Optimal regularity and structure of the free boundary for minimizers in cohesive zone models Joint work with Luis Caffarelli and Alessio Figalli

Filippo Cagnetti - University of Sussex - Brighton, UK

Topics in the Calculus of Variations: Recent Advances and New Trends, Banff, 24 May 2018

Let $n \in \mathbb{N}$, $n \geq 2$.

Cracks ONLY in $\mathbb{R}^n \times \{0\}$.

Cracks ONLY in $\mathbb{R}^n \times \{0\}$.

$$[\mathsf{V}] := \mathsf{V}_{RT} - \mathsf{V}_{LT}$$

$$[\mathbf{V}] := \mathbf{V}_{\scriptscriptstyle RT} - \mathbf{V}_{\scriptscriptstyle LT} \qquad \qquad K_{\mathbf{V}} := \{ x \in \mathbb{R}^n : [\mathbf{V}](x) \neq 0 \}$$

Total Energy

For a displacement $\mathbf{v} \in H^1(\mathbb{R}^n \times (-A, A) \setminus \{y = 0\})$ the total energy is

Total Energy

For a displacement $\mathbf{v} \in H^1(\mathbb{R}^n \times (-A, A) \setminus \{y = 0\})$ the total energy is

$$E(\mathbf{v}) = \underbrace{\frac{1}{2} \int_{\mathbb{R}^n \times (-A,A) \setminus \{y=0\}} |\nabla \mathbf{v}|^2 dz}_{\text{Stored Elastic Energy}}$$

Total Energy

For a displacement $\mathbf{v} \in H^1(\mathbb{R}^n \times (-A, A) \setminus \{y = 0\})$ the total energy is

$$E(\mathbf{v}) = \underbrace{\frac{1}{2} \int_{\mathbb{R}^n \times (-A,A) \setminus \{y=0\}} |\nabla \mathbf{v}|^2 dz}_{\text{Stored Elastic Energy}} + \underbrace{\int_{\mathbb{R}^n} g(|[\mathbf{v}]|) dx}_{\text{Fracture Energy}}$$

Total Energy

For a displacement $\mathbf{v} \in H^1(\mathbb{R}^n \times (-A, A) \setminus \{y = 0\})$ the total energy is

$$E(\mathbf{v}) = \underbrace{\frac{1}{2} \int_{\mathbb{R}^n \times (-A,A) \setminus \{y=0\}} |\nabla \mathbf{v}|^2 dz}_{\text{Stored Elastic Energy}} + \underbrace{\int_{\mathbb{R}^n} g(|[\mathbf{v}]|) dx}_{\text{Fracture Energy}}$$

where

(g1) g concave

Total Energy

For a displacement $v \in H^1(\mathbb{R}^n \times (-A, A) \setminus \{y = 0\})$ the total energy is

$$E(\mathbf{v}) = \underbrace{\frac{1}{2} \int_{\mathbb{R}^n \times (-A,A) \setminus \{y=0\}} |\nabla \mathbf{v}|^2 dz}_{\text{Stored Elastic Energy}} + \underbrace{\int_{\mathbb{R}^n} g(|[\mathbf{v}]|) dx}_{\text{Fracture Energy}}$$

where

(g1) g concave

(g2) g strictly increasing and bounded

Total Energy

For a displacement $\mathbf{v} \in H^1(\mathbb{R}^n \times (-A, A) \setminus \{y = 0\})$ the total energy is

$$E(\mathbf{v}) = \underbrace{\frac{1}{2} \int_{\mathbb{R}^n \times (-A,A) \setminus \{y=0\}} |\nabla \mathbf{v}|^2 dz}_{\text{Stored Elastic Energy}} + \underbrace{\int_{\mathbb{R}^n} g(|[\mathbf{v}]|) dx}_{\text{Fracture Energy}}$$

where

(g1) g concave

(g2) g strictly increasing and bounded

(g3) g(0) = 0

Total Energy

For a displacement $\mathbf{v} \in H^1(\mathbb{R}^n \times (-A, A) \setminus \{y = 0\})$ the total energy is

$$E(\mathbf{v}) = \underbrace{\frac{1}{2} \int_{\mathbb{R}^n \times (-A,A) \setminus \{y=0\}} |\nabla \mathbf{v}|^2 dz}_{\text{Stored Elastic Energy}} + \underbrace{\int_{\mathbb{R}^n} g(|[\mathbf{v}]|) dx}_{\text{Fracture Energy}}$$

where

(g1) g concave

(g2)-g strictly increasing and bounded

(g3) g(0) = 0

(g4)
$$g'(0^+) \in (0, +\infty)$$

Total Energy

For a displacement $v \in H^1(\mathbb{R}^n \times (-A, A) \setminus \{y = 0\})$ the total energy is

$$E(\mathbf{v}) = \underbrace{\frac{1}{2} \int_{\mathbb{R}^n \times (-A,A) \setminus \{y=0\}} |\nabla \mathbf{v}|^2 dz}_{\text{Stored Elastic Energy}} + \underbrace{\int_{\mathbb{R}^n} g(|[\mathbf{v}]|) dx}_{\text{Fracture Energy}}$$
where
(g1) g concave

(g2) g strictly increasing and bounded

(g3) g(0) = 0

where

(g4) $g'(0^+) \in (0, +\infty)$

(g5) $g: [0, +\infty) \rightarrow [0, +\infty)$ is of class $g \in C^2[0, \infty) \cap C^3(0, \infty)$

Fracture Energy density

Fracture Energy density

IMPOSE BOUNDARY CONDITIONS:

IMPOSE BOUNDARY CONDITIONS:

Let $u_A, u_{-A} \in H^{1/2}(\mathbb{R}^n)$.

