systems and MET Stability

Motivation

¢ To develop mathematical tools —analytical and numerical- to
analyse and understand transport and mixing phenomena in
(non-autonomous) dynamical systems.
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Transfer Operators
¢ Powerful analytical tool to investigate global properties of

dynamical systems, by considering densities, or ensembles of
trajectories.

mef
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¢ Linear operators encoding the global dynamics, acting on a
linear (Banach, Hilbert) space X,

L:X—>X, /f~gonm:/£f~gdm.
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Transfer Operators

¢ Very useful for numerical analysis of dynamical systems,
e.g. via Markovian models.

Numerical
approximations to
invariant measure of a
dynamical system via
transfer operators (blue)
and long trajectories
(red).

Density of invariant measure

05 i

Phase space

¢ Ulam discretisation scheme: P = {By,..., By} partition of the
state space into bins,
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Transfer Operators, Quasi-compactness

¢ Also useful for the analytical study of transport phenomena
in dynamical systems.

¢ L is quasi-compact if there exists 0 < k < 1, called essential
spectral radius of L, such that, outside the disc of radius k:

o The spectrum of £ consists of isolated
eigenvalues:
L=v,.c;7m, m <00,
such that |y1| > |y2| > -+ > |ym| > k, and

o Finite-dimensional corresponding
generalised elgenspaces:
Ei.....Epn.
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Transfer Operators, Spectral Properties
¢ It is now known that for a rich class of transformations T’
(including piecewise smooth expanding/hyperbolic maps) and

appropriate X, L is quasi-compact. Furthermore,

1 =, simple «w Ergodic system;
fi € E1 «~ Density of physical invariant measure.
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Transfer Operators, Spectral Properties

¢ It is now known that for a rich class of transformations 1T’
(including piecewise smooth expanding/hyperbolic maps) and
appropriate X, L is quasi-compact. Furthermore,

1 =, simple «~ Ergodic system;
|72] <1 e~ Mixing system; |75 «~ Rate of mixing;
fi € E1 «~ Density of physical invariant measure.
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Transfer Operators, Spectral Properties

Dellnitz, Deuflhard, Junge and collaborators in the 1990's
suggested the connection

fo € E5 e~ Almost-invariant sets.
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Transfer Operators, Spectral Properties

Dellnitz, Deuflhard, Junge and collaborators in the 1990's
suggested the connection

fo € E5 e~ Almost-invariant sets.
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Non-Autonomous Dynamical Systems: Introduction

¢ The evolution rule,

TwZD—>D, WGQ, 3
o - EXNUE ORI
is dictated by an external driving W R
Systema:Q—>Q. | IS e A P aE
¢ Analogy: N7/
autonomous ~~  picture N 220N
non-autonomous ¢~  movie 4 R e
Also known as: /I AN ¢
¢ PR
e Skew products, cocycles =) . : :

e Forced, time-dependent, and random
dynamical systems (RDS)
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Non-Autonomous Dynamical Systems: Introduction

¢ The evolution rule,

T,:D—D, we, + g
R Woeok R i & T TN
.. .. SRR RA RN LA LR
is dictated by an external driving §;jﬁ‘_f e N
system o : QQ — Q. et e e
Analogy: NW7277777/ NN
’ gy of NN\ WA A A \:‘\‘\
autonomous «~~  picture SN\ NS
non-autonomous «~  movie | SR E e
¢ Also known as: /RN RN
vﬁ\ivlrr’f*ﬁ\ﬂn
e Skew products, cocycles - . : .

e Forced, time-dependent, and random
dynamical systems (RDS)
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The Driving System

o:(QP) = (QP)
e Invertible;
e Probability preserving:

P(c~'E) = P(E) for all measurable E C €;

e Ergodic:
E=0YE)=PE)=0o0rP(E)=1.

