Stability of the Gaussian Isoperimetric Problem

Marco Barchiesi

Università di Napoli Federico II

BIRS - May 2018

- Symmetry of minimizers of a Gaussian isoperimetric problem with Vesa Julin
- Sharp dimension free quantitative estimates for the gaussian isoperimetric inequality, Ann. Probab. (2017)
with Vesa Julin and Alessio Brancolini
http://cvgmt.sns.it/people/barchiesi/

Gaussian isoperimetric inequality

Gauss space is \mathbb{R}^{n} with measure

$$
\gamma(E):=\frac{1}{(2 \pi)^{\frac{n}{2}}} \int_{E} e^{-\frac{|x|^{2}}{2}} d x
$$

for every $E \subset \mathbb{R}^{n}$. It is a probability measure, $\gamma\left(\mathbb{R}^{n}\right)=1$.
Gaussian surface measure or Gaussian perimeter

$$
P_{\gamma}(E):=\frac{1}{(2 \pi)^{\frac{n-1}{2}}} \int_{\partial E} e^{-\frac{|x|^{2}}{2}} d \mathcal{H}^{n-1}(x)
$$

when E sufficiently regular. We will use the notation

$$
\mathcal{H}_{\gamma}^{n-1}=e^{-\frac{|x|^{2}}{2}} \mathcal{H}^{n-1}
$$

Gaussian isoperimetric inequality

Among all sets with given Gaussian measure, the half-space has the smallest Gaussian perimeter.

Some notation

- $H_{\omega, s}:=\left\{x \in \mathbb{R}^{n}: x \cdot \omega<s\right\}, \quad \omega \in \mathbb{S}^{n-1}$
- $\phi(s):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{s} e^{-\frac{t^{2}}{2}} d t$.

Some other notation

- $H_{\omega, s}:=\left\{x \in \mathbb{R}^{n}: x \cdot \omega<s\right\}, \quad \omega \in \mathbb{S}^{n-1}$
- $\phi(s):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{s} e^{-\frac{t^{2}}{2}} d t$.

Observe that in every dimension

$$
\gamma\left(H_{\omega, s}\right)=\phi(s) \quad \text { and } \quad P_{\gamma}\left(H_{\omega, s}\right)=e^{-s^{2} / 2}
$$

Theorem (Gaussian isoperimetric inequality)
For every set $E \subset \mathbb{R}^{n}$ with $\gamma(E)=\phi(s)$ it holds

$$
P_{\gamma}(E) \geq e^{-s^{2} / 2}
$$

and the equality holds if and only if $E=H_{\omega, s}$ for some $\omega \in \mathbb{S}^{n-1}$.
A lot of proofs... Sudakov-Tsirelson (1974), Borell (1975),
Carlen-Kerce (2001). The latter characterizes the extemals.

Symmetric case

The half-space is not symmetric. So a natural question is this.
Question: "Among all sets with given Gaussian measure, what is the symmetric set with the smallest Gaussian perimeter?"

Easy question, hard answer: at the moment we have no a precise idea about the possible shape of the solution. One of the main difficulties is that symmetrization techniques fail (I mean, we failed in using them).

We go along a different path...

Stability

Question: How much is positive the following quantity?

$$
P_{\gamma}(E)-e^{-s^{2} / 2}
$$

Theorem (Cianchi-Fusco-Maggi-Pratelli (2011))

For every set $E \subset \mathbb{R}^{n}$ with $\gamma(E)=\phi(s)$ it holds

$$
P_{\gamma}(E)-e^{-s^{2} / 2} \geq c_{n, s} \alpha(E)^{2}
$$

for some constant $c_{n, s}$ depending both on the dimension n and the volume $\phi(s)$. Here $\alpha(E):=\min _{|\omega|=1} \gamma\left(E \Delta H_{\omega, s}\right)$

Theorem (Cianchi-Fusco-Maggi-Pratelli (2011))

For every set $E \subset \mathbb{R}^{n}$ with $\gamma(E)=\phi(s)$ it holds

$$
P_{\gamma}(E)-e^{-s^{2} / 2} \geq c_{n, s} \alpha(E)^{2}
$$

for some constant $c_{n, s}$ depending both on the dimension n and the volume $\phi(s)$. Here $\alpha(E):=\min _{|\omega|=1} \gamma\left(E \Delta H_{\omega, s}\right)$

+ The decay rate is sharp.
- The constant should not depend on the dimension (here $\sim 2^{n}$).

Theorem (Mossel-Neeman (2013))
For every set $E \subset \mathbb{R}^{n}$ with $\gamma(E)=\phi(s)$ holds

$$
P_{\gamma}(E)-e^{-s^{2} / 2} \geq c_{s} \alpha(E)^{4+\varepsilon}
$$

for some constant c_{s} depending only on the volume $\phi(s)$.