IMPOSE BOUNDARY CONDITIONS:

Let $u_A, u_{-A} \in H^{1/2}(\mathbb{R}^n)$. Let u be a minimizer of

$$\min_{H^1} \{ E(\mathbf{V}) : \mathbf{V}(x, \pm A) = u_{\pm A} \}.$$

IMPOSE BOUNDARY CONDITIONS:

Let $u_A, u_{-A} \in H^{1/2}(\mathbb{R}^n)$. Let u be a minimizer of

$$\min_{H^1} \{ E(\mathbf{V}) : \mathbf{V}(x, \pm A) = u_{\pm A} \}.$$

$$\label{eq:alpha} \Delta u = 0 \qquad \qquad \text{in } \mathbb{R}^n \times (-A,A) \setminus \{y=0\},$$

IMPOSE BOUNDARY CONDITIONS:

Let $u_A, u_{-A} \in H^{1/2}(\mathbb{R}^n)$. Let u be a minimizer of

$$\min_{H^1} \{ E(\mathbf{V}) : \mathbf{V}(x, \pm A) = u_{\pm A} \}.$$

$$\begin{cases} \Delta u = 0 & \text{ in } \mathbb{R}^n \times (-A, A) \setminus \{y = 0\}, \\ u = u_A & \text{ on } \{y = A\}, \\ u = u_{-A} & \text{ on } \{y = -A\}, \end{cases}$$

IMPOSE BOUNDARY CONDITIONS:

Let $u_A, u_{-A} \in H^{1/2}(\mathbb{R}^n)$. Let u be a minimizer of

$$\min_{H^1} \{ E(\mathbf{V}) : \mathbf{V}(x, \pm A) = u_{\pm A} \}.$$

$$\begin{cases} \Delta u = 0 & \text{ in } \mathbb{R}^n \times (-A, A) \setminus \{y = 0\}, \\ u = u_A & \text{ on } \{y = A\}, \\ u = u_{-A} & \text{ on } \{y = -A\}, \\ \partial_y u_{RT} = \partial_y u_{LT} & \text{ on } \{y = 0\}, \end{cases}$$

IMPOSE BOUNDARY CONDITIONS:

Let $u_A, u_{-A} \in H^{1/2}(\mathbb{R}^n)$. Let u be a minimizer of

$$\min_{H^1} \{ E(\mathbf{V}) : \mathbf{V}(x, \pm A) = u_{\pm A} \}.$$

1	$\int \Delta u = 0$	in $\mathbb{R}^n \times (-A, A) \setminus \{y = 0\},\$
	$u = u_A$	on $\{y = A\}$,
<	$u = u_{-A}$	on $\{y = -A\}$,
	$\partial_y u_{\scriptscriptstyle RT} = \partial_y u_{\scriptscriptstyle LT}$	on $\{y = 0\},$
	$ \partial_y u \le g'(0^+)$	on $\{y = 0\},$

IMPOSE BOUNDARY CONDITIONS:

Let $u_A, u_{-A} \in H^{1/2}(\mathbb{R}^n)$. Let u be a minimizer of

$$\min_{H^1} \{ E(\mathbf{V}) : \mathbf{V}(x, \pm A) = u_{\pm A} \}.$$

$$\begin{cases} \Delta u = 0 & \text{ in } \mathbb{R}^n \times (-A, A) \setminus \{y = 0\} \\ u = u_A & \text{ on } \{y = A\}, \\ u = u_{-A} & \text{ on } \{y = -A\}, \\ \partial_y u_{RT} = \partial_y u_{LT} & \text{ on } \{y = 0\}, \\ |\partial_y u| \le g'(0^+) & \text{ on } \{y = 0\}, \\ \partial_y u = g'(|[u]|) \operatorname{sgn}([u]) & \text{ on } K_u, \end{cases}$$

Assume BC odd w.r.t. $\{y = 0\}$

$$\Delta u = 0$$
 in $\mathbb{R}^n \times (0, A)$.

$$\begin{cases} \Delta u = 0 & \text{ in } \mathbb{R}^n \times (0, A), \\ u = u_A & \text{ on } \{y = A\}, \end{cases}$$

$$\begin{cases} \Delta u = 0 & \text{ in } \mathbb{R}^n \times (0, A), \\ u = u_A & \text{ on } \{y = A\}, \\ |\partial_y u| \le g'(0^+) & \text{ on } \{y = 0\}, \end{cases}$$

We focus on solutions which are odd w.r.t. $\{y = 0\}$:

$$\begin{cases} \Delta u = 0 & \text{in } \mathbb{R}^n \times (0, A) \\ u = u_A & \text{on } \{y = A\}, \\ |\partial_y u| \le g'(0^+) & \text{on } \{y = 0\}, \\ \partial_y u = g'(2|u|) \operatorname{sgn}(u) & \text{on } K_u. \end{cases}$$

We focus on solutions which are odd w.r.t. $\{y = 0\}$:

$$\begin{cases} \Delta u = 0 & \text{in } \mathbb{R}^n \times (0, A) \\ u = u_A & \text{on } \{y = A\}, \\ |\partial_y u| \le g'(0^+) & \text{on } \{y = 0\}, \\ \partial_y u = g'(2|u|) \operatorname{sgn}(u) & \text{on } K_u. \end{cases}$$
QUESTIONS:

We focus on solutions which are odd w.r.t. $\{y = 0\}$:

$$\begin{cases} \Delta u = 0 & \text{in } \mathbb{R}^n \times (0, A) \\ u = u_A & \text{on } \{y = A\}, \\ |\partial_y u| \le g'(0^+) & \text{on } \{y = 0\}, \\ \partial_y u = g'(2|u|) \operatorname{sgn}(u) & \text{on } K_u. \end{cases}$$
QUESTIONS:

► Regularity of *u*?

We focus on solutions which are odd w.r.t. $\{y = 0\}$:

$$\begin{cases} \Delta u = 0 & \text{in } \mathbb{R}^n \times (0, A) \\ u = u_A & \text{on } \{y = A\}, \\ |\partial_y u| \le g'(0^+) & \text{on } \{y = 0\}, \\ \partial_y u = g'(2|u|) \operatorname{sgn}(u) & \text{on } K_u. \end{cases}$$
QUESTIONS:

► Regularity of *u*?

▶ Is the crack set $K_u = \{(x,0) : x \in \mathbb{R}^n, u(x,0) \neq 0\}$ regular?

