Bounds on the Riesz means of mixed Steklov eigenvalues

Asma Hassannezhad joint with Ari Laptev

6 July 2018

BIRS, Banff

Mixed Steklov Eigenvalue Problem

Let Ω be a bounded domain in \mathbb{R}^n with Lipschitz and piecewise smooth boundary $\partial\Omega$. Throughout this talk, we assume that

$$\partial\Omega = \mathcal{F} \cup \mathcal{B}$$

with

$$\mathcal{F} \subset \{x_n = 0\}, \text{ and } \mathcal{B} \subset \{x_n < 0\}.$$

Mixed Steklov Eigenvalue Problem

Let Ω be a bounded domain in \mathbb{R}^n with Lipschitz and piecewise smooth boundary $\partial\Omega$. Throughout this talk, we assume that

$$\partial\Omega = \mathcal{F} \cup \mathcal{B}$$

with

$$\mathcal{F} \subset \{x_n = 0\}, \quad \text{and} \quad \mathcal{B} \subset \{x_n < 0\}.$$

Sloshing Problem:

$$\begin{cases} \Delta f = 0, & \text{in } \Omega, \\ \partial_{\mathbf{n}} f = 0, & \text{on } \mathcal{B}, \\ \partial_{x_n} f = \nu f, & \text{on } \mathcal{F}. \end{cases}$$

Sloshing eigenvalues:

$$0 = \nu_1 \le \nu_2 \le \nu_3 \le \cdots \nearrow \infty$$

Mixed Steklov Eigenvalue Problem

Let Ω be a bounded domain in \mathbb{R}^n with Lipschitz and piecewise smooth boundary $\partial\Omega$. Throughout this talk, we assume that

$$\partial\Omega = \mathcal{F} \cup \mathcal{B}$$

with

$$\mathcal{F} \subset \{x_n = 0\}, \text{ and } \mathcal{B} \subset \{x_n < 0\}.$$

Mixed Steklov-Dirichlet Eigenvalue Problem:

$$\begin{cases} \Delta f = 0, & \text{in } \Omega, \\ f = 0, & \text{on } \mathcal{B}, \\ \partial_{x_n} f = \eta f, & \text{on } \mathcal{F}. \end{cases}$$

Mixed Steklov-Dirichlet Eigenvalues:

$$0 < \eta_1 \le \eta_2 \le \eta_3 \le \cdots \nearrow \infty$$

Dirichlet-to-Neumann map

The eigenvalues of the sloshing problem can be considered as the eigenvalues of the Dirichlet–to–Neumann map

$$\mathcal{D}_N: L^2(\mathcal{F}) \to L^2(\mathcal{F}), \qquad f \mapsto \partial_{\mathbf{n}} \tilde{f},$$

where \tilde{f} is the harmonic extension of f to Ω satisfying the Neumann boundary condition on \mathcal{B} .

Similarly, the eigenvalues of the Steklov–Dirichlet problem is equal to the the eigenvalues of the Dirichlet–to–Neumann map

$$\mathcal{D}_D: L^2(\mathcal{F}) \to L^2(\mathcal{F}), \qquad f \mapsto \partial_{\mathbf{n}} \tilde{f},$$

where \tilde{f} is the harmonic extension of f to Ω satisfying the Dirichlet boundary condition on \mathcal{B} .

Riesz Means

The Riesz mean $R_{\gamma}(z)$ of order $\gamma > 0$ is defined as

$$R_{\gamma}(z) := \sum_{j} (z - \nu_j)_+^{\gamma}, \qquad z > 0,$$

where $(z-\nu)_+:=\max\{0,z-\nu\}$. We may also denote it by $R_\gamma^\Omega(z,\mathcal{D}_N)$ or $R_\gamma^\Omega(z,\mathcal{D}_D)$ to identify the domain and the operator under consideration.

When $\gamma \to 0$, we get the counting function

$$N(z) := \sum_{\nu_i < z} 1 = \sup\{k : \nu_k < z\}$$

and by convention we denote $R_0(z) := N(z)$.

https://archive.org/details/typicalmeans032098mbp

Typical Means by Chandrasekharan and Minakshisundaram (1952)

Asymptotics

Sandgren 1955

$$N(z) \sim \frac{\omega_{n-1}}{(2\pi)^{n-1}} |\mathcal{F}| z^{n-1}, \qquad z \nearrow \infty,$$

where ω_{n-1} is the volume of a unit ball in \mathbb{R}^{n-1} , and $|\mathcal{F}|$ denote the (n-1)-Euclidean volume of \mathcal{F} .

