Optimal regularity and structure of the free boundary
 for minimizers in cohesive zone models
 Joint work with Luis Caffarelli and Alessio Figalli

Filippo Cagnetti - University of Sussex - Brighton, UK

Topics in the Calculus of Variations:
Recent Advances and New Trends, Banff, 24 May 2018

Let $n \in \mathbb{N}, n \geq 2$.

Let $n \in \mathbb{N}, n \geq 2$. In \mathbb{R}^{n+1} we consider

Let $n \in \mathbb{N}, n \geq 2$. In \mathbb{R}^{n+1} we consider

Let $n \in \mathbb{N}, n \geq 2$. In \mathbb{R}^{n+1} we consider

Let $n \in \mathbb{N}, n \geq 2$. In \mathbb{R}^{n+1} we consider

Let $n \in \mathbb{N}, n \geq 2$. In \mathbb{R}^{n+1} we consider

Cracks ONLY in $\mathbb{R}^{n} \times\{0\}$.

Let $n \in \mathbb{N}, n \geq 2$. In \mathbb{R}^{n+1} we consider

Cracks ONLY in $\mathbb{R}^{n} \times\{0\}$.

Let $n \in \mathbb{N}, n \geq 2$. In \mathbb{R}^{n+1} we consider

Cracks ONLY in $\mathbb{R}^{n} \times\{0\}$. Displacement v : $\mathbb{R}^{n} \times(-A, A) \rightarrow \mathbb{R}$.

Let $n \in \mathbb{N}, n \geq 2$. In \mathbb{R}^{n+1} we consider

Cracks ONLY in $\mathbb{R}^{n} \times\{0\} . \quad$ Displacement $\mathrm{v}: \mathbb{R}^{n} \times(-A, A) \rightarrow \mathbb{R}$.

Let $n \in \mathbb{N}, n \geq 2$. In \mathbb{R}^{n+1} we consider

Cracks ONLY in $\mathbb{R}^{n} \times\{0\} . \quad$ Displacement $\mathrm{v}: \mathbb{R}^{n} \times(-A, A) \rightarrow \mathbb{R}$.

$$
[\mathbf{v}]:=\mathbf{v}_{R T}-\mathbf{v}_{L T}
$$

Let $n \in \mathbb{N}, n \geq 2$. In \mathbb{R}^{n+1} we consider

Cracks ONLY in $\mathbb{R}^{n} \times\{0\} . \quad$ Displacement $\mathrm{v}: \mathbb{R}^{n} \times(-A, A) \rightarrow \mathbb{R}$.

$$
[\mathbf{v}]:=\mathbf{v}_{R T}-\mathbf{v}_{L T} \quad K_{\mathbf{v}}:=\left\{x \in \mathbb{R}^{n}:[\mathbf{v}](x) \neq 0\right\}
$$

Cohesive Zone Model

Total Energy

For a displacement $\mathrm{v} \in H^{1}\left(\mathbb{R}^{n} \times(-A, A) \backslash\{y=0\}\right)$ the total energy is

Cohesive Zone Model

Total Energy

For a displacement $\mathrm{v} \in H^{1}\left(\mathbb{R}^{n} \times(-A, A) \backslash\{y=0\}\right)$ the total energy is

$$
E(\mathbf{v})=\underbrace{\frac{1}{2} \int_{\mathbb{R}^{n} \times(-A, A) \backslash\{y=0\}}|\nabla \mathbf{v}|^{2} d z}_{\text {Stored Elastic Energy }}
$$

Cohesive Zone Model

Total Energy

For a displacement $\mathrm{v} \in H^{1}\left(\mathbb{R}^{n} \times(-A, A) \backslash\{y=0\}\right)$ the total energy is

$$
E(\mathbf{v})=\underbrace{\frac{1}{2} \int_{\mathbb{R}^{n} \times(-A, A) \backslash\{y=0\}}|\nabla \mathbf{v}|^{2} d z}_{\text {Stored Elastic Energy }}+\underbrace{\int_{\mathbb{R}^{n}} g(|[\mathbf{v}]|) d x}_{\text {Fracture Energy }}
$$

Cohesive Zone Model

Total Energy

For a displacement $\mathrm{v} \in H^{1}\left(\mathbb{R}^{n} \times(-A, A) \backslash\{y=0\}\right)$ the total energy is

$$
E(\mathbf{v})=\underbrace{\frac{1}{2} \int_{\mathbb{R}^{n} \times(-A, A) \backslash\{y=0\}}|\nabla \mathbf{v}|^{2} d z}_{\text {Stored Elastic Energy }}+\underbrace{\int_{\mathbb{R}^{n}} g(|[\mathbf{v}]|) d x}_{\text {Fracture Energy }}
$$

where
(g1) g concave

Cohesive Zone Model

Total Energy

For a displacement $\mathrm{v} \in H^{1}\left(\mathbb{R}^{n} \times(-A, A) \backslash\{y=0\}\right)$ the total energy is

$$
E(\mathbf{v})=\underbrace{\frac{1}{2} \int_{\mathbb{R}^{n} \times(-A, A) \backslash\{y=0\}}|\nabla \mathbf{v}|^{2} d z}_{\text {Stored Elastic Energy }}+\underbrace{\int_{\mathbb{R}^{n}} g(|[\mathbf{v}]|) d x}_{\text {Fracture Energy }}
$$

where
(g1) g concave
(g2) g strictly increasing and bounded

Cohesive Zone Model

Total Energy

For a displacement $\mathrm{v} \in H^{1}\left(\mathbb{R}^{n} \times(-A, A) \backslash\{y=0\}\right)$ the total energy is

$$
E(\mathbf{v})=\underbrace{\frac{1}{2} \int_{\mathbb{R}^{n} \times(-A, A) \backslash\{y=0\}}|\nabla \mathbf{v}|^{2} d z}_{\text {Stored Elastic Energy }}+\underbrace{\int_{\mathbb{R}^{n}} g(|[\mathbf{v}]|) d x}_{\text {Fracture Energy }}
$$

where
(g1) g concave
(g2) g strictly increasing and bounded
(g3) $g(0)=0$

Cohesive Zone Model

Total Energy

For a displacement $\mathrm{v} \in H^{1}\left(\mathbb{R}^{n} \times(-A, A) \backslash\{y=0\}\right)$ the total energy is

$$
E(\mathbf{v})=\underbrace{\frac{1}{2} \int_{\mathbb{R}^{n} \times(-A, A) \backslash\{y=0\}}|\nabla \mathbf{v}|^{2} d z}_{\text {Stored Elastic Energy }}+\underbrace{\int_{\mathbb{R}^{n}} g(|[\mathbf{v}]|) d x}_{\text {Fracture Energy }}
$$

where
(g1) g concave
(g2) g strictly increasing and bounded
(g3) $g(0)=0$
(g4) $g^{\prime}\left(0^{+}\right) \in(0,+\infty)$

Cohesive Zone Model

Total Energy

For a displacement $\mathrm{v} \in H^{1}\left(\mathbb{R}^{n} \times(-A, A) \backslash\{y=0\}\right)$ the total energy is

$$
E(\mathbf{v})=\underbrace{\frac{1}{2} \int_{\mathbb{R}^{n} \times(-A, A) \backslash\{y=0\}}|\nabla \mathbf{v}|^{2} d z}_{\text {Stored Elastic Energy }}+\underbrace{\int_{\mathbb{R}^{n}} g(|[\mathbf{v}]|) d x}_{\text {Fracture Energy }}
$$

where
(g1) g concave
(g2) g strictly increasing and bounded
(g3) $g(0)=0$
(g4) $g^{\prime}\left(0^{+}\right) \in(0,+\infty)$
(g5) $g:[0,+\infty) \rightarrow[0,+\infty)$ is of class $g \in C^{2}[0, \infty) \cap C^{3}(0, \infty)$

Fracture Energy density

Fracture Energy density

critical point

IMPOSE BOUNDARY CONDITIONS:

critical point

IMPOSE BOUNDARY CONDITIONS:
Let $u_{A}, u_{-A} \in H^{1 / 2}\left(\mathbb{R}^{n}\right)$.

critical point

IMPOSE BOUNDARY CONDITIONS:

Let $u_{A}, u_{-A} \in H^{1 / 2}\left(\mathbb{R}^{n}\right)$. Let u be a minimizer of

$$
\min _{H^{1}}\left\{E(\mathrm{v}): \mathrm{v}(x, \pm A)=u_{ \pm A}\right\}
$$

critical point

IMPOSE BOUNDARY CONDITIONS:

Let $u_{A}, u_{-A} \in H^{1 / 2}\left(\mathbb{R}^{n}\right)$. Let u be a minimizer of

$$
\min _{H^{1}}\left\{E(\mathrm{v}): \mathrm{v}(x, \pm A)=u_{ \pm A}\right\}
$$

Then

$$
\begin{cases}\Delta u=0 & \text { in } \mathbb{R}^{n} \times(-A, A) \backslash\{y=0\}\end{cases}
$$

critical point

IMPOSE BOUNDARY CONDITIONS:

Let $u_{A}, u_{-A} \in H^{1 / 2}\left(\mathbb{R}^{n}\right)$. Let u be a minimizer of

$$
\min _{H^{1}}\left\{E(\mathrm{v}): \mathrm{v}(x, \pm A)=u_{ \pm A}\right\}
$$

Then

$$
\left\{\begin{array}{l|l|l|l|l}
\Delta u=0 & \text { in } \mathbb{R}^{n} \times(-A, A) \backslash\{y=0\}, \\
u=u_{A} & \text { on }\{y=A\}, & \\
\hline u=u_{-A} & \text { on }\{y=-A\}, & \\
\hline & & & \\
\hline & & & \\
\hline
\end{array}\right.
$$

critical point

IMPOSE BOUNDARY CONDITIONS:

Let $u_{A}, u_{-A} \in H^{1 / 2}\left(\mathbb{R}^{n}\right)$. Let u be a minimizer of

$$
\min _{H^{1}}\left\{E(\mathrm{v}): \mathrm{v}(x, \pm A)=u_{ \pm A}\right\}
$$

Then

$$
\left\{\begin{array}{l|l}
\Delta u=0 & \text { in } \mathbb{R}^{n} \times(-A, A) \backslash\{y=0\}, \\
u=u_{A} & \text { on }\{y=A\}, \\
u=u_{-A} & \text { on }\{y=-A\}, \\
\partial_{y} u_{R T}=\partial_{y} u_{L T} & \text { on }\{y=0\},
\end{array}\right.
$$

critical point

IMPOSE BOUNDARY CONDITIONS:

Let $u_{A}, u_{-A} \in H^{1 / 2}\left(\mathbb{R}^{n}\right)$. Let u be a minimizer of

$$
\min _{H^{1}}\left\{E(\mathrm{v}): \mathrm{v}(x, \pm A)=u_{ \pm A}\right\}
$$

Then

$$
\begin{cases}\Delta u=0 & \text { in } \mathbb{R}^{n} \times(-A, A) \backslash\{y=0\}, \\ u=u_{A} & \text { on }\{y=A\}, \\ u=u_{-A} & \text { on }\{y=-A\}, \\ \partial_{y} u_{R T}=\partial_{y} u_{L T} & \text { on }\{y=0\}, \\ \left|\partial_{y} u\right| \leq g^{\prime}\left(0^{+}\right) & \text {on }\{y=0\},\end{cases}
$$

critical point

IMPOSE BOUNDARY CONDITIONS:

Let $u_{A}, u_{-A} \in H^{1 / 2}\left(\mathbb{R}^{n}\right)$. Let u be a minimizer of

$$
\min _{H^{1}}\left\{E(\mathrm{v}): \mathrm{v}(x, \pm A)=u_{ \pm A}\right\}
$$

Then

$$
\begin{cases}\Delta u=0 & \text { in } \mathbb{R}^{n} \times(-A, A) \backslash\{y=0\}, \\ u=u_{A} & \text { on }\{y=A\}, \\ u=u_{-A} & \text { on }\{y=-A\}, \\ \partial_{y} u_{R T}=\partial_{y} u_{L T} & \text { on }\{y=0\}, \\ \left|\partial_{y} u\right| \leq g^{\prime}\left(0^{+}\right) & \text {on }\{y=0\}, \\ \partial_{y} u=g^{\prime}(|[u]|) \operatorname{sgn}([u]) & \text { on } K_{u},\end{cases}
$$

Assume BC odd w.r.t. $\{y=0\}$

Assume BC odd w.r.t. $\{y=0\}: \quad u_{-A}(x)=-u_{A}(x) \quad \forall x \in \mathbb{R}^{n}$.

Assume BC odd w.r.t. $\{y=0\}: \quad u_{-A}(x)=-u_{A}(x) \quad \forall x \in \mathbb{R}^{n}$.

We focus on solutions which are odd w.r.t. $\{y=0\}$:

Assume BC odd w.r.t. $\{y=0\}: \quad u_{-A}(x)=-u_{A}(x) \quad \forall x \in \mathbb{R}^{n}$.

We focus on solutions which are odd w.r.t. $\{y=0\}$:

$$
\left(\Delta u=0 \quad \text { in } \mathbb{R}^{n} \times(0, A),\right.
$$

Assume BC odd w.r.t. $\{y=0\}: \quad u_{-A}(x)=-u_{A}(x) \quad \forall x \in \mathbb{R}^{n}$.

We focus on solutions which are odd w.r.t. $\{y=0\}$:

$$
\left\{\begin{array}{l}
\Delta u=0 \\
u=u_{A} \\
\end{array}\right.
$$

$$
\text { in } \mathbb{R}^{n} \times(0, A),
$$

$$
\text { on }\{y=A\} \text {, }
$$

Assume BC odd w.r.t. $\{y=0\}: \quad u_{-A}(x)=-u_{A}(x) \quad \forall x \in \mathbb{R}^{n}$.

We focus on solutions which are odd w.r.t. $\{y=0\}$:

$$
\begin{cases}\Delta u=0 & \text { in } \mathbb{R}^{n} \times(0, A), \\ u=u_{A} & \text { on }\{y=A\}, \\ \left|\partial_{y} u\right| \leq g^{\prime}\left(0^{+}\right) & \text {on }\{y=0\},\end{cases}
$$

Assume BC odd w.r.t. $\{y=0\}: \quad u_{-A}(x)=-u_{A}(x) \quad \forall x \in \mathbb{R}^{n}$.

We focus on solutions which are odd w.r.t. $\{y=0\}$:

$$
\begin{cases}\Delta u=0 & \text { in } \mathbb{R}^{n} \times(0, A), \\ u=u_{A} & \text { on }\{y=A\}, \\ \left|\partial_{y} u\right| \leq g^{\prime}\left(0^{+}\right) & \text {on }\{y=0\}, \\ \partial_{y} u=g^{\prime}(2|u|) \operatorname{sgn}(u) & \text { on } K_{u} .\end{cases}
$$

Assume BC odd w.r.t. $\{y=0\}: \quad u_{-A}(x)=-u_{A}(x) \quad \forall x \in \mathbb{R}^{n}$.

We focus on solutions which are odd w.r.t. $\{y=0\}$:

$$
\begin{cases}\Delta u=0 & \text { in } \mathbb{R}^{n} \times(0, A), \\ u=u_{A} & \text { on }\{y=A\}, \\ \left|\partial_{y} u\right| \leq g^{\prime}\left(0^{+}\right) & \text {on }\{y=0\}, \\ \partial_{y} u=g^{\prime}(2|u|) \operatorname{sgn}(u) & \text { on } K_{u} .\end{cases}
$$

QUESTIONS:

Assume BC odd w.r.t. $\{y=0\}: \quad u_{-A}(x)=-u_{A}(x) \quad \forall x \in \mathbb{R}^{n}$.

We focus on solutions which are odd w.r.t. $\{y=0\}$:

$$
\begin{cases}\Delta u=0 & \text { in } \mathbb{R}^{n} \times(0, A), \\ u=u_{A} & \text { on }\{y=A\}, \\ \left|\partial_{y} u\right| \leq g^{\prime}\left(0^{+}\right) & \text {on }\{y=0\}, \\ \partial_{y} u=g^{\prime}(2|u|) \operatorname{sgn}(u) & \text { on } K_{u} .\end{cases}
$$

QUESTIONS:

- Regularity of u ?

Assume BC odd w.r.t. $\{y=0\}: \quad u_{-A}(x)=-u_{A}(x) \quad \forall x \in \mathbb{R}^{n}$.

We focus on solutions which are odd w.r.t. $\{y=0\}$:

$$
\begin{cases}\Delta u=0 & \text { in } \mathbb{R}^{n} \times(0, A), \\ u=u_{A} & \text { on }\{y=A\}, \\ \left|\partial_{y} u\right| \leq g^{\prime}\left(0^{+}\right) & \text {on }\{y=0\}, \\ \partial_{y} u=g^{\prime}(2|u|) \operatorname{sgn}(u) & \text { on } K_{u} .\end{cases}
$$

QUESTIONS:

- Regularity of u ?
- Is the crack set $K_{u}=\left\{(x, 0): x \in \mathbb{R}^{n}, u(x, 0) \neq 0\right\}$ regular?

