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Mixed Steklov Eigenvalue Problem

Let €2 be a bounded domain in R™ with Lipschitz and piecewise
smooth boundary 9Q2. Throughout this talk, we assume that

0N=FUB

with
F Cc{z, =0}, and BcC{z, <0}
Mixed Steklov-Dirichlet Eigenvalue Problem:
Af =0, in €,
f=0, on B,
Oz, f=nf, onF.

Mixed Steklov-Dirichlet Eigenvalues:

O<m<mp<np<--- Joo



Dirichlet-to-Neumann map

The eigenvalues of the sloshing problem can be considered as the
eigenvalues of the Dirichlet—to—Neumann map

Dy : L*(F) — L*(F), [+ Ouf,

where f is the harmonic extension of f to § satisfying the
Neumann boundary condition on B.

Similarly, the eigenvalues of the Steklov—Dirichlet problem is equal
to the the eigenvalues of the Dirichlet—to—-Neumann map

Dp: L*(F) = L*(F),  f O,

where f is the harmonic extension of f to € satisfying the
Dirichlet boundary condition on B.
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Riesz Means

The Riesz mean R, (z) of order v > 0 is defined as
Ry(z):=> (z—v)L, 2>0,
J

where (z — )1 := max{0, z — v}. We may also denote it by
Rff(z.,DN) or R,?(Z,'DD) to identify the domain and the operator
under consideration.

When v — 0, we get the counting function

N(z) = Z 1 =sup{k: v < z}

vi<z

and by convention we denote Ry(z) := N(z2).



https://archive.org/details/typicalmeans032098mbp

& m @ archive.org ¢ M

HE o 5 B B8

ABOUT CONTAG BLOG PROJECTS HELP. DONATE

TYPICAL MEANS

TATA INSTITUTE OF FUNDAMENTAL RESEARCH
MONOGRAPTIS ON MATHEMATICS AND PHYSICS

Typical Means by Chandrasekharan and Minakshisundaram (1952)



6/18



Asymptotics
Sandgren 1955

Wnp—1

(27-‘-)7171

N(z) ~ [Fl"7 2 oo,

where w,,_1 is the volume of a unit ball in R"~!, and | F| denote
the (n — 1)-Euclidean volume of F.
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Asymptotics
Sandgren 1955

Wnp—1

N(z) ~ (2r)n—1

|.7:|z"71, z /oo,

where w,,_1 is the volume of a unit ball in R"~!, and | F| denote
the (n — 1)-Euclidean volume of F.
Using the following identity

R,(z) = 7/000 (z— )1 " Ro(t)dt = 7/02 (z — )7 Ro(t)dt,

we immediately get

Ry(2) ~ Cup FI2"7Y, 2 Ao,

where
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Two-term asymptotic in dimension 2

f
a O 15}

B

Levitin, Parnovski, Polterovich, Sher (2017)

Let © be a bounded domain in R2 with 9Q = F U B, where F is
connected. Let o, 8 € (0, 5) be the interior angles between F and
B. Then the following asymptotic expansion holds.

Sloshing eigenvalues

T 7w /(1 1
uk‘f‘—ﬂk—2—8<a+6>+0(1)v k oo
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Two-term asymptotic in dimension 2
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Levitin, Parnovski, Polterovich, Sher (2017)
Let © be a bounded domain in R2 with 9Q = F U B, where F is
connected. Let o, 8 € (0, 5) be the interior angles between F and
B. Then the following asymptotic expansion holds.
Steklov-Dirichlet eigenvalues

72 (1

T 1
7]k\]:|—7rk—2+8<a+ﬁ>+0(1)7 k oo
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Two-term asymptotic in dimension 2

f
o Q0 15}

B

Asymptotic of Riesz means (Ferrulli, Lagacé - 2018)

Let © be a bounded domain in R2 with 9Q = F U B, where F is
connected. Let o, 8 € (0, 5) be the interior angles between F and
B. Then the following asymptotic expansion holds.

1 1 1
R?(z,DN) = §|]—"|z2 + % <a + 5> z+0(z).
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Two-term asymptotic in dimension 2

f
« Q I5]

B

Asymptotic of Riesz means (Ferrulli, Lagacé - 2018)

Let © be a bounded domain in R2 with 9Q = F U B, where F is
connected. Let o, 8 € (0, %) be the interior angles between F and
B. Then the following asymptotic expansion holds.