$\Delta u = 0$	in $\mathbb{R}^n \times (0, A)$,
$u = u_A$	on $\{y = A\}$,
$ \partial_y u \le g'(0^+)$	on $\{y = 0\},$
$\partial_y u = g'(2 u) \operatorname{sgn}(u)$	on K_u .

$$\begin{cases} \Delta u = 0 & \text{ in } \mathbb{R}^n \times (0, A), \\ u = u_A & \text{ on } \{y = A\}, \\ |\partial_y u| \le g'(0^+) & \text{ on } \{y = 0\}, \\ \partial_y u = g'(2|u|) \operatorname{sgn}(u) & \text{ on } K_u. \end{cases}$$

MAJOR PROBLEM:

$$\begin{cases} \Delta u = 0 & \text{ in } \mathbb{R}^n \times (0, A) \\ u = u_A & \text{ on } \{y = A\}, \\ |\partial_y u| \le g'(0^+) & \text{ on } \{y = 0\}, \\ \partial_y u = g'(2|u|) \operatorname{sgn}(u) & \text{ on } K_u. \end{cases}$$

MAJOR PROBLEM:

Suppose \exists $(\overline{x}, 0) \in \partial K_u$ where u changes sign

$$\begin{cases} \Delta u = 0 & \text{ in } \mathbb{R}^n \times (0, A) \\ u = u_A & \text{ on } \{y = A\}, \\ |\partial_y u| \le g'(0^+) & \text{ on } \{y = 0\}, \\ \partial_y u = g'(2|u|) \operatorname{sgn}(u) & \text{ on } K_u. \end{cases}$$

MAJOR PROBLEM:

Suppose $\exists (\overline{x}, 0) \in \partial K_u$ where u changes sign \Downarrow

 $\partial_y u$ discontinuous at $(\overline{x}, 0)$

Assumptions on BC

Assumptions on BC

(A1) $u_A \in C^{2,\beta}(\mathbb{R}^n)$ for some $\beta \in (0,1)$

Assumptions on BC

(A1)
$$u_A \in C^{2,\beta}(\mathbb{R}^n)$$
 for some $\beta \in (0,1)$

(A2)
$$\lim_{|x|\to\infty} u_A(x) = 0$$

Assumptions on BC

(A1)
$$u_A \in C^{2,\beta}(\mathbb{R}^n)$$
 for some $\beta \in (0,1)$

(A2)
$$\lim_{|x|\to\infty} u_A(x) = 0$$

Preliminary result on the crack set K_u :

Assumptions on BC

(A1)
$$u_A \in C^{2,\beta}(\mathbb{R}^n)$$
 for some $\beta \in (0,1)$

(A2) $\lim_{|x|\to\infty} u_A(x) = 0$

Preliminary result on the crack set K_u :

Lemma (Caffarelli, C., Figalli)

Let (g1)–(g5) and (A1)–(A2) be satisfied.

Assumptions on BC

(A1)
$$u_A \in C^{2,\beta}(\mathbb{R}^n)$$
 for some $\beta \in (0,1)$

(A2)
$$\lim_{|x|\to\infty} u_A(x) = 0$$

Preliminary result on the crack set K_u :

Lemma (Caffarelli, C., Figalli)

Let (g1)–(g5) and (A1)–(A2) be satisfied. Then, K_u is compact.

Remark

From $u_A \in C^{2,\beta}(\mathbb{R}^n)$, we have

Remark

From $u_A \in C^{2,\beta}(\mathbb{R}^n)$, we have

► u_A Lipschitz continuous (Lipschitz constant $L_A := \|\nabla u_A\|_{L^{\infty}}$)

Remark

From $u_A \in C^{2,\beta}(\mathbb{R}^n)$, we have

- ► u_A Lipschitz continuous (Lipschitz constant $L_A := \|\nabla u_A\|_{L^{\infty}}$)
- u_A semiconvex (with some semiconvexity constant $D_A > 0$):

Remark

From $u_A \in C^{2,\beta}(\mathbb{R}^n)$, we have

- ► u_A Lipschitz continuous (Lipschitz constant $L_A := \|\nabla u_A\|_{L^{\infty}}$)
- u_A semiconvex (with some semiconvexity constant $D_A > 0$):

$$u_A(x+h) + u_A(x-h) - 2u_A(x) \ge -D_A|h|^2 \quad \forall x, h \in \mathbb{R}^n$$

Remark

From $u_A \in C^{2,\beta}(\mathbb{R}^n)$, we have

- ► u_A Lipschitz continuous (Lipschitz constant $L_A := \|\nabla u_A\|_{L^{\infty}}$)
- u_A semiconvex (with some semiconvexity constant $D_A > 0$):

 $u_A(x+h) + u_A(x-h) - 2u_A(x) \ge -D_A|h|^2 \quad \forall x, h \in \mathbb{R}^n$

• u_A semiconcave (with some semiconcavity constant $C_A > 0$):

Remark

From $u_A \in C^{2,\beta}(\mathbb{R}^n)$, we have

- ► u_A Lipschitz continuous (Lipschitz constant $L_A := \|\nabla u_A\|_{L^{\infty}}$)
- u_A semiconvex (with some semiconvexity constant $D_A > 0$):

$$u_A(x+h) + u_A(x-h) - 2u_A(x) \ge -D_A|h|^2 \quad \forall x, h \in \mathbb{R}^n$$

• u_A semiconcave (with some semiconcavity constant $C_A > 0$):

$$u_A(x+h) + u_A(x-h) - 2u_A(x) \le C_A |h|^2 \quad \forall x, h \in \mathbb{R}^n$$

Lemma (Caffarelli, C., Figalli)

Let (g1)–(g5) and (A1)–(A2) be satisfied.

Lemma (Caffarelli, C., Figalli)

Let (g1)–(g5) and (A1)–(A2) be satisfied. In addition, assume (g6).