Regularity of u

Regularity of u

$$
\begin{cases}\Delta u=0 & \text { in } \mathbb{R}^{n} \times(0, A), \\ u=u_{A} & \text { on }\{y=A\}, \\ \left|\partial_{y} u\right| \leq g^{\prime}\left(0^{+}\right) & \text {on }\{y=0\}, \\ \partial_{y} u=g^{\prime}(2|u|) \operatorname{sgn}(u) & \text { on } K_{u} .\end{cases}
$$

Regularity of u

$$
\begin{cases}\Delta u=0 & \text { in } \mathbb{R}^{n} \times(0, A), \\ u=u_{A} & \text { on }\{y=A\}, \\ \left|\partial_{y} u\right| \leq g^{\prime}\left(0^{+}\right) & \text {on }\{y=0\}, \\ \partial_{y} u=g^{\prime}(2|u|) \operatorname{sgn}(u) & \text { on } K_{u} .\end{cases}
$$

MAJOR PROBLEM:

Regularity of u

$$
\begin{cases}\Delta u=0 & \text { in } \mathbb{R}^{n} \times(0, A), \\ u=u_{A} & \text { on }\{y=A\}, \\ \left|\partial_{y} u\right| \leq g^{\prime}\left(0^{+}\right) & \text {on }\{y=0\}, \\ \partial_{y} u=g^{\prime}(2|u|) \operatorname{sgn}(u) & \text { on } K_{u} .\end{cases}
$$

MAJOR PROBLEM:

Suppose $\exists(\bar{x}, 0) \in \partial K_{u}$ where u changes sign

Regularity of u

$$
\begin{cases}\Delta u=0 & \text { in } \mathbb{R}^{n} \times(0, A), \\ u=u_{A} & \text { on }\{y=A\}, \\ \left|\partial_{y} u\right| \leq g^{\prime}\left(0^{+}\right) & \text {on }\{y=0\}, \\ \partial_{y} u=g^{\prime}(2|u|) \operatorname{sgn}(u) & \text { on } K_{u} .\end{cases}
$$

MAJOR PROBLEM:

Suppose $\exists(\bar{x}, 0) \in \partial K_{u}$ where u changes sign
\Downarrow
$\partial_{y} u$ discontinuous at $(\bar{x}, 0)$

Preliminary result on the crack set K_{u}

Preliminary result on the crack set K_{u}

Assumptions on BC

Preliminary result on the crack set K_{u}

Assumptions on BC
(A1) $u_{A} \in C^{2, \beta}\left(\mathbb{R}^{n}\right)$ for some $\beta \in(0,1)$

Preliminary result on the crack set K_{u}

Assumptions on BC
(A1) $u_{A} \in C^{2, \beta}\left(\mathbb{R}^{n}\right)$ for some $\beta \in(0,1)$
(A2) $\lim _{|x| \rightarrow \infty} u_{A}(x)=0$

Preliminary result on the crack set K_{u}

Assumptions on BC
(A1) $u_{A} \in C^{2, \beta}\left(\mathbb{R}^{n}\right)$ for some $\beta \in(0,1)$
(A2) $\lim _{|x| \rightarrow \infty} u_{A}(x)=0$
Preliminary result on the crack set K_{u} :

Preliminary result on the crack set K_{u}

Assumptions on BC
(A1) $u_{A} \in C^{2, \beta}\left(\mathbb{R}^{n}\right)$ for some $\beta \in(0,1)$
(A2) $\lim _{|x| \rightarrow \infty} u_{A}(x)=0$
Preliminary result on the crack set K_{u} :
Lemma (Caffarelli, C., Figalli)
Let $(g 1)-(g 5)$ and (A1)-(A2) be satisfied.

Preliminary result on the crack set K_{u}

Assumptions on BC
(A1) $u_{A} \in C^{2, \beta}\left(\mathbb{R}^{n}\right)$ for some $\beta \in(0,1)$
(A2) $\lim _{|x| \rightarrow \infty} u_{A}(x)=0$
Preliminary result on the crack set K_{u} :
Lemma (Caffarelli, C., Figalli)
Let $(g 1)-(g 5)$ and $(A 1)-(A 2)$ be satisfied. Then, K_{u} is compact.

Preliminary results on u

Preliminary results on u

Remark

From $u_{A} \in C^{2, \beta}\left(\mathbb{R}^{n}\right)$, we have

Preliminary results on u

Remark

From $u_{A} \in C^{2, \beta}\left(\mathbb{R}^{n}\right)$, we have

- u_{A} Lipschitz continuous (Lipschitz constant $L_{A}:=\left\|\nabla u_{A}\right\|_{L^{\infty}}$)

Preliminary results on u

Remark

From $u_{A} \in C^{2, \beta}\left(\mathbb{R}^{n}\right)$, we have

- u_{A} Lipschitz continuous (Lipschitz constant $L_{A}:=\left\|\nabla u_{A}\right\|_{L^{\infty}}$)
- u_{A} semiconvex (with some semiconvexity constant $D_{A}>0$):

Preliminary results on u

Remark

From $u_{A} \in C^{2, \beta}\left(\mathbb{R}^{n}\right)$, we have

- u_{A} Lipschitz continuous (Lipschitz constant $L_{A}:=\left\|\nabla u_{A}\right\|_{L^{\infty}}$)
- u_{A} semiconvex (with some semiconvexity constant $D_{A}>0$):

$$
u_{A}(x+h)+u_{A}(x-h)-2 u_{A}(x) \geq-D_{A}|h|^{2} \quad \forall x, h \in \mathbb{R}^{n}
$$

Preliminary results on u

Remark

From $u_{A} \in C^{2, \beta}\left(\mathbb{R}^{n}\right)$, we have

- u_{A} Lipschitz continuous (Lipschitz constant $L_{A}:=\left\|\nabla u_{A}\right\|_{L^{\infty}}$)
- u_{A} semiconvex (with some semiconvexity constant $D_{A}>0$):

$$
u_{A}(x+h)+u_{A}(x-h)-2 u_{A}(x) \geq-D_{A}|h|^{2} \quad \forall x, h \in \mathbb{R}^{n}
$$

- u_{A} semiconcave (with some semiconcavity constant $C_{A}>0$):

Preliminary results on u

Remark

From $u_{A} \in C^{2, \beta}\left(\mathbb{R}^{n}\right)$, we have

- u_{A} Lipschitz continuous (Lipschitz constant $L_{A}:=\left\|\nabla u_{A}\right\|_{L^{\infty}}$)
- u_{A} semiconvex (with some semiconvexity constant $D_{A}>0$):

$$
u_{A}(x+h)+u_{A}(x-h)-2 u_{A}(x) \geq-D_{A}|h|^{2} \quad \forall x, h \in \mathbb{R}^{n}
$$

- u_{A} semiconcave (with some semiconcavity constant $C_{A}>0$):

$$
u_{A}(x+h)+u_{A}(x-h)-2 u_{A}(x) \leq C_{A}|h|^{2} \quad \forall x, h \in \mathbb{R}^{n}
$$

Preliminary results on u

Preliminary results on u

Lemma (Caffarelli, C., Figalli)

Let $(g 1)-(g 5)$ and (A1)-(A2) be satisfied.

Preliminary results on u

Lemma (Caffarelli, C., Figalli)

Let $(g 1)-(g 5)$ and (A1)-(A2) be satisfied. In addition, assume (g6).