Asymptotics

Sandgren 1955

$$N(z) \sim \frac{\omega_{n-1}}{(2\pi)^{n-1}} |\mathcal{F}| z^{n-1}, \qquad z \nearrow \infty,$$

where ω_{n-1} is the volume of a unit ball in \mathbb{R}^{n-1} , and $|\mathcal{F}|$ denote the (n-1)-Euclidean volume of \mathcal{F} . Using the following identity

$$R_{\gamma}(z) = \gamma \int_{0}^{\infty} (z - t)_{+}^{\gamma - 1} R_{0}(t) dt = \gamma \int_{0}^{z} (z - t)^{\gamma - 1} R_{0}(t) dt,$$

we immediately get

$$R_{\gamma}(z) \sim C_{n,\gamma} |\mathcal{F}| z^{n+\gamma-1}, \qquad z \nearrow \infty,$$

where

$$C_{n,\gamma} := \frac{1}{(4\pi)^{\frac{n-1}{2}}} \frac{\Gamma(\gamma+1)\Gamma(n)}{\Gamma(\frac{n+1}{2})\Gamma(n+\gamma)}.$$

Levitin, Parnovski, Polterovich, Sher (2017)

Let Ω be a bounded domain in \mathbb{R}^2 with $\partial\Omega=\mathcal{F}\cup\mathcal{B}$, where \mathcal{F} is connected. Let $\alpha,\beta\in(0,\frac{\pi}{2})$ be the interior angles between \mathcal{F} and \mathcal{B} . Then the following asymptotic expansion holds. Sloshing eigenvalues

$$\nu_k |\mathcal{F}| = \pi k - \frac{\pi}{2} - \frac{\pi^2}{8} \left(\frac{1}{\alpha} + \frac{1}{\beta} \right) + o(1), \qquad k \nearrow \infty.$$

Levitin, Parnovski, Polterovich, Sher (2017)

Let Ω be a bounded domain in \mathbb{R}^2 with $\partial\Omega=\mathcal{F}\cup\mathcal{B}$, where \mathcal{F} is connected. Let $\alpha,\beta\in(0,\frac{\pi}{2})$ be the interior angles between \mathcal{F} and \mathcal{B} . Then the following asymptotic expansion holds.

Steklov-Dirichlet eigenvalues

$$\eta_k |\mathcal{F}| = \pi k - \frac{\pi}{2} + \frac{\pi^2}{8} \left(\frac{1}{\alpha} + \frac{1}{\beta} \right) + o(1), \qquad k \nearrow \infty.$$

Asymptotic of Riesz means (Ferrulli, Lagacé - 2018)

Let Ω be a bounded domain in \mathbb{R}^2 with $\partial\Omega=\mathcal{F}\cup\mathcal{B}$, where \mathcal{F} is connected. Let $\alpha,\beta\in(0,\frac{\pi}{2})$ be the interior angles between \mathcal{F} and \mathcal{B} . Then the following asymptotic expansion holds.

$$R_1^{\Omega}(z, \mathcal{D}_N) = \frac{1}{2\pi} |\mathcal{F}| z^2 + \frac{\pi}{8} \left(\frac{1}{\alpha} + \frac{1}{\beta} \right) z + o(z).$$

Asymptotic of Riesz means (Ferrulli, Lagacé - 2018)

Let Ω be a bounded domain in \mathbb{R}^2 with $\partial\Omega=\mathcal{F}\cup\mathcal{B}$, where \mathcal{F} is connected. Let $\alpha,\beta\in(0,\frac{\pi}{2})$ be the interior angles between \mathcal{F} and \mathcal{B} . Then the following asymptotic expansion holds.

$$R_1^{\Omega}(z, \mathcal{D}_D) = \frac{1}{2\pi} |\mathcal{F}| z^2 - \frac{\pi}{8} \left(\frac{1}{\alpha} + \frac{1}{\beta} \right) z + o(z).$$

Asymptotically Sharp Bounds for Riesz Means

Main results

Theorem (H., Laptev)

Let $\Omega \subset \mathbb{R}^2$ be a subset of a triangular domain, as shown in the picture, and the interior angles $\alpha, \beta \in (0, \frac{\pi}{2})$ of Ω coincide with the ones for the triangle. Then

$$R_1(z, \mathcal{D}_N) \ge \frac{1}{2\pi} |\mathcal{F}| z^2 + \frac{1}{2\pi} \left(\frac{1}{\tan(\alpha)} + \frac{1}{\tan(\beta)} \right) \left(z - \frac{1 - e^{-2hz}}{2h} \right),$$

where $h = |\mathcal{F}| \frac{\tan(\alpha)\tan(\beta)}{\tan(\alpha)+\tan(\beta)}$ is the hight of the triangle.