Lemma (Caffarelli, C., Figalli)

Let (g1)–(g5) and (A1)–(A2) be satisfied. In addition, assume (g6). Then, for every $y \in [0, A]$,

Lemma (Caffarelli, C., Figalli)

Let (g1)–(g5) and (A1)–(A2) be satisfied. In addition, assume (g6). Then, for every $y \in [0, A]$, the function $u(\cdot, y)$ is Lipschitz continuous,

Lemma (Caffarelli, C., Figalli)

Let (g1)–(g5) and (A1)–(A2) be satisfied. In addition, assume (g6). Then, for every $y \in [0, A]$, the function $u(\cdot, y)$ is Lipschitz continuous, with Lipschitz constant

$$L := \frac{L_A}{1 - 2A \|g''\|_{L^{\infty}}}.$$

Lemma (Caffarelli, C., Figalli)

Let (g1)–(g5) and (A1)–(A2) be satisfied. In addition, assume (g6). Then, for every $y \in [0, A]$, the function $u(\cdot, y)$ is Lipschitz continuous, with Lipschitz constant

$$L := \frac{L_A}{1 - 2A \|g''\|_{L^{\infty}}}.$$

Remark

We need

Lemma (Caffarelli, C., Figalli)

Let (g1)–(g5) and (A1)–(A2) be satisfied. In addition, assume (g6). Then, for every $y \in [0, A]$, the function $u(\cdot, y)$ is Lipschitz continuous, with Lipschitz constant

$$L := \frac{L_A}{1 - 2A \|g''\|_{L^{\infty}}}.$$

Remark

We need

(g6)
$$||g''||_{L^{\infty}} < \frac{1}{2A}$$

Example from C., Math. Models Methods Appl. Sci. (2008)

3 Solutions of the Euler equation:

3 Solutions of the Euler equation:

$$u_1(t) := \frac{t}{A}y$$

3 Solutions of the Euler equation:

$$u_1(t) := \frac{t}{A}y$$

$$u_2(t) := \frac{1}{R - 2A} \begin{cases} (R - 2t)y + R(t - A) & y > 0\\ (R - 2t)y - R(t - A) & y < 0 \end{cases}$$

3 Solutions of the Euler equation:

$$u_{1}(t) := \frac{t}{A}y$$

$$u_{2}(t) := \frac{1}{R-2A} \begin{cases} (R-2t)y + R(t-A) & y > 0\\ (R-2t)y - R(t-A) & y < 0 \end{cases}$$

$$u_{3}(t) := \begin{cases} t & y > 0 \end{cases}$$

 $\begin{vmatrix} -t & y < 0 \end{vmatrix}$

Energy graph for A > R/2

Energy graph for A > R/2

Energy graph for A < R/2

Energy graph for A < R/2

Lemma

Let (g1)–(g5) and (A1)–(A2) be satisfied.

Lemma

Let (g1)–(g5) and (A1)–(A2) be satisfied. Suppose, in addition, that

$$2\|g''\|_{L^{\infty}} < \frac{1}{A}.$$

Lemma

Let (g1)–(g5) and (A1)–(A2) be satisfied. Suppose, in addition, that

$$2\|g''\|_{L^{\infty}} < \frac{1}{A}.$$

Then, there exists a unique solution u.

Lemma

Let (g1)–(g5) and (A1)–(A2) be satisfied. Suppose, in addition, that

$$2\|g''\|_{L^{\infty}} < \frac{1}{A}.$$

Then, there exists a unique solution u. In particular, there is a unique critical point of the energy, that coincides with the global minimizer.

NOTATION:

NOTATION: For $a \in \mathbb{R}$ we write $a = a^+ + a^-$

NOTATION: For $a \in \mathbb{R}$ we write $a = a^+ + a^-$, where

 $a^+ := \max\{a, 0\}$ and $a^- := \min\{a, 0\}$

NOTATION: For $a \in \mathbb{R}$ we write $a = a^+ + a^-$, where

 $a^+ := \max\{a, 0\}$ and $a^- := \min\{a, 0\}$

Lemma (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied.

NOTATION: For $a \in \mathbb{R}$ we write $a = a^+ + a^-$, where

 $a^+ := \max\{a, 0\}$ and $a^- := \min\{a, 0\}$

Lemma (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Then,

NOTATION: For $a \in \mathbb{R}$ we write $a = a^+ + a^-$, where

 $a^+ := \max\{a, 0\}$ and $a^- := \min\{a, 0\}$

Lemma (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Then,

$$\left[u(x+h,y) + u(x-h,y) + \overline{D}|h|^2\right]^+ \ge 2u^+(x,y)$$

for every $x, h \in \mathbb{R}^n$ and $y \in [0, A]$,

NOTATION: For $a \in \mathbb{R}$ we write $a = a^+ + a^-$, where

 $a^+ := \max\{a, 0\}$ and $a^- := \min\{a, 0\}$

Lemma (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Then,

$$\left[u(x+h,y) + u(x-h,y) + \overline{D}|h|^{2}\right]^{+} \ge 2u^{+}(x,y)$$

for every $x, h \in \mathbb{R}^n$ and $y \in [0, A]$, where

$$\overline{D} := \frac{1}{1 - 2A \|g''\|_{L^{\infty}}} \left[D_A + \frac{4AL_A^2 \|g'''\|_{L^{\infty}}}{(1 - 2A \|g''\|_{L^{\infty}})^2} \right]$$

NOTATION: For $a \in \mathbb{R}$ we write $a = a^+ + a^-$, where

 $a^+ := \max\{a, 0\}$ and $a^- := \min\{a, 0\}$

Lemma (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Then,

$$\left[u(x+h,y) + u(x-h,y) + \overline{D}|h|^2\right]^+ \ge 2u^+(x,y)$$

for every $x, h \in \mathbb{R}^n$ and $y \in [0, A]$, where

$$\overline{D} := \frac{1}{1 - 2A \|g''\|_{L^{\infty}}} \left[D_A + \frac{4AL_A^2 \|g'''\|_{L^{\infty}}}{(1 - 2A \|g''\|_{L^{\infty}})^2} \right]$$

In particular, for every $y \in [0, A]$

NOTATION: For $a \in \mathbb{R}$ we write $a = a^+ + a^-$, where

 $a^+ := \max\{a, 0\}$ and $a^- := \min\{a, 0\}$

Lemma (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Then,

$$\left[u(x+h,y) + u(x-h,y) + \overline{D}|h|^{2}\right]^{+} \ge 2u^{+}(x,y)$$

for every $x, h \in \mathbb{R}^n$ and $y \in [0, A]$, where

$$\overline{D} := \frac{1}{1 - 2A \|g''\|_{L^{\infty}}} \left[D_A + \frac{4AL_A^2 \|g'''\|_{L^{\infty}}}{(1 - 2A \|g''\|_{L^{\infty}})^2} \right]$$

In particular, for every $y \in [0, A]$

 $u^+(\cdot, y)$ is semiconvex.

Lemma (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied.