Preliminary results on u

Lemma (Caffarelli, C., Figalli)

Let $(g 1)-(g 5)$ and (A1)-(A2) be satisfied. In addition, assume (g6). Then, for every $y \in[0, A]$,

Preliminary results on u

Lemma (Caffarelli, C., Figalli)

Let $(g 1)-(g 5)$ and $(A 1)-(A 2)$ be satisfied. In addition, assume $(g 6)$. Then, for every $y \in[0, A]$, the function $u(\cdot, y)$ is Lipschitz continuous,

Preliminary results on u

Lemma (Caffarelli, C., Figalli)

Let $(g 1)-(g 5)$ and $(A 1)-(A 2)$ be satisfied. In addition, assume $(g 6)$. Then, for every $y \in[0, A]$, the function $u(\cdot, y)$ is Lipschitz continuous, with Lipschitz constant

$$
L:=\frac{L_{A}}{1-2 A\left\|g^{\prime \prime}\right\|_{L^{\infty}}}
$$

Preliminary results on u

Lemma (Caffarelli, C., Figalli)

Let $(g 1)-(g 5)$ and $(A 1)-(A 2)$ be satisfied. In addition, assume $(g 6)$. Then, for every $y \in[0, A]$, the function $u(\cdot, y)$ is Lipschitz continuous, with Lipschitz constant

$$
L:=\frac{L_{A}}{1-2 A\left\|g^{\prime \prime}\right\|_{L^{\infty}}}
$$

Remark

We need

Preliminary results on u

Lemma (Caffarelli, C., Figalli)

Let $(g 1)-(g 5)$ and $(A 1)-(A 2)$ be satisfied. In addition, assume $(g 6)$. Then, for every $y \in[0, A]$, the function $u(\cdot, y)$ is Lipschitz continuous, with Lipschitz constant

$$
L:=\frac{L_{A}}{1-2 A\left\|g^{\prime \prime}\right\|_{L^{\infty}}}
$$

Remark

We need
(g6) $\left\|g^{\prime \prime}\right\|_{L^{\infty}}<\frac{1}{2 A}$

An example from fracture evolution

An example from fracture evolution

$$
\underbrace{-\frac{R}{2}} g(s)=\left\{\begin{array}{ll}
s-\frac{s^{2}}{2 R} & 0 \leq s \leq R \\
\frac{R}{2} & s>R
\end{array}\right\}
$$

An example from fracture evolution

Example from C., Math. Models Methods Appl. Sci. (2008)

An example from fracture evolution

An example from fracture evolution

An example from fracture evolution

3 Solutions of the Euler equation:

An example from fracture evolution

3 Solutions of the Euler equation:

$$
u_{1}(t):=\frac{t}{A} y
$$

An example from fracture evolution

3 Solutions of the Euler equation:

$$
\begin{gathered}
u_{1}(t):=\frac{t}{A} y \\
u_{2}(t):=\frac{1}{R-2 A} \begin{cases}(R-2 t) y+R(t-A) & y>0 \\
(R-2 t) y-R(t-A) & y<0\end{cases}
\end{gathered}
$$

An example from fracture evolution

3 Solutions of the Euler equation:

$$
\begin{gathered}
u_{1}(t):=\frac{t}{A} y \\
u_{2}(t):=\frac{1}{R-2 A} \begin{cases}(R-2 t) y+R(t-A) & y>0 \\
(R-2 t) y-R(t-A) & y<0\end{cases} \\
u_{3}(t):= \begin{cases}t & y>0 \\
-t & y<0\end{cases}
\end{gathered}
$$

Energy graph for $A>R / 2$

Energy graph for $A>R / 2$

Energy graph for $A<R / 2$

Energy graph for $A<R / 2$

Uniqueness

Lemma
Let $(g 1)-(g 5)$ and $(A 1)-(A 2)$ be satisfied.

Uniqueness

Lemma

Let $(g 1)-(g 5)$ and (A1)-(A2) be satisfied. Suppose, in addition, that

$$
2\left\|g^{\prime \prime}\right\|_{L^{\infty}}<\frac{1}{A}
$$

Uniqueness

Lemma

Let (g1)-(g5) and (A1)-(A2) be satisfied. Suppose, in addition, that

$$
2\left\|g^{\prime \prime}\right\|_{L^{\infty}}<\frac{1}{A}
$$

Then, there exists a unique solution u.

Uniqueness

Lemma

Let (g1)-(g5) and (A1)-(A2) be satisfied. Suppose, in addition, that

$$
2\left\|g^{\prime \prime}\right\|_{L^{\infty}}<\frac{1}{A}
$$

Then, there exists a unique solution u. In particular, there is a unique critical point of the energy, that coincides with the global minimizer.

Preliminary results on u

Preliminary results on u

NOTATION:

Preliminary results on u

NOTATION: For $a \in \mathbb{R}$ we write $a=a^{+}+a^{-}$

Preliminary results on u

NOTATION: For $a \in \mathbb{R}$ we write $a=a^{+}+a^{-}$, where

$$
a^{+}:=\max \{a, 0\} \quad \text { and } \quad a^{-}:=\min \{a, 0\}
$$

Preliminary results on u

NOTATION: For $a \in \mathbb{R}$ we write $a=a^{+}+a^{-}$, where

$$
a^{+}:=\max \{a, 0\} \quad \text { and } \quad a^{-}:=\min \{a, 0\}
$$

Lemma (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and (A1)-(A2) be satisfied.

Preliminary results on u

NOTATION: For $a \in \mathbb{R}$ we write $a=a^{+}+a^{-}$, where

$$
a^{+}:=\max \{a, 0\} \quad \text { and } \quad a^{-}:=\min \{a, 0\}
$$

Lemma (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and (A1)-(A2) be satisfied. Then,

Preliminary results on u

NOTATION: For $a \in \mathbb{R}$ we write $a=a^{+}+a^{-}$, where

$$
a^{+}:=\max \{a, 0\} \quad \text { and } \quad a^{-}:=\min \{a, 0\}
$$

Lemma (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and (A1)-(A2) be satisfied. Then,

$$
\left[u(x+h, y)+u(x-h, y)+\bar{D}|h|^{2}\right]^{+} \geq 2 u^{+}(x, y)
$$

for every $x, h \in \mathbb{R}^{n}$ and $y \in[0, A]$,

Preliminary results on u

NOTATION: For $a \in \mathbb{R}$ we write $a=a^{+}+a^{-}$, where

$$
a^{+}:=\max \{a, 0\} \quad \text { and } \quad a^{-}:=\min \{a, 0\}
$$

Lemma (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and (A1)-(A2) be satisfied. Then,

$$
\left[u(x+h, y)+u(x-h, y)+\bar{D}|h|^{2}\right]^{+} \geq 2 u^{+}(x, y)
$$

for every $x, h \in \mathbb{R}^{n}$ and $y \in[0, A]$, where

$$
\bar{D}:=\frac{1}{1-2 A\left\|g^{\prime \prime}\right\|_{L^{\infty}}}\left[D_{A}+\frac{4 A L_{A}^{2}\left\|g^{\prime \prime \prime}\right\|_{L^{\infty}}}{\left(1-2 A\left\|g^{\prime \prime}\right\|_{L^{\infty}}\right)^{2}}\right]
$$

Preliminary results on u

NOTATION: For $a \in \mathbb{R}$ we write $a=a^{+}+a^{-}$, where

$$
a^{+}:=\max \{a, 0\} \quad \text { and } \quad a^{-}:=\min \{a, 0\}
$$

Lemma (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and (A1)-(A2) be satisfied. Then,

$$
\left[u(x+h, y)+u(x-h, y)+\bar{D}|h|^{2}\right]^{+} \geq 2 u^{+}(x, y)
$$

for every $x, h \in \mathbb{R}^{n}$ and $y \in[0, A]$, where

$$
\bar{D}:=\frac{1}{1-2 A\left\|g^{\prime \prime}\right\|_{L^{\infty}}}\left[D_{A}+\frac{4 A L_{A}^{2}\left\|g^{\prime \prime \prime}\right\|_{L^{\infty}}}{\left(1-2 A\left\|g^{\prime \prime}\right\|_{L^{\infty}}\right)^{2}}\right] .
$$

In particular, for every $y \in[0, A]$

Preliminary results on u

NOTATION: For $a \in \mathbb{R}$ we write $a=a^{+}+a^{-}$, where

$$
a^{+}:=\max \{a, 0\} \quad \text { and } \quad a^{-}:=\min \{a, 0\}
$$

Lemma (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and (A1)-(A2) be satisfied. Then,

$$
\left[u(x+h, y)+u(x-h, y)+\bar{D}|h|^{2}\right]^{+} \geq 2 u^{+}(x, y)
$$

for every $x, h \in \mathbb{R}^{n}$ and $y \in[0, A]$, where

$$
\bar{D}:=\frac{1}{1-2 A\left\|g^{\prime \prime}\right\|_{L^{\infty}}}\left[D_{A}+\frac{4 A L_{A}^{2}\left\|g^{\prime \prime \prime}\right\|_{L^{\infty}}}{\left(1-2 A\left\|g^{\prime \prime}\right\|_{L^{\infty}}\right)^{2}}\right] .
$$

In particular, for every $y \in[0, A]$

$$
u^{+}(\cdot, y) \text { is semiconvex. }
$$

Preliminary results on u

Lemma (Caffarelli, C., Figalli)
Let $(g 1)-(g 6)$ and $(A 1)-(A 2)$ be satisfied.