Main results

Theorem (H., Laptev)

Let $\Omega \subset \mathbb{R}^2$ be a subset of a triangular domain, as shown in the picture, and the interior angles $\alpha, \beta \in (0, \pi)$ of Ω coincide with the ones for the triangle. Then

$$R_1(z, \mathcal{D}_N) \ge \frac{1}{2\pi} |\mathcal{F}| z^2 + \frac{1}{2\pi} \left(\frac{1}{\tan(\alpha)} + \frac{1}{\tan(\beta)} \right) \left(z - \frac{1 - e^{-2hz}}{2h} \right),$$

where h is the hight of the triangle.

Main results

Theorem (H., Laptev)

Let $\Omega \subset \mathbb{R}^2$ with $\partial \Omega = \mathcal{F} \cup \mathcal{B}$ be a subset of $\mathcal{F} \times (-\infty, 0)$. Then

$$R_1^{\Omega}(z, \mathcal{D}_N) \ge \frac{1}{2\pi} |\mathcal{F}| z^2 + \frac{1}{2} z,$$

and

$$R_1^{\Omega}(z, \mathcal{D}_D) \le \frac{1}{2\pi} |\mathcal{F}| z^2 - \frac{1}{2} z + \frac{\pi}{2|\mathcal{F}|}.$$

Domain Monotonicity for Mixed Steklov Eigenvalues

Theorem (Banuelos, Kulczycki, Polterovich, Siudeja - 2010)

Let $\Omega \subset \tilde{\Omega}$ be subdomains of \mathbb{R}^n with $\partial \Omega = \mathcal{F} \cup \mathcal{B}$ and $\partial \tilde{\Omega} = \mathcal{F} \cup \tilde{\mathcal{B}}$. Then the following inequality holds.

$$\nu_k(\Omega) \le \nu_k(\tilde{\Omega}), \quad \forall k \ge 1.$$

In particular,

$$R^{\Omega}(z, \mathcal{D}_N) = \sum_j (z - \nu_j(\Omega))_+ \ge \sum_j (z - \nu_j(\tilde{\Omega}))_+ = R^{\tilde{\Omega}}(z, \mathcal{D}_N).$$

Domain Monotonicity for Mixed Steklov Eigenvalues

Theorem (Banuelos, Kulczycki, Polterovich, Siudeja - 2010)

Let $\Omega \subset \tilde{\Omega}$ be subdomains of \mathbb{R}^n with $\partial \Omega = \mathcal{F} \cup \mathcal{B}$ and $\partial \tilde{\Omega} = \mathcal{F} \cup \tilde{\mathcal{B}}$. Then the following inequality holds.

$$\eta_k(\Omega) \ge \eta_k(\tilde{\Omega}), \quad \forall k \ge 1.$$

In particular,

$$R^{\Omega}(z, \mathcal{D}_{D}) = \sum_{j} (z - \eta_{j}(\Omega))_{+} \leq \sum_{j} (z - \eta_{j}(\tilde{\Omega}))_{+} = R^{\tilde{\Omega}}(z, \mathcal{D}_{D}).$$

Main Results

Theorem (H., Laptev)

Let Ω be a bounded domain of \mathbb{R}^n and $\partial \Omega = \mathcal{F} \cup \mathcal{B}$. Then

$$R(z, \mathcal{D}_N) \ge C_{n,1} |\mathcal{F}| z^n - c(n) \int_0^z \int_{\mathcal{B}} \langle \mathbf{n}, e_n \rangle e^{2x_n r} r^{n-1} ds dr,$$

where
$$c(n) = \frac{(n-1)\omega_{n-1}}{(2\pi)^{n-1}}$$
.

Main Results

Theorem (H., Laptev)

Assume that Ω (with $\partial\Omega=\mathcal{F}\cup\mathcal{B}$) is a subset of $\mathcal{F}\times(-\infty,0)$. Then

$$R^{\Omega}(z, \mathcal{D}_N) \ge C_{n,1} |\mathcal{F}| z^n + \frac{(n-1)\omega_{n-1}}{(2\pi)^{n-1}} \frac{|\mathcal{F}|}{(2h_{\Omega})^n} \left(\Gamma(n) - \Gamma(n, 2h_{\Omega}z)\right),$$

where h_{Ω} is the depth of Ω and

$$\Gamma(n,x) := (n-1)!e^{-x} \sum_{k=0}^{n-1} \frac{x^k}{k!}$$

is the incomplete Γ -function. (Notice that $\Gamma(n) - \Gamma(n,x) > 0$ for every x>0, and every $n\in\mathbb{N}$.)