Lemma (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Then,

$$\left[u(x+h,y)+u(x-h,y)-\overline{C}|h|^2\right]^- \le 2u^-(x,y)$$

for every $x, h \in \mathbb{R}^n$ and $y \in [0, A]$, where

$$\overline{C} := \frac{1}{1 - 2A \|g''\|_{L^{\infty}}} \left[C_A + \frac{4AL_A^2 \|g'''\|_{L^{\infty}}}{(1 - 2A \|g''\|_{L^{\infty}})^2} \right]$$

Lemma (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Then,

$$\left[u(x+h,y)+u(x-h,y)-\overline{C}|h|^2\right]^- \le 2u^-(x,y)$$

for every $x, h \in \mathbb{R}^n$ and $y \in [0, A]$, where

$$\overline{C} := \frac{1}{1 - 2A \|g''\|_{L^{\infty}}} \left[C_A + \frac{4AL_A^2 \|g'''\|_{L^{\infty}}}{(1 - 2A \|g''\|_{L^{\infty}})^2} \right]$$

In particular, for every $y \in [0, A]$

Lemma (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Then,

$$\left[u(x+h,y)+u(x-h,y)-\overline{C}|h|^2\right]^- \le 2u^-(x,y)$$

for every $x, h \in \mathbb{R}^n$ and $y \in [0, A]$, where

$$\overline{C} := \frac{1}{1 - 2A \|g''\|_{L^{\infty}}} \left[C_A + \frac{4AL_A^2 \|g'''\|_{L^{\infty}}}{(1 - 2A \|g''\|_{L^{\infty}})^2} \right]$$

In particular, for every $y \in [0, A]$

 $u^{-}(\cdot, y)$ is semiconcave.

Remark (u^+ and u^- are "connected")

Remark (u^+ and u^- are "connected")

Combining the previous two results

$$\left[u(x+h,y)+u(x-h,y)+\overline{D}|h|^2\right]^+ \ge 2u^+(x,y) \ge 2u(x,y)$$

Remark (u^+ and u^- are "connected")

Combining the previous two results

$$[u(x+h,y) + u(x-h,y) + \overline{D}|h|^2]^+ \ge 2u^+(x,y) \ge 2u(x,y)$$

$$\ge 2u^-(x,y)$$

Remark (u^+ and u^- are "connected")

Combining the previous two results

$$\left[u(x+h,y) + u(x-h,y) + \overline{D}|h|^2 \right]^+ \ge 2u^+(x,y) \ge 2u(x,y)$$

$$\ge 2u^-(x,y) \ge \left[u(x+h,y) + u(x-h,y) - \overline{C}|h|^2 \right]^-$$

for every $(x, y) \in \mathbb{R}^n \times [0, A]$, and $h \in \mathbb{R}^n$.

In the following: $(0,0) \in \partial K_u$

In the following: $(0,0) \in \partial K_u$

NOTATION: for r > 0

 $B_r := \{ z \in \mathbb{R}^{n+1} : |z| < r \}$

In the following: $(0,0) \in \partial K_u$

NOTATION: for r > 0

 $B_r := \{ z \in \mathbb{R}^{n+1} : |z| < r \}$ and $B_r^n := B_r \cap \{ y = 0 \}$

In the following: $(0,0) \in \partial K_u$

NOTATION: for r > 0

 $B_r := \{ z \in \mathbb{R}^{n+1} : |z| < r \}$ and $B_r^n := B_r \cap \{ y = 0 \}$

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied.

In the following: $(0,0) \in \partial K_u$

NOTATION: for r > 0

 $B_r := \{ z \in \mathbb{R}^{n+1} : |z| < r \}$ and $B_r^n := B_r \cap \{ y = 0 \}$

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Then $\exists r_0 > 0$

Optimal Regularity of *u*: Phases separation

In the following: $(0,0) \in \partial K_u$

NOTATION: for r > 0

 $B_r := \{ z \in \mathbb{R}^{n+1} : |z| < r \}$ and $B_r^n := B_r \cap \{ y = 0 \}$

Proposition (Caffarelli, C., Figalli)

Let (g_1) - (g_6) and (A_1) - (A_2) be satisfied. Then $\exists r_0 > 0$ such that $B_{r_0}^n \cap \{x' \in \mathbb{R}^n : u(x', 0) > 0\} \cap \{x' \in \mathbb{R}^n : u(x', 0) < 0\} = \emptyset.$

Suppose, by contradiction, that

 $B^n_r \cap \{u(\cdot,0)>0\} \cap \{u(\cdot,0)<0\} \neq \emptyset \qquad \text{for every } r>0.$

Suppose, by contradiction, that

 $B^n_r \cap \{u(\cdot,0)>0\} \cap \{u(\cdot,0)<0\} \neq \emptyset \qquad \text{for every } r>0.$

Suppose, by contradiction, that

 $B^n_r \cap \{u(\cdot,0)>0\} \cap \{u(\cdot,0)<0\} \neq \emptyset \qquad \text{ for every } r>0.$

Step 1: Show that $u(\cdot, 0)$ is differentiable at x = 0 with $\nabla_x u(0, 0) = 0$

• Note: $u^+(\cdot, 0)$ semiconvex with $0 \in \partial_x^- u^+(0, 0)$

Suppose, by contradiction, that

 $B^n_r \cap \{u(\cdot,0)>0\} \cap \{u(\cdot,0)<0\} \neq \emptyset \qquad \text{for every } r>0.$

Step 1: Show that $u(\cdot, 0)$ is differentiable at x = 0 with $\nabla_x u(0, 0) = 0$

• Note: $u^+(\cdot, 0)$ semiconvex with $0 \in \partial_x^- u^+(0, 0)$

▶ Note: $u^-(\cdot, 0)$ semiconcave with $0 \in \partial_x^+ u^-(0, 0)$

Suppose, by contradiction, that

 $B^n_r \cap \{u(\cdot,0)>0\} \cap \{u(\cdot,0)<0\} \neq \emptyset \qquad \text{ for every } r>0.$

- Note: $u^+(\cdot, 0)$ semiconvex with $0 \in \partial_x^- u^+(0, 0)$
- ▶ Note: $u^-(\cdot, 0)$ semiconcave with $0 \in \partial_x^+ u^-(0, 0)$
- Suppose $u(\cdot, 0)$ not differentiable at x = 0.