Preliminary results on u

Lemma (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and $(A 1)-(A 2)$ be satisfied. Then,

$$
\left[u(x+h, y)+u(x-h, y)-\bar{C}|h|^{2}\right]^{-} \leq 2 u^{-}(x, y)
$$

for every $x, h \in \mathbb{R}^{n}$ and $y \in[0, A]$, where

$$
\bar{C}:=\frac{1}{1-2 A\left\|g^{\prime \prime}\right\|_{L^{\infty}}}\left[C_{A}+\frac{4 A L_{A}^{2}\left\|g^{\prime \prime \prime}\right\|_{L^{\infty}}}{\left(1-2 A\left\|g^{\prime \prime}\right\|_{L^{\infty}}\right)^{2}}\right] .
$$

Preliminary results on u

Lemma (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and ($A 1)-(A 2)$ be satisfied. Then,

$$
\left[u(x+h, y)+u(x-h, y)-\bar{C}|h|^{2}\right]^{-} \leq 2 u^{-}(x, y)
$$

for every $x, h \in \mathbb{R}^{n}$ and $y \in[0, A]$, where

$$
\bar{C}:=\frac{1}{1-2 A\left\|g^{\prime \prime}\right\|_{L^{\infty}}}\left[C_{A}+\frac{4 A L_{A}^{2}\left\|g^{\prime \prime \prime}\right\|_{L^{\infty}}}{\left(1-2 A\left\|g^{\prime \prime}\right\|_{L^{\infty}}\right)^{2}}\right] .
$$

In particular, for every $y \in[0, A]$

Preliminary results on u

Lemma (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and ($A 1)-(A 2)$ be satisfied. Then,

$$
\left[u(x+h, y)+u(x-h, y)-\bar{C}|h|^{2}\right]^{-} \leq 2 u^{-}(x, y)
$$

for every $x, h \in \mathbb{R}^{n}$ and $y \in[0, A]$, where

$$
\bar{C}:=\frac{1}{1-2 A\left\|g^{\prime \prime}\right\|_{L^{\infty}}}\left[C_{A}+\frac{4 A L_{A}^{2}\left\|g^{\prime \prime \prime}\right\|_{L^{\infty}}}{\left(1-2 A\left\|g^{\prime \prime}\right\|_{L^{\infty}}\right)^{2}}\right] .
$$

In particular, for every $y \in[0, A]$

$$
u^{-}(\cdot, y) \text { is semiconcave. }
$$

Preliminary results on u

Remark (u^{+}and u^{-}are "connected")

Preliminary results on u

Remark (u^{+}and u^{-}are "connected")

Combining the previous two results

$$
\left[u(x+h, y)+u(x-h, y)+\bar{D}|h|^{2}\right]^{+} \geq 2 u^{+}(x, y) \geq 2 u(x, y)
$$

Preliminary results on u

Remark (u^{+}and u^{-}are "connected")

Combining the previous two results

$$
\begin{aligned}
& {\left[u(x+h, y)+u(x-h, y)+\bar{D}|h|^{2}\right]^{+} \geq 2 u^{+}(x, y) \geq 2 u(x, y)} \\
& \quad \geq 2 u^{-}(x, y)
\end{aligned}
$$

Preliminary results on u

Remark (u^{+}and u^{-}are "connected")

Combining the previous two results

$$
\begin{gathered}
{\left[u(x+h, y)+u(x-h, y)+\bar{D}|h|^{2}\right]^{+} \geq 2 u^{+}(x, y) \geq 2 u(x, y)} \\
\geq 2 u^{-}(x, y) \geq\left[u(x+h, y)+u(x-h, y)-\bar{C}|h|^{2}\right]^{-}
\end{gathered}
$$

for every $(x, y) \in \mathbb{R}^{n} \times[0, A]$, and $h \in \mathbb{R}^{n}$.

Optimal Regularity of u : Phases separation

Optimal Regularity of u : Phases separation

In the following: $\quad(0,0) \in \partial K_{u}$

Optimal Regularity of u : Phases separation

In the following: $\quad(0,0) \in \partial K_{u}$
NOTATION: for $r>0$

$$
B_{r}:=\left\{z \in \mathbb{R}^{n+1}:|z|<r\right\}
$$

Optimal Regularity of u : Phases separation

In the following: $\quad(0,0) \in \partial K_{u}$
NOTATION: for $r>0$

$$
B_{r}:=\left\{z \in \mathbb{R}^{n+1}:|z|<r\right\} \quad \text { and } \quad B_{r}^{n}:=B_{r} \cap\{y=0\}
$$

Optimal Regularity of u : Phases separation

In the following: $\quad(0,0) \in \partial K_{u}$
NOTATION: for $r>0$

$$
B_{r}:=\left\{z \in \mathbb{R}^{n+1}:|z|<r\right\} \quad \text { and } \quad B_{r}^{n}:=B_{r} \cap\{y=0\}
$$

Proposition (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and $(A 1)-(A 2)$ be satisfied.

Optimal Regularity of u : Phases separation

In the following: $\quad(0,0) \in \partial K_{u}$
NOTATION: for $r>0$

$$
B_{r}:=\left\{z \in \mathbb{R}^{n+1}:|z|<r\right\} \quad \text { and } \quad B_{r}^{n}:=B_{r} \cap\{y=0\}
$$

Proposition (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and (A1)-(A2) be satisfied. Then $\exists r_{0}>0$

Optimal Regularity of u : Phases separation

In the following: $\quad(0,0) \in \partial K_{u}$
NOTATION: for $r>0$

$$
B_{r}:=\left\{z \in \mathbb{R}^{n+1}:|z|<r\right\} \quad \text { and } \quad B_{r}^{n}:=B_{r} \cap\{y=0\}
$$

Proposition (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and (A1)-(A2) be satisfied. Then $\exists r_{0}>0$ such that

$$
B_{r_{0}}^{n} \cap\left\{x^{\prime} \in \mathbb{R}^{n}: u\left(x^{\prime}, 0\right)>0\right\} \cap\left\{x^{\prime} \in \mathbb{R}^{n}: u\left(x^{\prime}, 0\right)<0\right\}=\emptyset .
$$

Sketch of the proof

Suppose, by contradiction, that

$$
B_{r}^{n} \cap\{u(\cdot, 0)>0\} \cap\{u(\cdot, 0)<0\} \neq \emptyset \quad \text { for every } r>0
$$

Sketch of the proof

Suppose, by contradiction, that

$$
B_{r}^{n} \cap\{u(\cdot, 0)>0\} \cap\{u(\cdot, 0)<0\} \neq \emptyset \quad \text { for every } r>0
$$

Step 1: Show that $u(\cdot, 0)$ is differentiable at $x=0$ with $\nabla_{x} u(0,0)=0$

Sketch of the proof

Suppose, by contradiction, that

$$
B_{r}^{n} \cap\{u(\cdot, 0)>0\} \cap\{u(\cdot, 0)<0\} \neq \emptyset \quad \text { for every } r>0
$$

Step 1: Show that $u(\cdot, 0)$ is differentiable at $x=0$ with $\nabla_{x} u(0,0)=0$

- Note: $u^{+}(\cdot, 0)$ semiconvex with $0 \in \partial_{x}^{-} u^{+}(0,0)$

Sketch of the proof

Suppose, by contradiction, that

$$
B_{r}^{n} \cap\{u(\cdot, 0)>0\} \cap\{u(\cdot, 0)<0\} \neq \emptyset \quad \text { for every } r>0
$$

Step 1: Show that $u(\cdot, 0)$ is differentiable at $x=0$ with $\nabla_{x} u(0,0)=0$

- Note: $u^{+}(\cdot, 0)$ semiconvex with $0 \in \partial_{x}^{-} u^{+}(0,0)$
- Note: $u^{-}(\cdot, 0)$ semiconcave with $0 \in \partial_{x}^{+} u^{-}(0,0)$

Sketch of the proof

Suppose, by contradiction, that

$$
B_{r}^{n} \cap\{u(\cdot, 0)>0\} \cap\{u(\cdot, 0)<0\} \neq \emptyset \quad \text { for every } r>0
$$

Step 1: Show that $u(\cdot, 0)$ is differentiable at $x=0$ with $\nabla_{x} u(0,0)=0$

- Note: $u^{+}(\cdot, 0)$ semiconvex with $0 \in \partial_{x}^{-} u^{+}(0,0)$
- Note: $u^{-}(\cdot, 0)$ semiconcave with $0 \in \partial_{x}^{+} u^{-}(0,0)$
- Suppose $u(\cdot, 0)$ not differentiable at $x=0$.