¢ Examples
« Autonomous system:

Q={wo}, P=0y,, o =1Id.
« Deterministic forcing:
Q=S8" P=Leb, o(w)=w+a (modl),a¢gQqQ.
« Stationary noise:
Q = [—¢, €%, P = product of uniform measures, ¢ = shift.
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Non-Autonomous Systems

¢ External driving system
o:Q—Q,

measure preserving transformation of (2, F,P).
¢ Several, possibly uncountably many, evolution rules

T,:D—=D, weq.
¢ Associated transfer operators,
L,e LX), weq.
¢ Random dynamical system,
R=(QFPo X L).
L(w,n)=L" = Lon1,0-0Ley, 0 Ly
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Multiplicative Ergodic Theorems: Introduction

Spectral type decompositions for non-autonomous dynamical systems.
(Into non-linear time-varying modes, in order of decay rate.)

Autonomous Non-autonomous
¢ L quasi-compact operator ¢ R quasi-compact RDS
¢ 1, isolated eigenvalues ¢ )\ Lyapunov exponents

¢ £ (generalised) eigenspaces ¢ Y (w) Oseledets spaces

Ey ¥(w)

£y vi(w)
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Multiplicative Ergodic Theorems: Introduction

Spectral type decompositions for non-autonomous dynamical systems.
(Into non-linear time-varying modes, in order of decay rate.)

Autonomous Non-autonomous
¢ L quasi-compact operator ¢ R quasi-compact RDS
¢ 1, isolated eigenvalues ¢ )\; Lyapunov exponents

¢ E; (generalised) eigenspaces ¢ Y (w) Oseledets spaces

Ey

¥o(oh)

B Y1 ((139,')

Cecilia Gonzalez Tokman (UQ) Stability results for non-autonomous dynamical systems



Intro Non-autonomous systems and MET Stability

Multiplicative Ergodic Theorems: Introduction

Spectral type decompositions for non-autonomous dynamical systems.
(Into non-linear time-varying modes, in order of decay rate.)

Autonomous Non-autonomous
¢ L quasi-compact operator ¢ R quasi-compact RDS
¢ 1, isolated eigenvalues ¢ )\ Lyapunov exponents

¢ £ (generalised) eigenspaces ¢ Y (w) Oseledets spaces

Ey

i

Cecilia Gonzalez Tokman (UQ) Stability results for non-autonomous dynamical systems



Intro Non-autonomous systems and MET Stability

Multiplicative Ergodic Theorems: Introduction

Spectral type decompositions for non-autonomous dynamical systems.
(Into non-linear time-varying modes, in order of decay rate.)

Autonomous Non-autonomous
¢ L quasi-compact operator ¢ R quasi-compact RDS
# ; isolated eigenvalues ¢ )\, Lyapunov exponents

¢ £ (generalised) eigenspaces ¢ Yi(w) Oseledets spaces

ﬁei = Yi€; LW(Y;(W)) = K<0w)
Hlog [|£5ys(w)l = A
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Multiplicative Ergodic Theorems: History

Oseledets splittings:
¢ For invertible (injective) operators:
o Oseledets '68, Raghunathan '79 (matrices);
 Ruelle '79 (Hilbert spaces);
e Mafié '83, Thieullen '87, Lian—Lu '10, Blumenthal '16
(Banach spaces).

(In the non-invertible case, the above show existence of
Oseledets filtration.)
¢ For semi-invertible operators: (o invertible)
e Froyland-Lloyd—Quas '10 (matrices);
e Froyland-Lloyd—Quas '13 (restricted type of operators);
e GT—Quas '14, '15 (separable Banach spaces).
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Multiplicative Ergodic Theorem: Setting

¢ Let (X, | -||) be a Banach space with separable dual.
¢ Let R = (Q,F,P,0,X, L) be a random dynamical system with
ergodic and invertible base o.
¢ Integrability: log® ||£(w)|| € L1(P).
¢ Strong measurability: For each f € X, w+— L, f is measurable.
¢ Quasi-compactness: A\* > k*.
A (R) = lim, 00 L log 1287
maximal Lyapunov exponent (analog of the spectral radius);
£*(R) = lim,,_ = log ic(ﬁgl))
index of compactness (analog of the essential spectral radius)

L(Bx) can be covered with }
finitely many balls of radius r J~

ic(£) := inf {7‘ >0:
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Multiplicative Ergodic Theorem