Suppose, by contradiction, that

 $B^n_r \cap \{u(\cdot,0)>0\} \cap \{u(\cdot,0)<0\} \neq \emptyset \qquad \text{for every } r>0.$

- Note: $u^+(\cdot, 0)$ semiconvex with $0 \in \partial_x^- u^+(0, 0)$
- ▶ Note: $u^-(\cdot, 0)$ semiconcave with $0 \in \partial_x^+ u^-(0, 0)$
- Suppose $u(\cdot, 0)$ not differentiable at x = 0.
- ▶ Then, either $\partial_x^- u^+(0,0) \neq \{0\}$ or $\partial_x^+ u^-(0,0) \neq \{0\}$

Suppose, by contradiction, that

 $B^n_r \cap \{u(\cdot,0)>0\} \cap \{u(\cdot,0)<0\} \neq \emptyset \qquad \text{for every } r>0.$

- Note: $u^+(\cdot, 0)$ semiconvex with $0 \in \partial_x^- u^+(0, 0)$
- ▶ Note: $u^-(\cdot, 0)$ semiconcave with $0 \in \partial_x^+ u^-(0, 0)$
- Suppose $u(\cdot, 0)$ not differentiable at x = 0.
- ▶ Then, either $\partial_x^- u^+(0,0) \neq \{0\}$ or $\partial_x^+ u^-(0,0) \neq \{0\}$

• Say
$$\partial_x^- u^+(0,0) \neq \{0\}$$

Suppose, by contradiction, that

 $B^n_r \cap \{u(\cdot,0)>0\} \cap \{u(\cdot,0)<0\} \neq \emptyset \qquad \text{for every } r>0.$

- Note: $u^+(\cdot, 0)$ semiconvex with $0 \in \partial_x^- u^+(0, 0)$
- ▶ Note: $u^-(\cdot, 0)$ semiconcave with $0 \in \partial_x^+ u^-(0, 0)$
- Suppose $u(\cdot, 0)$ not differentiable at x = 0.
- ▶ Then, either $\partial_x^- u^+(0,0) \neq \{0\}$ or $\partial_x^+ u^-(0,0) \neq \{0\}$
- Say $\partial_x^- u^+(0,0) \neq \{0\}$
- ▶ $u^+(\cdot,0)$ and $u^-(\cdot,0)$ are "connected" $\Rightarrow \partial_x^+ u^-(0,0) \neq \{0\}$

Suppose, by contradiction, that

 $B^n_r \cap \{u(\cdot,0)>0\} \cap \{u(\cdot,0)<0\} \neq \emptyset \qquad \text{for every } r>0.$

Step 1: Show that $u(\cdot, 0)$ is differentiable at x = 0 with $\nabla_x u(0, 0) = 0$

- Note: $u^+(\cdot, 0)$ semiconvex with $0 \in \partial_x^- u^+(0, 0)$
- ▶ Note: $u^-(\cdot, 0)$ semiconcave with $0 \in \partial_x^+ u^-(0, 0)$
- Suppose $u(\cdot, 0)$ not differentiable at x = 0.
- ▶ Then, either $\partial_x^- u^+(0,0) \neq \{0\}$ or $\partial_x^+ u^-(0,0) \neq \{0\}$
- Say $\partial_x^- u^+(0,0) \neq \{0\}$

▶ $u^+(\cdot,0)$ and $u^-(\cdot,0)$ are "connected" $\Rightarrow \partial_x^+ u^-(0,0) \neq \{0\}$

▶ Then, if $x \in \{u < 0\}$ and $x \to 0$ we have $|\nabla_x u(x, 0)| \to \infty$

Step 2:

Step 2: By Step 1,

$|u(x,0)| \leq \sigma(|x|)|x|$ for some modulus of continuity σ

Step 2: By Step 1,

 $|u(x,0)| \leq \sigma(|x|)|x|$ for some modulus of continuity σ

We can construct suitable barriers

Step 2: By Step 1,

 $|u(x,0)| \leq \sigma(|x|)|x|$ for some modulus of continuity σ

• We can construct suitable barriers \Longrightarrow contradiction

Regularity of u near ∂K_u ?

Regularity of u near ∂K_u ?

In the following:

 $\blacktriangleright (0,0) \in \partial K_u$

Regularity of u near ∂K_u ?

In the following:

- $\blacktriangleright (0,0) \in \partial K_u$
- $u(x,0) \ge 0$ for every $x \in B_{r_0}^n$

Regularity of u near ∂K_u ?

In the following:

 $\blacktriangleright (0,0) \in \partial K_u$

•
$$u(x,0) \ge 0$$
 for every $x \in B_{r_0}^n$

Define $v : \mathbb{R}^n \times [-A, A] \to \mathbb{R}$ as

Regularity of u near ∂K_u ?

In the following:

- $\blacktriangleright (0,0) \in \partial K_u$
- $u(x,0) \ge 0$ for every $x \in B_{r_0}^n$

Define $v: \mathbb{R}^n \times [-A, A] \to \mathbb{R}$ as

$$v(x,y) := \begin{cases} u(x,y) - g'(0^+)y & \text{ for every } (x,y) \in \mathbb{R}^n \times (0,A), \\ & \\ \end{cases}$$

Regularity of u near ∂K_u ?

In the following:

- $\blacktriangleright (0,0) \in \partial K_u$
- $u(x,0) \ge 0$ for every $x \in B_{r_0}^n$

Define $v: \mathbb{R}^n \times [-A, A] \to \mathbb{R}$ as

$$v(x,y) := \begin{cases} u(x,y) - g'(0^+)y & \text{ for every } (x,y) \in \mathbb{R}^n \times (0,A), \\ v(x,-y) & \text{ for every } (x,y) \in \mathbb{R}^n \times (-A,0). \end{cases}$$

$\Delta v = 0$		in	B_r	0 /	$\{y$	= 0	}

$$\begin{cases} \Delta v = 0 & \text{ in } B_{r_0} \setminus \{y = 0\} \\ v \ge 0 & \text{ on } B_{r_0}^n \\ \partial_y v \le 0 & \text{ on } B_{r_0}^n \end{cases}$$

$\int \Delta v = 0$	in $B_{r_0} \setminus \{y=0\}$
$v \ge 0$	on $B^n_{r_0}$
$\int \partial_y v \le 0$	on $B_{r_0}^n$
$\left(v[\partial_y v + g'(0^+) - g'(2v)] = 0\right)$	on $B_{r_0}^n$

