Equilibria configurations for epitaxial crystal growth with adatoms

Riccardo Cristoferi
Joint work with Marco Caroccia and Laurent Dietrich

Carnegie
 Mellon
 University

BIRS Workshop

Topics in the Calculus of Variations: Recent Advances and New Trends

May 21, 2018

Outline of the talk

- Surface evolution

Outline of the talk

- Surface evolution
- A model with adatoms

Outline of the talk

- Surface evolution
- A model with adatoms
- The big plan

Outline of the talk

- Surface evolution
- A model with adatoms
- The big plan
- What we have done/are doing

Outline of the talk

- Surface evolution
- A model with adatoms
- The big plan
- What we have done/are doing
- Future plans

Epitaxial growth

Epitaxial growth

Epitaxial growth

Epitaxial growth - Surface evolution

According to the Einstein-Nernst law, the surfaces $\left\{E_{t}\right\}_{t \geq 0}$ evolve following the volume preserving equation

$$
\rho V=D \Delta_{\partial E_{t}} \mu \quad \text { on } \partial E_{t}
$$

where

Epitaxial growth - Surface evolution

According to the Einstein-Nernst law, the surfaces $\left\{E_{t}\right\}_{t \geq 0}$ evolve following the volume preserving equation

$$
\rho V=D \Delta_{\partial E_{t}} \mu \quad \text { on } \partial E_{t},
$$

where

- V is the normal velocity of the evolving surface ∂E_{t},

Epitaxial growth - Surface evolution

According to the Einstein-Nernst law, the surfaces $\left\{E_{t}\right\}_{t \geq 0}$ evolve following the volume preserving equation

$$
\rho V=D \Delta_{\partial E_{t}} \mu \quad \text { on } \partial E_{t}
$$

where

- V is the normal velocity of the evolving surface ∂E_{t},
- μ is the chemical potential-gradient of the energy,

Epitaxial growth - Surface evolution

According to the Einstein-Nernst law, the surfaces $\left\{E_{t}\right\}_{t \geq 0}$ evolve following the volume preserving equation

$$
\rho V=D \Delta_{\partial E_{t}} \mu \quad \text { on } \partial E_{t}
$$

where

- V is the normal velocity of the evolving surface ∂E_{t},
- μ is the chemical potential-gradient of the energy,
- $\triangle_{\partial E_{t}}$ is the Laplace-Beltrami operator on ∂E_{t},

Epitaxial growth - Surface evolution

According to the Einstein-Nernst law, the surfaces $\left\{E_{t}\right\}_{t \geq 0}$ evolve following the volume preserving equation

$$
\rho V=D \Delta_{\partial E_{t}} \mu \quad \text { on } \partial E_{t}
$$

where

- V is the normal velocity of the evolving surface ∂E_{t},
- μ is the chemical potential-gradient of the energy,
- $\triangle_{\partial E_{t}}$ is the Laplace-Beltrami operator on ∂E_{t},
- ρ is the volumetric density,

Epitaxial growth - Surface evolution

According to the Einstein-Nernst law, the surfaces $\left\{E_{t}\right\}_{t \geq 0}$ evolve following the volume preserving equation

$$
\rho V=D \Delta_{\partial E_{t}} \mu \quad \text { on } \partial E_{t}
$$

where

- V is the normal velocity of the evolving surface ∂E_{t},
- μ is the chemical potential-gradient of the energy,
- $\triangle_{\partial E_{t}}$ is the Laplace-Beltrami operator on ∂E_{t},
- ρ is the volumetric density,
- D is the diffusion coefficient.

Adatoms

On the surface:

Adatoms

On the surface: Atoms

Adatoms

On the surface: Atoms and Adatoms = Adsorbed atoms

Adatoms

On the surface: Atoms and Adatoms = Adsorbed atoms

Why consider adatoms?

Adatoms

On the surface: Atoms and Adatoms = Adsorbed atoms

Why consider adatoms?

- important in models for solid-vapor interfaces

Adatoms

On the surface: Atoms and Adatoms = Adsorbed atoms

Why consider adatoms?