Theorem (Semi-invertible Oseledets theorem [GT-Quas '14])

R has an Oseledets splitting:

There are at most countably many exceptional Lyapunov exponents,
AL > Ay > ... > N\ > k¥, and there exists a unique measurable and
equivariant splitting of X,

I
X=V(w)a @Yj(w), defined for P a.e. w € Q,
j=1
with V(w) closed and Y;(w) finite dimensional, such that:

¢ For every v € Y;(w) \ {0}, lim, 00 n~log || L570]| = A;.
¢ For every v € V(w), lim,, oo n" ! log HﬁSJn)UH < K*.
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Approximation and ldentification of Coherent Structures

(a)
L

is ¢ The Oseledets spaces Y;(w) can be
(b)

degree latitude
®

s approximated using a singular value
decomposition (SVD) type construction.
R [Froyland—Santitisadeekorn—-Monahan
. S '10, GT-Quas '15]

degree latitude

Ring locations each 28 da
[ERTIT) e
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degree longitude
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(@©Froyland—Horenkamp—Rossi—van Sebille '15
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Stability?

How does spectral data from transfer operators (Lyapunov
exponents, Oseledets splitting) change when the dynamical system
is perturbed?

¢ Relevant perturbations:

e Model errors.
e Noise.
e Numerical approximations: Ulam and Fourier-based methods.

¢ Early work, autonomous setting:

e Keller-Liverani '99:
Stability of spectral data for quasi-compact operators
(isolated eigenvalues and corresponding eigenspaces).
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Stability for non-autonomous systems

¢ Setting: Perturbations
e Initial system:
R = (Q,P,0,X,L).

e Perturbations:
Ri = (2,P,0,X,Ly), Ly ‘closeto’ L.

¢ Previous positive stability results, closest to our setting:
e Ledrappier—Young '91, Ochs '99;
e Baladi—Kondah-Schmitt '96, Bogenschiitz '00.

¢ Warning! Negative stability results:
e Bochi '02, Bochi—Viana '05.
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Stability of random

absolutely continuous invariant measures
for piecewise expanding interval maps
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Setting: Lasota—Yorke Maps

¢ Let LY be the set of non-singular,
finite-branched, piecewise monotonic
and piecewise smooth interval maps,

T:1—1.

¢ ForeachT € LY,
o M(T):: essinf ey |17 (2)]
° N(T):: number of branches of T’
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Setting: Random Lasota—Yorke Maps

¢ 0 : Q O ergodic, invertible P-preserving transformation.

¢ A good random Lasota—Yorke map 7 is a function

T:Q— LY,
w +— T, such that

(w, ) = T, (x) is measurable.

Expansion: limg o [, log min(u(7.,), K)dP > 0.
Number of branches: logt(N(T,,)/u(T,,)) € L*(P).
o Distortion: log™ (var(1/|T])) € L' (P).
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Random Lasota—Yorke Maps: Existence of Random acims

Definition

A random acim for

R = (Q,P,0,BV, L) is a non-negative
measurable function F : QQ x I — R, with
fo = F(w,-) € BV, such that || f,|l =1
and for every w € Q, L, [, = fow-

Theorem (Buzzi '99)

Let R be a good random Lasota—Yorke
map. Then, R has at least one and at
most finitely many random acims.

A\
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Perturbations: the Ulam Scheme

¢ Ulam discretisations
Ek,w - ]Ek o Ew

[E; is the conditional expectation with respect to the uniform
partition of I into k intervals P, = { B, ..., By},

Ey(f) = Zm(i?]) (/13]- / dm>1Bj,

Jj=1

e Very effective numerical approximation scheme.
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Perturbations: Convolutions

¢ Convolutions
Lrof () = Qo Lof(a /@k )Luf(z — y)dy

{Qx }ren are densities on S, with Qi — §g weakly.

o Uniform densities: Model of iid noise (on average)

1

@k = 5o Lenal-

o Fejér kernels: Cesaro average of partial sums of Fourier series

sin(mkx)?

ksin(rz)?