Main Results

Theorem (H., Laptev)

Let Ω be a bounded domain in \mathbb{R}^n and subset of an infinite cylinder $\mathcal{F} \times [-\infty,0]$, where $\partial \Omega = \mathcal{F} \cup \mathcal{B}$. Here \mathcal{F} is the free part of the boundary. Then for every z>0 we have

$$R^{\Omega}(z, \mathbf{D}_{\mathbf{D}}) = \sum_{j} (z - \eta_{j})_{+} \leq C_{n,1} |\mathcal{F}| z^{n}.$$

Averaged Variational Principle

Theorem (El Soufi, Harrell, Stubbe - 2015)

Let $\{\varphi_j\}_{j=1}^\infty$ be an orthonormal basis of $L^2(\mathcal{F})$ consisting of the eigenfunctions associated with $\{\nu_j\}_{j=1}^\infty$ and let $f_\xi \in \mathcal{H}(\Omega)$ be a family of harmonic functions where ξ varies over a measure space (\mathfrak{M},μ) . Let \mathfrak{M}_0 be a measurable subset of \mathfrak{M} . Then for any z>0 we have

$$\sum_{j} (z - \nu_{j})_{+} \int_{\mathfrak{M}} \left| \int_{\mathcal{F}} \varphi_{j} \bar{f}_{\xi} ds \right|^{2} d\mu \geq z \int_{\mathfrak{M}_{0}} \int_{\mathcal{F}} |f_{\xi}|^{2} ds d\mu$$
$$- \int_{\mathfrak{M}_{0}} \operatorname{Re} \int_{\partial \Omega} \frac{\partial f_{\xi}}{\partial \mathbf{n}} \bar{f}_{\xi} ds d\mu.$$

Sketch of the Proof for Sloshing Porblem

We choose a suitable family of harmonic test functions.

$$f_{\xi'}(x) = e^{ix'\xi' + x_n|\xi'|}$$

where $x=(x',x_n)\in\mathbb{R}^{n-1}\times\mathbb{R}$ and $\xi'\in\mathbb{R}^{n-1}$. In the previous theorem take $\mathfrak{M}=\mathbb{R}^{n-1}$ and $\mathfrak{M}_0=\{|\xi'|\leq z\}$.

Sketch of the Proof for Sloshing Porblem

We choose a suitable family of harmonic test functions.

$$f_{\xi'}(x) = e^{ix'\xi' + x_n|\xi'|}$$

where $x=(x',x_n)\in\mathbb{R}^{n-1}\times\mathbb{R}$ and $\xi'\in\mathbb{R}^{n-1}$. In the previous theorem take $\mathfrak{M}=\mathbb{R}^{n-1}$ and $\mathfrak{M}_0=\{|\xi'|\leq z\}$. Hence, we get

$$\sum_{j} (z - \nu_j)_+ \int_{\mathbb{R}^{n-1}} |\hat{\varphi}_j(\xi')|^2 d\xi' \ge |\mathcal{F}| \int_{|\xi'| \le z} (z - |\xi'|) d\xi'$$
$$- \int_{|\xi'| \le z} \int_{\mathcal{B}} \langle \mathbf{n}, e_n \rangle |\xi'| e^{2x_n |\xi'|} ds d\xi',$$

where $\hat{\varphi}_j(\xi') = \int_{\mathcal{F}} e^{ix'\xi'} \varphi_j(x') ds$.

Sketch of the Proof for Sloshing Porblem

We choose a suitable family of harmonic test functions.

$$f_{\xi'}(x) = e^{ix'\xi' + x_n|\xi'|}$$

where $x=(x',x_n)\in\mathbb{R}^{n-1}\times\mathbb{R}$ and $\xi'\in\mathbb{R}^{n-1}$. In the previous theorem take $\mathfrak{M}=\mathbb{R}^{n-1}$ and $\mathfrak{M}_0=\{|\xi'|\leq z\}$. Hence, we get

$$\sum_{j} (z - \nu_j)_+ \int_{\mathbb{R}^{n-1}} |\hat{\varphi}_j(\xi')|^2 d\xi' \ge |\mathcal{F}| \int_{|\xi'| \le z} (z - |\xi'|) d\xi'$$
$$- \int_{|\xi'| \le z} \int_{\mathcal{B}} \langle \mathbf{n}, e_n \rangle |\xi'| e^{2x_n |\xi'|} ds d\xi',$$

where $\hat{\varphi}_j(\xi') = \int_{\mathcal{F}} e^{ix'\xi'} \varphi_j(x') ds$. Therefore,

$$R(z, \mathcal{D}_N) = \sum_{j} (z - \nu_j)_+ \ge \frac{\omega_{n-1}}{n(2\pi)^{n-1}} |\mathcal{F}| z^n$$
$$-\frac{(n-1)\omega_{n-1}}{(2\pi)^{n-1}} \int_0^z \int_{\mathcal{B}} \langle \mathbf{n}, e_n \rangle e^{2x_n r} r^{n-1} ds dr.$$

Thank You For Your Attention!