- important in models for solid-vapor interfaces
- effect of regularizing the unstable parabolic equations for surface evolution

A model with adatoms

Starting from the standard evolutions equations $\rho V=D \Delta_{\partial E_{t}} \mu$ on ∂E_{t},

A model with adatoms

Starting from the standard evolutions equations $\rho V=D \Delta_{\partial E_{t}} \mu$ on ∂E_{t}, Fried and Gurtin proposed a model for surface diffusion including adatoms:

$$
\begin{cases}\partial_{t} u+\left(\rho+u H_{\partial E_{t}}\right) V=D \Delta_{\partial E_{t}} \mu & \text { on } \partial E_{t} \\ b V+\psi H_{\partial E_{t}}-\left(\rho+u H_{\partial E_{t}}\right) \mu=0 & \text { on } \partial E_{t}\end{cases}
$$

Eliot Fried and Morton E. Gurtin, A unified treatment of evolving interfaces accounting for small deformations and atomic transport with emphasis on grain-boundaries and epitaxy,
Advances in applied mechanics, 40 (2004), pp. 1-177

A model with adatoms

Starting from the standard evolutions equations $\rho V=D \Delta_{\partial E_{t}} \mu$ on ∂E_{t}, Fried and Gurtin proposed a model for surface diffusion including adatoms:

$$
\begin{cases}\partial_{t} u+\left(\rho+u H_{\partial E_{t}}\right) V=D \Delta_{\partial E_{t}} \mu & \text { on } \partial E_{t} \\ b V+\psi H_{\partial E_{t}}-\left(\rho+u H_{\partial E_{t}}\right) \mu=0 & \text { on } \partial E_{t}\end{cases}
$$

where

- $\left\{E_{t}\right\}_{t>0}$ are evolving smooth sets,

A model with adatoms

Starting from the standard evolutions equations $\rho V=D \Delta_{\partial E_{t}} \mu$ on ∂E_{t}, Fried and Gurtin proposed a model for surface diffusion including adatoms:

$$
\begin{cases}\partial_{t} u+\left(\rho+u H_{\partial E_{t}}\right) V=D \Delta_{\partial E_{t}} \mu & \text { on } \partial E_{t} \\ b V+\psi H_{\partial E_{t}}-\left(\rho+u H_{\partial E_{t}}\right) \mu=0 & \text { on } \partial E_{t}\end{cases}
$$

where

- $\left\{E_{t}\right\}_{t>0}$ are evolving smooth sets,
- V is the normal velocity to ∂E_{t},

A model with adatoms

Starting from the standard evolutions equations $\rho V=D \Delta_{\partial E_{t}} \mu$ on ∂E_{t}, Fried and Gurtin proposed a model for surface diffusion including adatoms:

$$
\begin{cases}\partial_{t} u+\left(\rho+u H_{\partial E_{t}}\right) V=D \Delta_{\partial E_{t}} \mu & \text { on } \partial E_{t} \\ b V+\psi H_{\partial E_{t}}-\left(\rho+u H_{\partial E_{t}}\right) \mu=0 & \text { on } \partial E_{t}\end{cases}
$$

where

- $\left\{E_{t}\right\}_{t>0}$ are evolving smooth sets,
- V is the normal velocity to ∂E_{t},
- $H_{\partial E_{t}}$ is its mean curvature of ∂E_{t},

A model with adatoms

Starting from the standard evolutions equations $\rho V=D \Delta_{\partial E_{t}} \mu$ on ∂E_{t}, Fried and Gurtin proposed a model for surface diffusion including adatoms:

$$
\begin{cases}\partial_{t} u+\left(\rho+u H_{\partial E_{t}}\right) V=D \Delta_{\partial E_{t}} \mu & \text { on } \partial E_{t} \\ b V+\psi H_{\partial E_{t}}-\left(\rho+u H_{\partial E_{t}}\right) \mu=0 & \text { on } \partial E_{t}\end{cases}
$$

where

- $\left\{E_{t}\right\}_{t>0}$ are evolving smooth sets,
- V is the normal velocity to ∂E_{t},
- $H_{\partial E_{t}}$ is its mean curvature of ∂E_{t},
- $u(\cdot, t): \partial E_{t} \rightarrow \mathbb{R}^{+}$is the adatom density on ∂E_{t},