- The decay rate is not sharp.
+ The constant does not depend on the dimension.

Theorem (Eldan (2015))

For every set $E \subset \mathbb{R}^{n}$ with $\gamma(E)=\phi(s)$ holds

$$
P_{\gamma}(E)-e^{-s^{2} / 2} \geq c_{s} \beta(E)|\log \beta(E)|^{-1}
$$

for some constant c_{s} depending only on the volume $\phi(s)$. Here $\beta(E):=\min _{|\omega|=1}\left|b(E)-b\left(H_{\omega, s}\right)\right|$ and $b(E):=\int_{E} x d \gamma$.

The asymmetry β is stronger since it controls the standard α as

$$
\beta(E) \geq \frac{e^{\frac{s^{2}}{2}}}{4} \alpha(E)^{2}
$$

Theorem (B-Brancolini-Julin (2017))

For every set $E \subset \mathbb{R}^{n}$ with $\gamma(E)=\phi(s)$ holds

$$
P_{\gamma}(E)-e^{-s^{2} / 2} \geq \frac{c}{1+s^{2}} \beta(E)
$$

for some absolute constant c.

+ The decay rate is sharp.
+ The constant does not depend on the dimension.
+ The dependence on the volume is optimal.

Theorem (B-Brancolini-Julin (2017))

For every set $E \subset \mathbb{R}^{n}$ with $\gamma(E)=\phi(s)$ holds

$$
P_{\gamma}(E)-e^{-s^{2} / 2} \geq \frac{c}{1+s^{2}} \beta(E)
$$

for some absolute constant c.

+ The decay rate is sharp.
+ The constant does not depend on the dimension.
+ The dependence on the volume is optimal.
- The constant c is not sharp.

The barycenter

The half-space maximizes the lenght of the barycenter: if $\gamma(E)=\phi(s)$, then

$$
b_{s}:=\left|b\left(H_{\omega, s}\right)\right| \geq|b(E)| .
$$

Moreover the asymmetry $\beta(E)$ is not obtained via a minimum problem.

$$
\beta(E):=b_{s}-|b(E)| .
$$

A new approach

We consider the functional

$$
\mathcal{F}(E)=P_{\gamma}(E)+\varepsilon \sqrt{\pi / 2}|b(E)|^{2}, \quad \gamma(E)=\phi(s)
$$

Remark

In minimizing \mathcal{F} the two terms $P_{\gamma}(E)$ and $|b(E)|$ are in competition. Minimizing $P_{\gamma}(E)$ means to push the set E at infinity in one direction, so that it becomes closer to a half-space. On the other hand, minimizing $|b(E)|$ means to balance the volume of E with respect to the origin. For ε small enough the perimeter term overcomes the barycenter, and the only minimizers of \mathcal{F} are the half-spaces $H_{\omega, s}$.

Old result

Theorem (B-Brancolini-Julin (2017))

The only minimizers of the functional \mathcal{F} are the half-spaces when when $\varepsilon>0$ is small.

Question: "What does it happen when ε is not longer small? Does the barycenter term win?"

Old result

Theorem (B-Brancolini-Julin (2017))

The only minimizers of the functional \mathcal{F} are the half-spaces when when $\varepsilon>0$ is small.

Question: "What does it happen when ε is not longer small? Does the barycenter term win?"

Some other notation

- $D_{\omega, s}:=\left\{x \in \mathbb{R}^{n}:|x \cdot \omega|<a(s)\right\}, \quad \omega \in \mathbb{S}^{n-1}$, where $a(s)$ is chosen such that $\gamma\left(D_{\omega, s}\right)=\phi(s)$
The asymptotic behavior for s going to $+\infty$

$$
a(s)=s+\frac{\ln 2}{s}+o(1 / s)
$$

New result

Theorem (B-Julin (2018))

There exists $s_{0}>0$ such that the following holds: when $s \geq s_{0}$ there is a threshold ε_{s} such that for $\varepsilon \in\left[0, \varepsilon_{s}\right)$ the minimizer of \mathcal{F} under volume constraint $\gamma(E)=\phi(s)$ is the half-space $H_{\omega, s}$, while for $\varepsilon \in\left(\varepsilon_{s}, \infty\right)$ the minimizer is the symmetric strip $D_{\omega, s}$.
ε_{s} is the unique value of ε for which $\mathcal{F}\left(H_{\omega, s}\right)=\mathcal{F}\left(D_{\omega, s}\right)$. The asymptotic behavior is

$$
\varepsilon_{s}=2 \ln 2 \frac{\sqrt{2 \pi}}{s^{2}} e^{\frac{s^{2}}{2}}(1+o(1))
$$

HERE THERE ARE ONLY TWO CMMJDATES:

The first answer

Since symmetric sets have barycenter zero, we have the solution for the symmetric Gaussian problem (when the volume is close to one).

