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Higgs bundles

Let Σ be a Riemann surface of genus g ě 2.

Defn: A GLpn,Cq-Higgs bundle is a pair pE ,Φq of a (degree δ,
rank n) holomorphic bundle E and a Higgs field

Φ P H0pΣ,K b EndE q.

It is stable if for all Φ-invariant subbundles F Ă E

degF

rankF
ă

degE

rankE
.

The moduli space MGL of stable Higgs bundles admits a
holomorphic symplectic structure σ.

Rmk: T ˚BunGL ĂMGL as

T ˚EBunGL “ H1pΣ,EndE q˚ – H0pΣ,K b EndE q.



Hitchin systems Compact systems Other Hitchin systems Compact Prym fibrations

The Hitchin map

We can map a Higgs bundle to the eigenvalues of the
EndE -valued one-form Φ

h :MGL ÝÑ AGL :“
n
à

i“1

H0pΣ,K i q

pE ,Φq ÞÝÑ ptrΦ, trpΦ2q, . . . , trpΦnqq

The latter determine a spectral curve

C Ă TotK “ T ˚Σ

n:1 Œ Ó

Σ

The eigenspaces determine a line bundle L over C .

Defn: pC , Lq is called the spectral data of pE ,Φq.
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The Hitchin system

Thm (Hitchin): h :MGL ÝÑ AGL is an integrable system, i.e.,
dimMGL “ 2dimAGL and

rhi , hj s :“ σ´1pdhi , dhjq “ 0

where σ´1 is the inverse of the symplectic structure. (Equivalently,
the fibres are Lagrangian wrt σ.)

The fibres are complex tori, Jacobians JacdC of spectral curves.

Rmk: There are also singular fibres, the most singular being the
nilpotent cone

h´1pnΣq :“ tpE ,Φq | Φ is nilpotentu.
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Special Kähler geometry

Let M Ñ B be a Lagrangian fibration.

Thm (Freed, Hitchin): Breg admits a special Kähler metric

ω “
´i

2
Impτijqdz

i ^ dz̄ j

where τij are the periods of the fibres.

On AGL, z i “
ş

ai
θ where a1 . . . ag , b1 . . . bg is a symplectic basis of

1-cycles on the spectral curve, θ is the canonical 1-form on T ˚Σ.

Thm (Donagi-Markman): There exists a symmetric cubic form

on the base, c P H0pB, Sym3TBq, given by cijk “
Bτjk
Bz i

.
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Relation to topological recursion

Thm (Baraglia-Huang): For the GLpn,Cq-Hitchin system

Bi1Bi2 ¨ ¨ ¨ Bim´2τim´1impbq

“ ´

ˆ

i

2π

˙m´1 ż

p1Pbi1

¨ ¨ ¨

ż

pmPbim

W
p0q
m pp1, . . . , pmq

where b P Breg and W
p0q
m are the g “ 0 Eynard-Orantin invariants

of the spectral curve Cb.

In particular, the special Kähler metric and the Donagi-Markman

cubic on B can be computed from W
p0q
m .
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Lagrangian fibrations

Let X be a compact holomorphic symplectic manifold of dimension
2n, with σ a non-degenerate two-form: σ^n trivializes Ω2n “ K .

Assume X is irreducible, i.e., σ generates H0pX ,Ω2q.

Thm (Matsushita, Hwang): If X Ñ B is a proper fibration then

1. dimB “ n “ dimF ,

2. F is Lagrangian, generic fibre is a complex torus,

3. B is isomorphic to Pn if it is smooth.

Rmk: Lagrangian means TF Ă TX is maximal isotropic wrt σ.
Integrable means T ˚B Ă T ˚X is maximal isotropic wrt σ´1.



Hitchin systems Compact systems Other Hitchin systems Compact Prym fibrations

The Beauville-Mukai system

Let C be a genus g curve in a K3 surface S . Then |C | – Pg . Let
C{Pg be the family of curves linearly equivalent to C . Then

X :“ Jac
d
pC{Pg q ÝÑ Pg

is a Lagrangian fibration.

Rmk: 0 ÝÑ TXb ÝÑ TX |Xb
ÝÑ π˚TbPg ÝÑ 0

The normal bundle of C in S is isomorphic to T ˚C “ KC , which
implies that TXb “ H0pC ,KC q

_ is dual to TbPg “ H0pC ,KC q.

X can be identified with the moduli space Mp0, rC s, 1´ g ` dq of
stable sheaves on S , which is holomorphic symplectic.

Rmk: If rC s P NSpSq is primitive then any d is possible, whereas if
C P |nΣ| then only some choices of d yield compact moduli spaces.



Hitchin systems Compact systems Other Hitchin systems Compact Prym fibrations

A degeneration

If Σ Ă S is ample then S degenerates to T ˚Σ: embed

S ãÑ PpH0pS ,Σq˚q “ PN ,

take the cone over S in PN`1, then intersect with the pencil of
hyperplanes containing Σ.