1 T (1 1

Q 2

R Dp) = —|F22 -~ T (24 2) 2 1 o(2).
1(2:Pp) 27r‘ |2 8<a ﬂ)z o2)



Asymptotically Sharp Bounds for Riesz Means
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Main results
Theorem (H. , Laptev)
Let Q2 C R? be a subset of a triangular domain, as shown in the

s

picture, and the interior angles o, 3 € (0, %) of 2 coincide with the
ones for the triangle. Then

B D) 2 5 1717 4 5 <tan1( )+tanl(5)> (Z‘l_;hy)

where h = |f]% is the hight of the triangle.
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1 1 1 1 1—e 22
Ri(z,Dy) > — 24 = _c
1(zDy) 2 27r|]:’2 T or <tan(a) i tan(ﬁ)) (Z 2h > '

where h is the hight of the triangle.
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Main results

Theorem (H. , Laptev)
Let Q C R? with 02 = F U B be a subset of F x (—00,0). Then

1 1
R?(Z,DN) > %|}"]22 + iz,

and 1
Q
Dp) < o a4 —
R (Z D) ]]:\z Z+ 2,}.‘
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Domain Monotonicity for Mixed Steklov Eigenvalues

Theorem (Banuelos, Kulczycki, Polterovich, Siudeja - 2010)

LeNt 0Nc I~Je subdomains of R™ with 9 = F U B and
0 = F U B. Then the following inequality holds.

In particular,

R%(z,Dy) :Z(z—uj Z 2 —vi(Q)) :RQ(Z,DN).

J J
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Domain Monotonicity for Mixed Steklov Eigenvalues

Theorem (Banuelos, Kulczycki, Polterovich, Siudeja - 2010)

LeNt 0Nc I~Je subdomains of R™ with 9 = F U B and
0 = F U B. Then the following inequality holds.

() > n(Q), vk > 1.

In particular,

RYzDp) = (2 —nj(@)s <Y (2 —n;(2)1 = Rz, Dp).
7 J
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Main Results

Theorem (H. , Laptev)
Let Q) be a bounded domain of R™ and 9Q) = F UB. Then

R(z,Dy) > C'n,1|]:|z”c(n)/ /(n, €n>62$"T7’n_1 dsdr,
0 B

where c(n) =
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Main Results

Theorem (H. , Laptev)

Assume that Q (with 0Q = F U B) is a subset of F x (—00,0).
Then

n—Dwp—1 |F]
(2m)n=1  (2hgq)

where hq is the depth of 2 and

R (2,Dn) > Cpa|F|2" + ( — (I'(n) = '(n,2hqz2)),

— gk
T —1 —
)= = e S0

is the incomplete T'-function. (Notice that I'(n) — I'(n,z) > 0 for
every x > 0, and every n € N.)

14 /18



Main Results

Theorem (H. , Laptev)

Let Q be a bounded domain in R™ and subset of an infinite

cylinder F x [—o00, 0], where 9 = F U B. Here F is the free part
of the boundary. Then for every z > 0 we have

Rz, Dp) = Z(z —nj)+ < Cpa| Fl2".
J
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Averaged Variational Principle

Theorem (EI Soufi, Harrell, Stubbe - 2015)

Let {p; }‘;‘;1 be an orthonormal basis of L*(F) consisting of the
eigenfunctions associated with {v;}3%, and let fe € H(S2) be a
family of harmonic functions where £ varies over a measure space

(O, ). Let My be a measurable subset of M. Then for any z > 0
we have

St whe [ | Lot

2
duzz [ lfePdsdy
Mo JF

. ofe -
— Re —— fedsdpu.
/zmo o0 On "¢
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Sketch of the Proof for Sloshing Porblem

We choose a suitable family of harmonic test functions.
fo(a) = e rarle]

where © = (2/,2,) € R"! x R and ¢ € R""1. In the previous
theorem take M = R"~! and My = {|¢'| < z}.
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Sketch of the Proof for Sloshing Porblem

We choose a suitable family of harmonic test functions.
fo(a) = e rarle]

where © = (2/,2,) € R"! x R and ¢ € R""1. In the previous
theorem take M = R"~! and My = {|¢'| < z}. Hence, we get

S [ GO e 2IF [l de

J
‘/ / (n, e,)|€'|e*n ¢ dsdg,
€<z /B

where (&) = [ €% p;(2")ds. Therefore,

Wn—1
f’ n
n(2m )” il 712

nfl Ywn—1
n- (n,en)e 2@ =L dsdr.
27-[- T (9o \n—1

R(z,Dy) = 3 (= = vy)s >

J
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Thank You For Your Attention!