Corollary

There exists $s_{0}>0$ such that for $s \geq s_{0}$ it holds

$$
P_{\gamma}(E) \geq 2 e^{-\frac{a(s)^{2}}{2}}=\left(1+\frac{\ln 2}{s^{2}}+o\left(1 / s^{2}\right)\right) e^{-\frac{s^{2}}{2}}
$$

for any symmetric set E with volume $\gamma(E)=\phi(s)$, and the equality holds if and only if $E=D_{\omega, s}$ for some $\omega \in \mathbb{S}^{n-1}$.

The second answer

We have also the optimal constant in the quantitative Gaussian isoperimetric inequality (when the volume is close to one).

Corollary

There exists $s_{0}>0$ such that for $s \geq s_{0}$ it holds

$$
P_{\gamma}(E)-e^{-s^{2} / 2} \geq c_{s} \beta(E)
$$

for every set E with volume $\gamma(E)=\phi(s)$. The optimal constant is given by

$$
c_{s}=\sqrt{2 \pi} e^{s^{2} / 2}\left(P_{\gamma}\left(D_{\omega, s}\right)-P_{\gamma}\left(H_{\omega, s}\right)\right)=\sqrt{2 \pi} \frac{\ln 2}{s^{2}}+o\left(1 / s^{2}\right)
$$

The proof:

The proof is based on a dimensional reduction.
When the vector ω is orthogonal to the barycenter, then the function ν_{ω} has zero average and the second variation of \mathcal{F} provides the inequality

$$
\int_{\partial^{*} E}-\nu_{\omega}^{2} d \mathcal{H}_{\gamma}^{n-1}+\frac{\varepsilon}{\sqrt{2 \pi}}\left|\int_{\partial^{*} E} \nu_{\omega} x d \mathcal{H}_{\gamma}^{n-1}\right|^{2} \geq 0
$$

If the second term is small enough, then $\nu_{\omega} \equiv 0$ and E is constant in that direction. But "is it small enough?"

By using Cauchy-Schwarz inequality, we may estimate the second term by

$$
\left|\int_{\partial^{*} E} \nu_{\omega} x d \mathcal{H}_{\gamma}^{n-1}\right|^{2} \leq\left(\int_{\partial^{*} E} x_{v}^{2} d \mathcal{H}_{\gamma}^{n-1}\right)\left(\int_{\partial^{*} E} \nu_{\omega}^{2} d \mathcal{H}_{\gamma}^{n-1}\right)
$$

and then, by the Eulero equation,

$$
\frac{\varepsilon}{\sqrt{2 \pi}} \int_{\partial^{*} E} x_{v}^{2} d \mathcal{H}_{\gamma}^{n-1} \leq \frac{8}{5} f_{\partial^{*} E} \nu_{v}^{2} d \mathcal{H}_{\gamma}^{n-1}
$$

Ops, it is larger than one! :(And we cannot shrink

By using Cauchy-Schwarz inequality, we may estimate the second term by

$$
\left|\int_{\partial^{*} E} \nu_{\omega} x d \mathcal{H}_{\gamma}^{n-1}\right|^{2} \leq\left(\int_{\partial^{*} E} x_{v}^{2} d \mathcal{H}_{\gamma}^{n-1}\right)\left(\int_{\partial^{*} E} \nu_{\omega}^{2} d \mathcal{H}_{\gamma}^{n-1}\right)
$$

and then, by the Eulero equation,

$$
\frac{\varepsilon}{\sqrt{2 \pi}} \int_{\partial^{*} E} x_{v}^{2} d \mathcal{H}_{\gamma}^{n-1} \leq \frac{8}{5} f_{\partial^{*} E} \nu_{v}^{2} d \mathcal{H}_{\gamma}^{n-1}
$$

Ops, it is larger than one! :(And we cannot shrink ε.

From n to 2

No panic: all fine for $n-2$ directions!
For these directions

$$
\frac{\varepsilon}{\sqrt{2 \pi}}\left|\int_{\partial^{*} E} \nu_{\omega} x d \mathcal{H}_{\gamma}^{n-1}\right|^{2} \leq \frac{63}{65} \int_{\partial^{*} E} \nu_{\omega}^{2} d \mathcal{H}_{\gamma}^{n-1} .
$$

So the problem is 2-dimensional.

From 2 to 1

A bit painfull, however...

Future, maybe...

Conjecture (1)

The solution of the symmetric problem is a cylinder $B_{r}^{k} \times \mathbb{R}^{n-k}$, or its complement, for some k depending on the volume and on the dimension. Here B_{r}^{k} denotes the k-dimensional ball with radius r.

Conjecture (2)

The minimizers of \mathcal{F} are symmetric for any volume (tuning ε). Moreover, they should be finite-dimensional (with the dimension depending on the volume).