• the generic intersection is isomorphic to S

• the hyperplane through the apex of the cone gives T ˚Σ

Thm (Donagi-Ein-Lazarsfeld): This degeneration induces a
degeneration of the Beauville-Mukai system built from |nΣ| to a
compactification MGL of the GLpn,Cq-Hitchin system on Σ.

Curves in |nΣ| in S become spectral curves in T ˚Σ.
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Relation to topological recursion?

Qu: Can we compute the Donagi-Markman cubic and special

Kähler metric on pPg qreg from W
p0q
m of the spectral curves C?

In both T ˚Σ and S , the normal bundle to C is T ˚C “ KC , and

0 ÝÑ TC ÝÑ TS |C ÝÑ KC ÝÑ 0

gives an extension class in

Ext1pKC ,TC q – H0pC ,Kb3
C q_ ÝÑ H0pC ,KC q

b3_ – pTbPg qb3_.

This is the Donagi-Markman cubic at b P Pg .

But to higher order, the neighborhoods of C in T ˚Σ and S differ.

Qu: Is this encoded in θ|C , and therefore, in the W
p0q
m ?
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SL-Hitchin systems

For SLpn,Cq-Higgs bundles pE ,Φq, detE – O and trΦ “ 0, so

h :MSL ÝÑ ASL :“
n
à

i“2

H0pΣ,K i q.

Recall the spectral curves are n : 1 covers C Ñ Σ. This induces

Nm : JacdC ÝÑ JacdΣ

and the fibres of h are the Prym varieties Nm´1p0q.

Rmk: The cover C Ñ Σ has branch points, so PrympC{Σq is not
principally polarized.
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PGL-Hitchin systems

For PGLpn,Cq-Higgs bundles we also have

h :MPGL ÝÑ APGL :“
n
à

i“2

H0pΣ,K i q.

Now C Ñ Σ induces Jac0Σ Ñ Jac0C by pullback. The fibres of h
are the quotients of Jac0C by the action of Jac0Σ.

Thus MPGL{APGL is the dual fibration of MSL{ASL:

SL : 0 ÝÑ PrympC{Σq ÝÑ JacdC
Nm
ÝÑ JacdΣ ÝÑ 0

PGL : 0 ÝÑ Jac0Σ ÝÑ Jac0C ÝÑ PrympC{Σq˚ ÝÑ 0

Thm (Hausel-Thaddeus): The stringy Hodge numbers of MPGL

equal the Hodge numbers of MSL.
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Sp-Hitchin systems

For Spp2n,Cq-Higgs bundles the spectral curves C Ă T ˚Σ are
invariant under fibre multiplication by ´1. Thus

h :MSp ÝÑ ASp :“
n
à

i“1

H0pΣ,K 2i q.

Quotienting by the involution η ÞÑ ´η in the fibre of T ˚Σ gives

C Ă TotK “ T ˚Σ

2:1 Ó 2:1 Ó

D Ă TotK 2.

Thus the spectral curves are (branched) double covers C Ñ D.
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Generalized Prym varieties

Def: The map π : C Ñ D induces Nm : JacdC Ñ JacdD and we
define the Prym variety PrympC{Dq :“ Nm´1p0q.

Equivalently, let τ : C Ñ C be the covering involution. For d “ 0

PrympC{Dq :“ Fixp´τ˚q0 Ă Jac0C .

Rmk: Compare to Fixpτ˚q0 – π˚Jac0D Ă Jac0C .

PrympC{Dq has dimension genusC ´ genusD and polarization of
type p1, . . . , 1, 2, . . . , 2q with genusD 2s.

Prop: For Spp2n,Cq, the fibres of h are PrympC{Dq.
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SO-Hitchin systems

For SOp2n ` 1,Cq-Higgs bundles the spectral curves consist of
p´1q-invariant C Ă T ˚Σ as in the Spp2n,Cq-system union with
the zero section.

h :MSOp2n`1,Cq ÝÑ ASOp2n`1,Cq :“
n
à

i“1

H0pΣ,K 2i q

Discarding the zero section we get C
2:1
ÝÑ D as before.

Fibres of h are finite covers of PrympC{Dq, in fact PrympC{Dq_.

Thus MSOp2n`1,Cq{ASOp2n`1,Cq is the dual fibration of MSp{ASp.

Rmk: In general AG “ ALG and the dual of MG{AG is MLG{ALG

where LG is the Langlands dual group of G .
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Markushevich-Tikhomirov system

Let S Ñ T be a K3 double cover of a degree two del Pezzo.

We get a P2-family of genus three curves covering elliptic curves

C Ă S

2:1 Ó 2:1 Ó

D Ă T .

The family PrympC{Dq over P2 is a Lagrangian fibration.

Total space is a holomorphic symplectic orbifold of dimension four.