Qr(z) =
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Stability Theorem Application: Static Perturbations

¢ Static perturbations

Each 7., is perturbed to a nearby map 7,
Ly, is the transfer operator of T} .

e Modelling errors

e Model iid additive noise:
= = [~1,1])%, equipped with the product of uniform measures,
s left shift on =.
Set 0 =0 xZ, 6 =0 xsand for (w,&) € Q,

T (w,e)(2) = T () + exo-
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Stability Theorem for Random Acims

Theorem (Froyland-GT—Quas '14 & Froyland—-GT-Murray '17)
¢ Let R be a covering good random Lasota—Yorke map.
¢ Let {Ry} be either
e The sequence of Ulam discretisations, corresponding to uniform

partitions Py, (*), or
e A sequence of random perturbations by convolution with Qj, with

Qr — 0y weakly.
e A sequence of static perturbations of size €, — 0.
Then, for each sufficiently large k, R, has a unique random acim.
Let {F}ren be the sequence of random acims for R,.
Then, limy_, o, F}, = F fibrewise in | - |;.
(That is, for P-a.e. w € Q, limg_y00 | fo — frwl1 =0.)
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Comments on the Proof

¢ Convergence is established in a strong sense.

¢ Previous stability results deal with small perturbations of an
autonomous expanding system.
(Baladi, Kondah, Schmidt, Bogenschiitz)

¢ The proof combines ergodic theoretical tools with classical
functional analysis tools for autonomous systems (Buzzi, Blank,
Keller, Liverani), including quantitative control on the skeleton of
(random) periodic turning points.
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Stability: Numerical Example

03| 03| 08
£ 05 £ 05 £ o
= 04 2 04

02| 02| 02|

¢ 0 :S' O be arigid rotation by angle a = 1/1/2

3z —w) —2.9(z — w)(z —w — 1), wlr<w+ 3
Tw(x): —3(z—w)+1—2.9(1—w—%)(z—w—g), w+l§z<w+%;
%(17W7%)+2w/9, wts<z<w+l
1 15 5

°
@
o
°
&

o

05 1 0 05 1 0 05 1

10000.1421%)
‘i 1000,0. mz(x)
f10000.s563%)

°
o
o
o
o
o

°
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Stability: Numerical Example

Ulam's method for quenched and physical measures

45
I 1
1 YH ——average of quenched {u }
ns | i/ u
| ot ——annealed (averaged operator)
o —eh,w=0.64
35} ] [ B w
f I :. o, w=0.63
I Pl s
it
o
At
2e5r ,,’ [N :l
B [ [
g i l‘ Vi
@ T Lo
o :zh i o
| d A

I:=100,1], we Q:= 85t P:=Leb, o(w) :=w+p (mod 1),p ¢ Q.

B { 2.1(z —2w) (mod 1) if w € [0,1/2),
Jol@) =9 05z —2w—0.5)) (mod 1) ifwe [1/2,1).
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Intro Non-autonomous systems and MET Stability

Stochastic Stability of Oseledets Splittings: Setting

¢ H separable Hilbert space, with basis e, ¢, .. ..
¢ Hilbert—-Schmidt and strong Hilbert—-Schmidt norms, for A € H:

1AlGs == > (Aeie)®s [[Alldus == ) 220" (Aei, e5)*.
0,7 @]
SHS .= {A € H: HAHSHS < OO} C HS C K(H)

¢ Hilbert space cocycle: (Q,P,o,SHS, A), with
o ergodic, P-preserving and invertible;
A: Q — SHS, with log-integrable norm;

A = Ao W) A(6" W) - - - A(w).

w
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Stochastic Stability of Oseledets Splittings: Setting

¢ Lyapunov exponents (with multiplicity):
00 > i1 2 fg = ..o 2 [y =+ = —OQ.

¢ dy,dy,....d,,... the corresponding multiplicities;

‘ DO ZZO, Dz :d1++d2,
so that Wi = if D;_1 < j,j/ < D,.