Sketch of the proof

Suppose, by contradiction, that

$$
B_{r}^{n} \cap\{u(\cdot, 0)>0\} \cap\{u(\cdot, 0)<0\} \neq \emptyset \quad \text { for every } r>0
$$

Step 1: Show that $u(\cdot, 0)$ is differentiable at $x=0$ with $\nabla_{x} u(0,0)=0$

- Note: $u^{+}(\cdot, 0)$ semiconvex with $0 \in \partial_{x}^{-} u^{+}(0,0)$
- Note: $u^{-}(\cdot, 0)$ semiconcave with $0 \in \partial_{x}^{+} u^{-}(0,0)$
- Suppose $u(\cdot, 0)$ not differentiable at $x=0$.
- Then, either $\partial_{x}^{-} u^{+}(0,0) \neq\{0\}$ or $\partial_{x}^{+} u^{-}(0,0) \neq\{0\}$

Sketch of the proof

Suppose, by contradiction, that

$$
B_{r}^{n} \cap\{u(\cdot, 0)>0\} \cap\{u(\cdot, 0)<0\} \neq \emptyset \quad \text { for every } r>0
$$

Step 1: Show that $u(\cdot, 0)$ is differentiable at $x=0$ with $\nabla_{x} u(0,0)=0$

- Note: $u^{+}(\cdot, 0)$ semiconvex with $0 \in \partial_{x}^{-} u^{+}(0,0)$
- Note: $u^{-}(\cdot, 0)$ semiconcave with $0 \in \partial_{x}^{+} u^{-}(0,0)$
- Suppose $u(\cdot, 0)$ not differentiable at $x=0$.
- Then, either $\partial_{x}^{-} u^{+}(0,0) \neq\{0\}$ or $\partial_{x}^{+} u^{-}(0,0) \neq\{0\}$
- Say $\partial_{x}^{-} u^{+}(0,0) \neq\{0\}$

Sketch of the proof

Suppose, by contradiction, that

$$
B_{r}^{n} \cap\{u(\cdot, 0)>0\} \cap\{u(\cdot, 0)<0\} \neq \emptyset \quad \text { for every } r>0
$$

Step 1: Show that $u(\cdot, 0)$ is differentiable at $x=0$ with $\nabla_{x} u(0,0)=0$

- Note: $u^{+}(\cdot, 0)$ semiconvex with $0 \in \partial_{x}^{-} u^{+}(0,0)$
- Note: $u^{-}(\cdot, 0)$ semiconcave with $0 \in \partial_{x}^{+} u^{-}(0,0)$
- Suppose $u(\cdot, 0)$ not differentiable at $x=0$.
- Then, either $\partial_{x}^{-} u^{+}(0,0) \neq\{0\}$ or $\partial_{x}^{+} u^{-}(0,0) \neq\{0\}$
- Say $\partial_{x}^{-} u^{+}(0,0) \neq\{0\}$
- $u^{+}(\cdot, 0)$ and $u^{-}(\cdot, 0)$ are "connected" $\Rightarrow \partial_{x}^{+} u^{-}(0,0) \neq\{0\}$

Sketch of the proof

Suppose, by contradiction, that

$$
B_{r}^{n} \cap\{u(\cdot, 0)>0\} \cap\{u(\cdot, 0)<0\} \neq \emptyset \quad \text { for every } r>0
$$

Step 1: Show that $u(\cdot, 0)$ is differentiable at $x=0$ with $\nabla_{x} u(0,0)=0$

- Note: $u^{+}(\cdot, 0)$ semiconvex with $0 \in \partial_{x}^{-} u^{+}(0,0)$
- Note: $u^{-}(\cdot, 0)$ semiconcave with $0 \in \partial_{x}^{+} u^{-}(0,0)$
- Suppose $u(\cdot, 0)$ not differentiable at $x=0$.
- Then, either $\partial_{x}^{-} u^{+}(0,0) \neq\{0\}$ or $\partial_{x}^{+} u^{-}(0,0) \neq\{0\}$
- Say $\partial_{x}^{-} u^{+}(0,0) \neq\{0\}$
- $u^{+}(\cdot, 0)$ and $u^{-}(\cdot, 0)$ are "connected" $\Rightarrow \partial_{x}^{+} u^{-}(0,0) \neq\{0\}$
- Then, if $x \in\{u<0\}$ and $x \rightarrow 0$ we have $\left|\nabla_{x} u(x, 0)\right| \rightarrow \infty$

Sketch of the proof

Step 2:

Sketch of the proof

Step 2: By Step 1,

$$
|u(x, 0)| \leq \sigma(|x|)|x| \quad \text { for some modulus of continuity } \sigma
$$

Sketch of the proof

Step 2: By Step 1,

$$
|u(x, 0)| \leq \sigma(|x|)|x| \quad \text { for some modulus of continuity } \sigma
$$

- We can construct suitable barriers

Sketch of the proof

Step 2: By Step 1,

$$
|u(x, 0)| \leq \sigma(|x|)|x| \quad \text { for some modulus of continuity } \sigma
$$

- We can construct suitable barriers \Longrightarrow contradiction

Optimal Regularity of u

Optimal Regularity of u

Regularity of u near ∂K_{u} ?

Optimal Regularity of u

Regularity of u near ∂K_{u} ?
In the following:

- $(0,0) \in \partial K_{u}$

Optimal Regularity of u

Regularity of u near ∂K_{u} ?
In the following:

- $(0,0) \in \partial K_{u}$
- $u(x, 0) \geq 0$ for every $x \in B_{r_{0}}^{n}$

Optimal Regularity of u

Regularity of u near ∂K_{u} ?
In the following:

- $(0,0) \in \partial K_{u}$
- $u(x, 0) \geq 0$ for every $x \in B_{r_{0}}^{n}$

Define $v: \mathbb{R}^{n} \times[-A, A] \rightarrow \mathbb{R}$ as

Optimal Regularity of u

Regularity of u near ∂K_{u} ?
In the following:

- $(0,0) \in \partial K_{u}$
- $u(x, 0) \geq 0$ for every $x \in B_{r_{0}}^{n}$

Define $v: \mathbb{R}^{n} \times[-A, A] \rightarrow \mathbb{R}$ as

$$
v(x, y):= \begin{cases}u(x, y)-g^{\prime}\left(0^{+}\right) y \quad \text { for every }(x, y) \in \mathbb{R}^{n} \times(0, A),\end{cases}
$$

Optimal Regularity of u

Regularity of u near ∂K_{u} ?
In the following:

- $(0,0) \in \partial K_{u}$
- $u(x, 0) \geq 0$ for every $x \in B_{r_{0}}^{n}$

Define $v: \mathbb{R}^{n} \times[-A, A] \rightarrow \mathbb{R}$ as

$$
v(x, y):= \begin{cases}u(x, y)-g^{\prime}\left(0^{+}\right) y & \text { for every }(x, y) \in \mathbb{R}^{n} \times(0, A), \\ v(x,-y) & \text { for every }(x, y) \in \mathbb{R}^{n} \times(-A, 0) .\end{cases}
$$

Optimal Regularity of u

Then, v solves

Optimal Regularity of u

Then, v solves

$$
\left\{\begin{array}{l|l|l|l}
\Delta v=0 & & & \text { in } B_{r_{0}} \backslash\{y=0\} \\
\hline & & & \\
\hline
\end{array}\right.
$$

Optimal Regularity of u

Then, v solves

$$
\left\{\begin{array}{l|l}
\Delta v=0 & \\
v \geq 0 & \\
\text { in } B_{r_{0}} \backslash\{y=0\} \\
v \geq 0 & \text { on } B_{r_{0}}^{n} \\
\partial_{y} v \leq 0 & \\
& \text { on } B_{r_{0}}^{n}
\end{array}\right.
$$

Optimal Regularity of u

Then, v solves

$$
\begin{cases}\Delta v=0 & \text { in } B_{r_{0}} \backslash\{y=0\} \\ v \geq 0 & \text { on } B_{r_{0}}^{n} \\ \partial_{y} v \leq 0 & \text { on } B_{r_{0}}^{n} \\ v\left[\partial_{y} v+g^{\prime}\left(0^{+}\right)-g^{\prime}(2 v)\right]=0 & \text { on } B_{r_{0}}^{n}\end{cases}
$$

Optimal Regularity of u

Then, v solves

$$
\begin{cases}\Delta v=0 & \text { in } B_{r_{0}} \backslash\{y=0\} \\ v \geq 0 & \text { on } B_{r_{0}}^{n} \\ \partial_{y} v \leq 0 & \text { on } B_{r_{0}}^{n} \\ v\left[\partial_{y} v+g^{\prime}\left(0^{+}\right)-g^{\prime}(2 v)\right]=0 & \text { on } B_{r_{0}}^{n}\end{cases}
$$

NOTE:

Optimal Regularity of u

Then, v solves

$$
\begin{cases}\Delta v=0 & \text { in } B_{r_{0}} \backslash\{y=0\} \\ v \geq 0 & \text { on } B_{r_{0}}^{n} \\ \partial_{y} v \leq 0 & \text { on } B_{r_{0}}^{n} \\ v\left[\partial_{y} v+g^{\prime}\left(0^{+}\right)-g^{\prime}(2 v)\right]=0 & \text { on } B_{r_{0}}^{n}\end{cases}
$$

NOTE: this is a "perturbation" of Signorini Problem:

$$
\begin{cases}\Delta v=0 & \text { in } B_{r_{0}} \backslash\{y=0\} \\ v \geq 0 & \text { on } B_{r_{0}}^{n} \\ \partial_{y} v \leq 0 & \text { on } B_{r_{0}}^{n} \\ v \partial_{y} v=0 & \text { on } B_{r_{0}}^{n}\end{cases}
$$

Optimal Regularity of u

We can now adapt the arguments of

Optimal Regularity of u

We can now adapt the arguments of

- Athanasopoulos-Caffarelli (2004) Signorini problem
- Caffarelli-Figalli (2013) parabolic fractional obstacle problem

Optimal Regularity of u

We can now adapt the arguments of

- Athanasopoulos-Caffarelli (2004) Signorini problem
- Caffarelli-Figalli (2013) parabolic fractional obstacle problem

Theorem (Caffarelli, C., Figalli)
Let $(g 1)-(g 6)$ and $(A 1)-(A 2)$ be satisfied.

Optimal Regularity of u

We can now adapt the arguments of

- Athanasopoulos-Caffarelli (2004) Signorini problem
- Caffarelli-Figalli (2013) parabolic fractional obstacle problem

Theorem (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and (A1)-(A2) be satisfied. Then,

$$
u \in C^{1,1 / 2}\left(\mathbb{R}^{n} \times[0, A]\right)
$$

Free Boundary Regularity

Free Boundary Regularity

Regularity properties of ∂K_{u} ?

Free Boundary Regularity

Regularity properties of ∂K_{u} ?

Proposition (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and (A1)-(A2) be satisfied.

Free Boundary Regularity

Regularity properties of ∂K_{u} ?

Proposition (Caffarelli, C., Figalli)

Let (g1)-(g6) and (A1)-(A2) be satisfied. Assume that
$(0,0)$ belongs to the "regular part" of ∂K_{u}.

Free Boundary Regularity

Regularity properties of ∂K_{u} ?

Proposition (Caffarelli, C., Figalli)

Let (g1)-(g6) and (A1)-(A2) be satisfied. Assume that
$(0,0)$ belongs to the "regular part" of ∂K_{u}.
Then the free boundary is $C^{1, \alpha}$ near $(0,0)$

Free Boundary Regularity

Regularity properties of ∂K_{u} ?

Proposition (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and (A1)-(A2) be satisfied. Assume that
$(0,0)$ belongs to the "regular part" of ∂K_{u}.
Then the free boundary is $C^{1, \alpha}$ near $(0,0)$, for some $\alpha \in(0,1)$.

THANK YOU!

Free Boundary Regularity

Free Boundary Regularity

Regularity properties of ∂K_{u} ?

Free Boundary Regularity

Regularity properties of ∂K_{u} ?
In the following:

Free Boundary Regularity

Regularity properties of ∂K_{u} ?
In the following:

- $(0,0) \in \partial K_{u}$
- $u(x, 0) \geq 0$ for every $x \in B_{r_{0}}^{n}$

Free Boundary Regularity

Regularity properties of ∂K_{u} ?
In the following:

- $(0,0) \in \partial K_{u}$
- $u(x, 0) \geq 0$ for every $x \in B_{r_{0}}^{n}$

Recall: $v: \mathbb{R}^{n} \times[-A, A] \rightarrow \mathbb{R}$ defined as

Free Boundary Regularity

Regularity properties of ∂K_{u} ?
In the following:

- $(0,0) \in \partial K_{u}$
- $u(x, 0) \geq 0$ for every $x \in B_{r_{0}}^{n}$

Recall: $v: \mathbb{R}^{n} \times[-A, A] \rightarrow \mathbb{R}$ defined as

$$
v(x, y):= \begin{cases}u(x, y)-g^{\prime}\left(0^{+}\right) y & \text { for every }(x, y) \in \mathbb{R}^{n} \times(0, A), \\ v(x,-y) & \text { for every }(x, y) \in \mathbb{R}^{n} \times(-A, 0) .\end{cases}
$$

Free Boundary Regularity

(Variant of) Almgren's Monotonicity Formula:

Free Boundary Regularity

(Variant of) Almgren's Monotonicity Formula:

$$
\Phi_{v}(r):=r \frac{d}{d r} \log \left(\max \left\{F_{v}(r), r^{n+4}\right\}\right)
$$

Free Boundary Regularity

(Variant of) Almgren's Monotonicity Formula:

$$
\Phi_{v}(r):=r \frac{d}{d r} \log \left(\max \left\{F_{v}(r), r^{n+4}\right\}\right) \quad \text { where } \quad F_{v}(r):=\int_{\partial B_{r}} v^{2} d \mathcal{H}^{n}
$$

Free Boundary Regularity

(Variant of) Almgren's Monotonicity Formula:

$$
\Phi_{v}(r):=r \frac{d}{d r} \log \left(\max \left\{F_{v}(r), r^{n+4}\right\}\right) \quad \text { where } \quad F_{v}(r):=\int_{\partial B_{r}} v^{2} d \mathcal{H}^{n} .
$$

- Inspired by Caffarelli-Salsa-Silvestre, Invent. Math. (2008)

Free Boundary Regularity

(Variant of) Almgren's Monotonicity Formula:

$$
\Phi_{v}(r):=r \frac{d}{d r} \log \left(\max \left\{F_{v}(r), r^{n+4}\right\}\right) \quad \text { where } \quad F_{v}(r):=\int_{\partial B_{r}} v^{2} d \mathcal{H}^{n}
$$

- Inspired by Caffarelli-Salsa-Silvestre, Invent. Math. (2008)

Proposition (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and $(A 1)-(A 2)$ be satisfied.

Free Boundary Regularity

(Variant of) Almgren's Monotonicity Formula:

$$
\Phi_{v}(r):=r \frac{d}{d r} \log \left(\max \left\{F_{v}(r), r^{n+4}\right\}\right) \quad \text { where } \quad F_{v}(r):=\int_{\partial B_{r}} v^{2} d \mathcal{H}^{n}
$$

- Inspired by Caffarelli-Salsa-Silvestre, Invent. Math. (2008)

Proposition (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and $(A 1)-(A 2)$ be satisfied. Then $\exists \bar{r}_{0}, C>0$ such that

$$
r \longmapsto \Phi_{v}(r) e^{C r} \quad \text { is monotone nondecreasing in }\left(0, \bar{r}_{0}\right) .
$$

Free Boundary Regularity

(Variant of) Almgren's Monotonicity Formula:

$$
\Phi_{v}(r):=r \frac{d}{d r} \log \left(\max \left\{F_{v}(r), r^{n+4}\right\}\right) \quad \text { where } \quad F_{v}(r):=\int_{\partial B_{r}} v^{2} d \mathcal{H}^{n}
$$

- Inspired by Caffarelli-Salsa-Silvestre, Invent. Math. (2008)

Proposition (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and $(A 1)-(A 2)$ be satisfied. Then $\exists \bar{r}_{0}, C>0$ such that

$$
r \longmapsto \Phi_{v}(r) e^{C r} \quad \text { is monotone nondecreasing in }\left(0, \bar{r}_{0}\right) .
$$

In particular,

Free Boundary Regularity

(Variant of) Almgren's Monotonicity Formula:

$$
\Phi_{v}(r):=r \frac{d}{d r} \log \left(\max \left\{F_{v}(r), r^{n+4}\right\}\right) \quad \text { where } \quad F_{v}(r):=\int_{\partial B_{r}} v^{2} d \mathcal{H}^{n}
$$

- Inspired by Caffarelli-Salsa-Silvestre, Invent. Math. (2008)

Proposition (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and $(A 1)-(A 2)$ be satisfied. Then $\exists \bar{r}_{0}, C>0$ such that

$$
r \longmapsto \Phi_{v}(r) e^{C r} \quad \text { is monotone nondecreasing in }\left(0, \bar{r}_{0}\right) .
$$

In particular, there exists

$$
\Phi_{v}\left(0^{+}\right)=\lim _{r \rightarrow 0^{+}} \Phi_{v}(r)
$$

Free Boundary Regularity: Blow up

Free Boundary Regularity: Blow up

Proposition (Caffarelli, C., Figalli)
Let (g1)-(g6) and (A1)-(A2) be satisfied.