Rmk: The fibres have polarization type p1, 2q.
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The dual fibration

The double cover S Ñ T is constructed from two quartics ∆ and
∆1 in P2, which are tangent to each other at eight points.

• f : T Ñ P2 is a double cover branched over ∆

• S Ñ T is branched over one component of f ´1p∆1q

Interchanging ∆ and ∆1 gives S 1 Ñ T 1.

Thm (Menet): PrympC1{D1q over P2 is dual to PrympC{Dq.
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Pantazis’s bigonal construction

Given a tower of branched covers C
2:1
ÝÑ D

2:1
ÝÑ P1 we can

construct another tower C 1
2:1
ÝÑ D 1

2:1
ÝÑ P1 as follows.

• suppose d1, d2 P D sit above p P P1

• suppose c11, c12 P C sit above d1 and c21, c22 P C sit above d2

• above p, C 1 consists of pairs of lifts tc11, c21u, tc11, c22u,
tc12, c21u, tc12, c22u

• an involution tc11, c21u Ø tc12, c22u, tc11, c22u Ø tc12, c21u

• quotienting C 1 by the involution gives D 1

Thm (Pantazis): PrympC 1{D 1q is dual to PrympC{Dq.

Rmk: Let D{P1 be branched over p1, . . . , p2s and C{D be
branched over points whose images in P1 are q1, . . . , q2t . Then for
C 1 Ñ D 1 Ñ P1 the roles of pi and qj are reversed.
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Dual Prym varieties

The interchange of branch points:

C

D

P1 ‹ ‹ ‹ ‹

C 1

D 1
‹‹‹‹

P1‹‹‹‹

Menet applies Pantazis’s bigonal construction to families of curves
in S{T {P2 and S 1{T 1{P2, to conclude that their Markushevich
-Tikhomirov systems are dual.
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Matteini system

Let S Ñ T be a K3 double cover of a cubic del Pezzo (degree 3).

We get a P3-family of genus four curves covering elliptic curves

C Ă S

2:1 Ó 2:1 Ó

D Ă T .

The family PrympC{Dq over P3 is a Lagrangian fibration.

Total space is a holomorphic symplectic orbifold of dimension six.

Rmk: The fibres have polarization type p1, 1, 2q.
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Pantazis’s bigonal construction again

Fibrewise the dual Prym varieties arise from:

C 1

D 1

P1 ‹ ‹ ‹ ‹ ‹ ‹

C

D
‹‹‹‹‹‹

P1‹‹‹‹‹‹

The LHS curves C 1 Ñ D 1 Ñ P1 come from a new system.
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Conjectural dual of Matteini’s system

[joint work with Chen Shen]

Let S 1 Ñ T 1 Ñ Q be a K3 double cover of a degree one del Pezzo.

Get a P3-family of genus five curves covering genus two curves and
PrympC1{D1q is a holomorphic symplectic orbifold of dimension six.

Rmk: Lagrangian fibration with fibres of polarization type p1, 2, 2q.

Conj: Our system is dual to Matteini’s.

A parameter count suggests that one may need to specialize
Matteini’s system.
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Known examples of compact Prym fibrations

Thm (Nikulin): There are 75 anti-symplectic involutions on K3s.
The quotient T :“ S{τ is an Enriques or a rational surface.

Lagrangian fibrations by Pryms:

• Markushevich-Tikhomirov: K3 cover of degree 2 del Pezzo,

• Arbarello-Saccà-Ferretti: K3 cover of Enriques surfaces,

• Matteini: K3 covers of other del Pezzos and Hirzebruchs,

• Debarre: linear systems of curves in abelian surfaces.

• Matteini: abelian double covers of bielliptic surfaces.
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Degenerations

[joint work with Chen Shen]

To connect the Beauville-Mukai system to the GLpn,Cq-Hitchin
system we started with a degeneration:

S ù T ˚Σ

For Prym fibrations, we start with a degeneration of double covers:

S ù TotK “ T ˚Σ
Ó Ó

T ù TotK 2

Rmk: The branch locus of S{T becomes the branch locus of
TotK{TotK 2, which is just the zero section – Σ.
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Degenerations

Induces degenerations of some Prym fibrations coming from K3
covers of del Pezzos to compactifications of Sp-Hitchin systems.

Rmk: For Hitchin systems the spectral curves lie in |nΣ|, and Σ is
the branch locus of TotK{TotK 2.

Thus a compact system that generates to it must have C P |n∆|.

(Not true for the Markushevish-Tikhomirov and Matteini systems.)
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Summary of Lagrangian fibrations

Fibres Non-compact Compact
Jacobians GLpn,Cq-Hitchin Beauville-Mukai

Prym varieties Spp2n,Cq-Hitchin Markushevich-Tikhomirov
SOp2n ` 1,Cq-Hitchin Matteini

...
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Thank you!
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