4 The notions of singular vectors and singular values apply to
compact operators, as in the finite-dimensional case.
For A€ K(H), let s1(A) > s3(A) > ... be the singular values
(with multiplicity).
The maximal logarithmic rate of k-dimensional volume growth is
given by

Z4(A) = log(s1(A) - - se(A)).
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Perturbations

¢ Q:=Q x SHS?,
¢ 7 := 0 x s, where s is the shift on SHS?Z.

¢ P :=P x ~% where 7 is the multi-variate normal distribution on
SHS with centred, normal (4, j)th entry with standard deviation
3749, and independent entries.

¢ For € > 0, define the new cocycle A¢: Q — SHS, with generator
AY(w, (An)nez) = Aw) + Ao, (Ay ~ 7).

¢ Goal: compare splittings of R = (2, P, 0, A) and
R.=(Q,P,7,A°), as e — 0.
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Stochastic Stability of Oseledets Splittings

Theorem (Froyland-GT—Quas, to appear)

(i)

(ii)

Convergence of Lyapunov exponents:
Let the Lyapunov exponents of the perturbed matrix cocycle
(Q, P,a, A°) be
i > s> > g,
with multiplicity. Then p§ — ; for each i as e — 0.

Convergence in probability of Oseledets spaces:

Let N = (p; — 0, ju; + 0), with u; > —oo and p; & N if p; # .
Let ¢y be such that for each € < ¢,

5 € N foreach D;_1 < j < D;.

For € < €, let Y,*(w) denote the sum of the Oseledets spaces of
A€ having exponents in N

Then Y (w) converges in probability to Y;(w) as € — 0.
(Convergence in the Grassmannian of H.)
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Strategy of the Proof: Stability of Lyapunov Exponents

Goal: obtain a lower bound for the sum of the k top perturbed
Lyapunov exponents (maximal logarithmic growth rate of k-volumes).

¢ For € > 0, define a block length, N ~ |loge]|.

¢ For large n, estimate the top exponents of the product AEED”N), a
perturbed block of length n/V.

¢ Replace the (sub-additive) logarithmic k-volume growth, = (-) by
a related approximately super-additive quantity,

Zr(A) = ES, (L, AAATL),

where II}, is the orthogonal projection onto (e, ..., ex), and
A, A" ~ ~ are independent.

¢ Use this super-additivity to split AeglN) into good super-blocks
(of length a multiple of N') and bad blocks (of length N — 2):
Zp(ATN) 2 Zp(AT™) 2> Si(blocks).
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Strategy of the Proof: Stability of Lyapunov Exponents

¢ Show Z4(G°) Z Ex(G), where G represents a good super-block
and G°¢ its perturbed version.

¢ Show EZ,(B¢) > =,(B) where B is a bad block and B¢ is its
perturbed version.

¢ Re-assemble the pieces using sub-additivity of =, and account for
the errors.
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Strategy of the Proof: Stability of Oseledets Spaces

¢ Assume i, > 0 > ppqq. Let g < 1, Eg(@) = @F_, Y (@) and
U.={w: L(Ej (@), Ep(w)) > 20}, W.=05"U.NG.

To show: V0 < n < 1 and small € > 0, P(W,) < 7.

¢ (Convergence of Y, (@) to Y,?(w) then follows from the identity
Yi(w) = Ef(w) N Ff_,(w) and duality.)

¢ foe G, and Z(E{(cYw), E(0c™w)) > 26, then
L(E (@), Fe(AM)) < 467 1e~ eIV,

¢ If € is sufficiently small so that 467 + 2 < ¥V, © € G and
L(E@), Fe(AM)) < 4671~V e have

=AY

E@) < (1 + ...+ pg—1 +2k7)N.
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Strategy of the Proof: Stability of Oseledets Spaces

¢
oty = lim = [ S (A ) dP(@)
1 . _ 1 — / re -
< ~ Zp(A) i (@) AP(@) + N 2o (AN dP (@)

wPWe) < (i + oo+ ) — (5 + -+ ) + 4k

In particular, using convergence of the Lyapunov exponents, for
sufficiently small €, we have P(W,) < 5k7/pu, < .
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