Then, v solves

$\int \Delta v = 0$	in $B_{r_0} \setminus \{y=0\}$
$v \ge 0$	on $B^n_{r_0}$
$\int \partial_y v \le 0$	on $B_{r_0}^n$
$v[\partial_y v + g'(0^+) - g'(2v)] = 0$	on $B_{r_0}^n$

NOTE:

Then, v solves

$\int \Delta v = 0$	in $B_{r_0} \setminus \{y=0\}$
$v \ge 0$	on $B_{r_0}^n$
$\begin{cases} \partial_y v \le 0 \end{cases}$	on $B^n_{r_0}$
$\left(v[\partial_y v + g'(0^+) - g'(2v)] = 0\right)$	on $B^n_{r_0}$

NOTE: this is a "perturbation" of Signorini Problem:

$$\begin{cases} \Delta v = 0 & \text{ in } B_{r_0} \setminus \{y = 0\} \\ v \ge 0 & \text{ on } B_{r_0}^n \\ \partial_y v \le 0 & \text{ on } B_{r_0}^n \\ v \partial_y v = 0 & \text{ on } B_{r_0}^n \end{cases}$$

We can now adapt the arguments of

We can now adapt the arguments of

- Athanasopoulos-Caffarelli (2004) Signorini problem
- ► Caffarelli-Figalli (2013) parabolic fractional obstacle problem

We can now adapt the arguments of

- Athanasopoulos-Caffarelli (2004) Signorini problem
- ► Caffarelli-Figalli (2013) parabolic fractional obstacle problem

Theorem (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied.

We can now adapt the arguments of

- Athanasopoulos-Caffarelli (2004) Signorini problem
- ► Caffarelli-Figalli (2013) parabolic fractional obstacle problem

Theorem (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Then,

 $u \in C^{1,1/2}(\mathbb{R}^n \times [0,A])$

Regularity properties of ∂K_u ?

Regularity properties of ∂K_u ?

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied.

Regularity properties of ∂K_u ?

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Assume that

(0,0) belongs to the "regular part" of ∂K_u .

Regularity properties of ∂K_u ?

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Assume that

(0,0) belongs to the "regular part" of ∂K_u .

Then the free boundary is $C^{1,\alpha}$ near (0,0)

Regularity properties of ∂K_u ?

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Assume that

(0,0) belongs to the "regular part" of ∂K_u .

Then the free boundary is $C^{1,\alpha}$ near (0,0), for some $\alpha \in (0,1)$.

THANK YOU!

Regularity properties of ∂K_u ?

Regularity properties of ∂K_u ?

In the following:

Regularity properties of ∂K_u ?

In the following:

- $\blacktriangleright (0,0) \in \partial K_u$
- $u(x,0) \ge 0$ for every $x \in B_{r_0}^n$

Regularity properties of ∂K_u ?

In the following:

 $\blacktriangleright (0,0) \in \partial K_u$

•
$$u(x,0) \ge 0$$
 for every $x \in B^n_{r_0}$

Recall: $v : \mathbb{R}^n \times [-A, A] \to \mathbb{R}$ defined as

Regularity properties of ∂K_u ?

In the following:

 $\blacktriangleright (0,0) \in \partial K_u$

•
$$u(x,0) \ge 0$$
 for every $x \in B_{r_0}^n$

Recall: $v : \mathbb{R}^n \times [-A, A] \to \mathbb{R}$ defined as

$$v(x,y) := \begin{cases} u(x,y) - g'(0^+)y & \text{ for every } (x,y) \in \mathbb{R}^n \times (0,A), \\ v(x,-y) & \text{ for every } (x,y) \in \mathbb{R}^n \times (-A,0). \end{cases}$$

(Variant of) Almgren's Monotonicity Formula:

(Variant of) Almgren's Monotonicity Formula:

$$\Phi_v(r) := r \frac{d}{dr} \log\left(\max\{F_v(r), r^{n+4}\}\right)$$

(Variant of) Almgren's Monotonicity Formula:

$$\Phi_v(r) := r \frac{d}{dr} \log\left(\max\{F_v(r), r^{n+4}\}\right) \quad \text{where} \quad F_v(r) := \int_{\partial B_r} v^2 d\mathcal{H}^n.$$

(Variant of) Almgren's Monotonicity Formula:

$$\Phi_v(r) := r \frac{d}{dr} \log\left(\max\{F_v(r), r^{n+4}\}\right) \quad \text{where} \quad F_v(r) := \int_{\partial B_r} v^2 d\mathcal{H}^n.$$

Inspired by Caffarelli-Salsa-Silvestre, Invent. Math. (2008)

(Variant of) Almgren's Monotonicity Formula:

$$\Phi_v(r) := r \frac{d}{dr} \log\left(\max\{F_v(r), r^{n+4}\}\right)$$
 where $F_v(r) := \int_{\partial B_r} v^2 d\mathcal{H}^n$

► Inspired by Caffarelli-Salsa-Silvestre, Invent. Math. (2008)

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied.

(Variant of) Almgren's Monotonicity Formula:

$$\Phi_v(r) := r \frac{d}{dr} \log\left(\max\{F_v(r), r^{n+4}\}\right) \quad \text{where} \quad F_v(r) := \int_{\partial B_r} v^2 d\mathcal{H}^n.$$

► Inspired by Caffarelli-Salsa-Silvestre, Invent. Math. (2008)

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Then $\exists \overline{r}_0, C > 0$ such that

 $r \mapsto \Phi_v(r)e^{Cr}$ is monotone nondecreasing in $(0, \overline{r}_0)$.

(Variant of) Almgren's Monotonicity Formula:

$$\Phi_v(r) := r \frac{d}{dr} \log\left(\max\{F_v(r), r^{n+4}\}\right) \quad \text{where} \quad F_v(r) := \int_{\partial B_r} v^2 d\mathcal{H}^n$$

► Inspired by Caffarelli-Salsa-Silvestre, Invent. Math. (2008)

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Then $\exists \overline{r}_0, C > 0$ such that

 $r \mapsto \Phi_v(r)e^{Cr}$ is monotone nondecreasing in $(0, \overline{r}_0)$.