Free Boundary Regularity: Blow up

Proposition (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and (A1)-(A2) be satisfied. Then

$$
\text { either } \quad \Phi_{v}\left(0^{+}\right)=n+3
$$

Free Boundary Regularity: Blow up

Proposition (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and (A1)-(A2) be satisfied. Then

$$
\text { either } \quad \Phi_{v}\left(0^{+}\right)=n+3 \quad \text { or } \quad \Phi_{v}\left(0^{+}\right) \geq n+4 .
$$

Free Boundary Regularity: Blow up

Proposition (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and (A1)-(A2) be satisfied. Then

$$
\text { either } \quad \Phi_{v}\left(0^{+}\right)=n+3 \quad \text { or } \quad \Phi_{v}\left(0^{+}\right) \geq n+4 .
$$

Blow up profiles:

Free Boundary Regularity: Blow up

Proposition (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and $(A 1)-(A 2)$ be satisfied. Then

$$
\text { either } \quad \Phi_{v}\left(0^{+}\right)=n+3 \quad \text { or } \quad \Phi_{v}\left(0^{+}\right) \geq n+4 .
$$

Blow up profiles:
For $r \in\left(0, \bar{r}_{0}\right)$ define $v_{r}: B_{1} \rightarrow \mathbb{R}$ as

Free Boundary Regularity: Blow up

Proposition (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and $(A 1)-(A 2)$ be satisfied. Then

$$
\text { either } \quad \Phi_{v}\left(0^{+}\right)=n+3 \quad \text { or } \quad \Phi_{v}\left(0^{+}\right) \geq n+4 .
$$

Blow up profiles:
For $r \in\left(0, \bar{r}_{0}\right)$ define $v_{r}: B_{1} \rightarrow \mathbb{R}$ as

$$
v_{r}(z):=\frac{v(r z)}{d_{r}}
$$

Free Boundary Regularity: Blow up

Proposition (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and (A1)-(A2) be satisfied. Then

$$
\text { either } \Phi_{v}\left(0^{+}\right)=n+3 \quad \text { or } \quad \Phi_{v}\left(0^{+}\right) \geq n+4 .
$$

Blow up profiles:
For $r \in\left(0, \bar{r}_{0}\right)$ define $v_{r}: B_{1} \rightarrow \mathbb{R}$ as

$$
v_{r}(z):=\frac{v(r z)}{d_{r}}, \quad \quad d_{r}:=\left(\frac{F_{v}(r)}{r^{n}}\right)^{1 / 2} .
$$

Free Boundary Regularity: Blow up

Proposition (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and $(A 1)-(A 2)$ be satisfied. Then

$$
\text { either } \quad \Phi_{v}\left(0^{+}\right)=n+3 \quad \text { or } \quad \Phi_{v}\left(0^{+}\right) \geq n+4 .
$$

Blow up profiles:
For $r \in\left(0, \bar{r}_{0}\right)$ define $v_{r}: B_{1} \rightarrow \mathbb{R}$ as

$$
v_{r}(z):=\frac{v(r z)}{d_{r}}, \quad \quad d_{r}:=\left(\frac{F_{v}(r)}{r^{n}}\right)^{1 / 2}
$$

Now send $r \rightarrow 0^{+}$and use
Athanasopoulos-Caffarelli-Salsa, Amer. J. Math. (2008)

Free Boundary Regularity: Blow up

Proposition (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and $(A 1)-(A 2)$ be satisfied.

Free Boundary Regularity: Blow up

Proposition (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and (A1)-(A2) be satisfied. Assume

$$
\Phi_{v}\left(0^{+}\right)=n+3
$$

Free Boundary Regularity: Blow up

Proposition (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and (A1)-(A2) be satisfied. Assume

$$
\Phi_{v}\left(0^{+}\right)=n+3
$$

Then $\exists r_{k} \rightarrow 0$ and $v_{\infty}: B_{1} \rightarrow \mathbb{R}$ homogeneous (degree $3 / 2$) s.t.

Free Boundary Regularity: Blow up

Proposition (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and (A1)-(A2) be satisfied. Assume

$$
\Phi_{v}\left(0^{+}\right)=n+3
$$

Then $\exists r_{k} \rightarrow 0$ and $v_{\infty}: B_{1} \rightarrow \mathbb{R}$ homogeneous (degree $3 / 2$) s.t.

- $v_{r_{k}} \rightharpoonup v_{\infty} \quad$ weakly in $W^{1,2}\left(B_{1}\right)$

Free Boundary Regularity: Blow up

Proposition (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and (A1)-(A2) be satisfied. Assume

$$
\Phi_{v}\left(0^{+}\right)=n+3
$$

Then $\exists r_{k} \rightarrow 0$ and $v_{\infty}: B_{1} \rightarrow \mathbb{R}$ homogeneous (degree $3 / 2$) s.t.

- $v_{r_{k}} \rightharpoonup v_{\infty} \quad$ weakly in $W^{1,2}\left(B_{1}\right)$
- $v_{r_{k}} \rightarrow v_{\infty} \quad$ in $C^{1, \gamma}$ on compacts of $B_{1} \cap\{y \geq 0\}$ for $\gamma \in(0,1 / 2)$

Free Boundary Regularity: Blow up

Proposition (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and (A1)-(A2) be satisfied. Assume

$$
\Phi_{v}\left(0^{+}\right)=n+3
$$

Then $\exists r_{k} \rightarrow 0$ and $v_{\infty}: B_{1} \rightarrow \mathbb{R}$ homogeneous (degree $3 / 2$) s.t.

- $v_{r_{k}} \rightharpoonup v_{\infty} \quad$ weakly in $W^{1,2}\left(B_{1}\right)$
- $v_{r_{k}} \rightarrow v_{\infty} \quad$ in $C^{1, \gamma}$ on compacts of $B_{1} \cap\{y \geq 0\}$ for $\gamma \in(0,1 / 2)$
- v_{∞} satisfies the classical Signorini problem in B_{1}

Free Boundary Regularity: Blow up

Proposition (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and (A1)-(A2) be satisfied. Assume

$$
\Phi_{v}\left(0^{+}\right)=n+3
$$

Then $\exists r_{k} \rightarrow 0$ and $v_{\infty}: B_{1} \rightarrow \mathbb{R}$ homogeneous (degree $3 / 2$) s.t.

- $v_{r_{k}} \rightharpoonup v_{\infty} \quad$ weakly in $W^{1,2}\left(B_{1}\right)$
- $v_{r_{k}} \rightarrow v_{\infty} \quad$ in $C^{1, \gamma}$ on compacts of $B_{1} \cap\{y \geq 0\}$ for $\gamma \in(0,1 / 2)$
- v_{∞} satisfies the classical Signorini problem in B_{1}
- up to change of variables

Free Boundary Regularity: Blow up

Proposition (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and (A1)-(A2) be satisfied. Assume

$$
\Phi_{v}\left(0^{+}\right)=n+3
$$

Then $\exists r_{k} \rightarrow 0$ and $v_{\infty}: B_{1} \rightarrow \mathbb{R}$ homogeneous (degree $3 / 2$) s.t.

- $v_{r_{k}} \rightharpoonup v_{\infty} \quad$ weakly in $W^{1,2}\left(B_{1}\right)$
- $v_{r_{k}} \rightarrow v_{\infty} \quad$ in $C^{1, \gamma}$ on compacts of $B_{1} \cap\{y \geq 0\}$ for $\gamma \in(0,1 / 2)$
- v_{∞} satisfies the classical Signorini problem in B_{1}
- up to change of variables

$$
v_{\infty}(x, y)=\rho^{3 / 2} \cos \frac{3}{2} \theta
$$

where $\rho^{2}=x_{n}^{2}+y^{2}$ and $\tan \theta=y / x_{n}$.

Free Boundary Regularity: Blow up

Proposition (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and $(A 1)-(A 2)$ be satisfied.

Free Boundary Regularity: Blow up

Proposition (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and (A1)-(A2) be satisfied. Assume

$$
\Phi_{v}\left(0^{+}\right)=n+3 .
$$

Free Boundary Regularity: Blow up

Proposition (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and (A1)-(A2) be satisfied. Assume

$$
\Phi_{v}\left(0^{+}\right)=n+3 .
$$

Then the free boundary is $C^{1, \alpha}$ near $(0,0)$

Free Boundary Regularity: Blow up

Proposition (Caffarelli, C., Figalli)

Let $(g 1)-(g 6)$ and (A1)-(A2) be satisfied. Assume

$$
\Phi_{v}\left(0^{+}\right)=n+3 .
$$

Then the free boundary is $C^{1, \alpha}$ near $(0,0)$, for some $\alpha \in(0,1)$.

THANK YOU!