In particular,

(Variant of) Almgren's Monotonicity Formula:

$$\Phi_v(r) := r \frac{d}{dr} \log\left(\max\{F_v(r), r^{n+4}\}\right) \quad \text{where} \quad F_v(r) := \int_{\partial B_r} v^2 d\mathcal{H}^n$$

► Inspired by Caffarelli-Salsa-Silvestre, Invent. Math. (2008)

Proposition (Caffarelli, C., Figalli)

Let (g_1) – (g_6) and (A_1) – (A_2) be satisfied. Then $\exists \overline{r}_0, C > 0$ such that

 $r \mapsto \Phi_v(r)e^{Cr}$ is monotone nondecreasing in $(0, \overline{r}_0)$.

In particular, there exists

$$\Phi_v(0^+) = \lim_{r \to 0^+} \Phi_v(r).$$

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied.

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Then

either $\Phi_v(0^+) = n + 3$

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Then

either
$$\Phi_v(0^+) = n + 3$$
 or $\Phi_v(0^+) \ge n + 4$.

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Then

either
$$\Phi_v(0^+) = n + 3$$
 or $\Phi_v(0^+) \ge n + 4$.

Blow up profiles:

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Then

either
$$\Phi_v(0^+) = n + 3$$
 or $\Phi_v(0^+) \ge n + 4$.

Blow up profiles:

For $r \in (0, \overline{r}_0)$ define $v_r : B_1 \to \mathbb{R}$ as

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Then

either
$$\Phi_v(0^+) = n + 3$$
 or $\Phi_v(0^+) \ge n + 4$.

Blow up profiles:

For $r \in (0, \overline{r}_0)$ define $v_r : B_1 \to \mathbb{R}$ as

$$v_r(z) := \frac{v(rz)}{d_r}$$

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Then

either
$$\Phi_v(0^+) = n + 3$$
 or $\Phi_v(0^+) \ge n + 4$.

Blow up profiles:

For $r \in (0, \overline{r}_0)$ define $v_r : B_1 \to \mathbb{R}$ as

$$v_r(z) := \frac{v(rz)}{d_r}, \qquad \qquad d_r := \left(\frac{F_v(r)}{r^n}\right)^{1/2}$$

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Then

either
$$\Phi_v(0^+) = n + 3$$
 or $\Phi_v(0^+) \ge n + 4$.

Blow up profiles:

For $r \in (0, \overline{r}_0)$ define $v_r : B_1 \to \mathbb{R}$ as

$$v_r(z) := \frac{v(rz)}{d_r}, \qquad \qquad d_r := \left(\frac{F_v(r)}{r^n}\right)^{1/2}$$

Now send $r \rightarrow 0^+$ and use

Athanasopoulos-Caffarelli-Salsa, Amer. J. Math. (2008)

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied.

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Assume

 $\Phi_v(0^+) = n+3.$

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Assume

$$\Phi_v(0^+) = n+3.$$

Then $\exists r_k \to 0$ and $v_{\infty} : B_1 \to \mathbb{R}$ homogeneous (degree 3/2) s.t.

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Assume

$$\Phi_v(0^+) = n+3.$$

Then $\exists r_k \to 0$ and $v_{\infty} : B_1 \to \mathbb{R}$ homogeneous (degree 3/2) s.t.

• $v_{r_k} \rightharpoonup v_{\infty}$ weakly in $W^{1,2}(B_1)$

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Assume

$$\Phi_v(0^+) = n+3.$$

Then $\exists r_k \to 0$ and $v_{\infty} : B_1 \to \mathbb{R}$ homogeneous (degree 3/2) s.t.

•
$$v_{r_k} \rightharpoonup v_{\infty}$$
 weakly in $W^{1,2}(B_1)$

• $v_{r_k} \rightarrow v_{\infty}$ in $C^{1,\gamma}$ on compacts of $B_1 \cap \{y \ge 0\}$ for $\gamma \in (0, 1/2)$

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Assume

 $\Phi_v(0^+) = n+3.$

Then $\exists r_k \to 0$ and $v_{\infty} : B_1 \to \mathbb{R}$ homogeneous (degree 3/2) s.t.

•
$$v_{r_k} \rightharpoonup v_{\infty}$$
 weakly in $W^{1,2}(B_1)$

• $v_{r_k} \rightarrow v_{\infty}$ in $C^{1,\gamma}$ on compacts of $B_1 \cap \{y \ge 0\}$ for $\gamma \in (0, 1/2)$

• v_{∞} satisfies the classical Signorini problem in B_1

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Assume

 $\Phi_v(0^+) = n+3.$

Then $\exists r_k \to 0$ and $v_{\infty} : B_1 \to \mathbb{R}$ homogeneous (degree 3/2) s.t.

•
$$v_{r_k} \rightharpoonup v_{\infty}$$
 weakly in $W^{1,2}(B_1)$

- $v_{r_k} \rightarrow v_{\infty}$ in $C^{1,\gamma}$ on compacts of $B_1 \cap \{y \ge 0\}$ for $\gamma \in (0, 1/2)$
- v_{∞} satisfies the classical Signorini problem in B_1
- up to change of variables

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Assume

 $\Phi_v(0^+) = n+3.$

Then $\exists r_k \to 0$ and $v_{\infty} : B_1 \to \mathbb{R}$ homogeneous (degree 3/2) s.t.

•
$$v_{r_k} \rightharpoonup v_{\infty}$$
 weakly in $W^{1,2}(B_1)$

- $v_{r_k} \rightarrow v_{\infty}$ in $C^{1,\gamma}$ on compacts of $B_1 \cap \{y \ge 0\}$ for $\gamma \in (0, 1/2)$
- v_{∞} satisfies the classical Signorini problem in B_1
- up to change of variables

$$v_{\infty}(x,y) = \rho^{3/2} \cos \frac{3}{2}\theta,$$

where $\rho^2 = x_n^2 + y^2$ and $\tan \theta = y/x_n$.

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied.

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Assume

 $\Phi_v(0^+) = n + 3.$

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Assume

 $\Phi_v(0^+) = n+3.$

Then the free boundary is $C^{1,\alpha}$ near (0,0)

Proposition (Caffarelli, C., Figalli)

Let (g1)–(g6) and (A1)–(A2) be satisfied. Assume

 $\Phi_v(0^+) = n+3.$

Then the free boundary is $C^{1,\alpha}$ near (0,0), for some $\alpha \in (0,1)$.

THANK YOU!