A model with adatoms

Starting from the standard evolutions equations $\rho V=D \Delta_{\partial E_{t}} \mu$ on ∂E_{t}, Fried and Gurtin proposed a model for surface diffusion including adatoms:

$$
\begin{cases}\partial_{t} u+\left(\rho+u H_{\partial E_{t}}\right) V=D \Delta_{\partial E_{t}} \mu & \text { on } \partial E_{t} \\ b V+\psi H_{\partial E_{t}}-\left(\rho+u H_{\partial E_{t}}\right) \mu=0 & \text { on } \partial E_{t}\end{cases}
$$

where

- $\left\{E_{t}\right\}_{t>0}$ are evolving smooth sets,
- V is the normal velocity to ∂E_{t},
- $H_{\partial E_{t}}$ is its mean curvature of ∂E_{t},
$\checkmark u(\cdot, t): \partial E_{t} \rightarrow \mathbb{R}^{+}$is the adatom density on ∂E_{t},
- ψ is the adatom energy density, $\mu=\psi^{\prime}(u)$

A model with adatoms

Starting from the standard evolutions equations $\rho V=D \Delta_{\partial E_{t}} \mu$ on ∂E_{t}, Fried and Gurtin proposed a model for surface diffusion including adatoms:

$$
\begin{cases}\partial_{t} u+\left(\rho+u H_{\partial E_{t}}\right) V=D \Delta_{\partial E_{t}} \mu & \text { on } \partial E_{t} \\ b V+\psi H_{\partial E_{t}}-\left(\rho+u H_{\partial E_{t}}\right) \mu=0 & \text { on } \partial E_{t}\end{cases}
$$

where

- $\left\{E_{t}\right\}_{t>0}$ are evolving smooth sets,
- V is the normal velocity to ∂E_{t},
- $H_{\partial E_{t}}$ is its mean curvature of ∂E_{t},
$\checkmark u(\cdot, t): \partial E_{t} \rightarrow \mathbb{R}^{+}$is the adatom density on ∂E_{t},
- ψ is the adatom energy density, $\mu=\psi^{\prime}(u)$
- $\rho>0$ is the constant volumetric mass density of the crystal,

A model with adatoms

Starting from the standard evolutions equations $\rho V=D \Delta_{\partial E_{t}} \mu$ on ∂E_{t}, Fried and Gurtin proposed a model for surface diffusion including adatoms:

$$
\begin{cases}\partial_{t} u+\left(\rho+u H_{\partial E_{t}}\right) V=D \Delta_{\partial E_{t}} \mu & \text { on } \partial E_{t} \\ b V+\psi H_{\partial E_{t}}-\left(\rho+u H_{\partial E_{t}}\right) \mu=0 & \text { on } \partial E_{t}\end{cases}
$$

where

- $\left\{E_{t}\right\}_{t>0}$ are evolving smooth sets,
- V is the normal velocity to ∂E_{t},
- $H_{\partial E_{t}}$ is its mean curvature of ∂E_{t},
$\checkmark u(\cdot, t): \partial E_{t} \rightarrow \mathbb{R}^{+}$is the adatom density on ∂E_{t},
- ψ is the adatom energy density, $\mu=\psi^{\prime}(u)$
- $\rho>0$ is the constant volumetric mass density of the crystal,
- $b>0$ is a constant called kinetic coefficient,

A model with adatoms

Starting from the standard evolutions equations $\rho V=D \Delta_{\partial E_{t}} \mu$ on ∂E_{t}, Fried and Gurtin proposed a model for surface diffusion including adatoms:

$$
\begin{cases}\partial_{t} u+\left(\rho+u H_{\partial E_{t}}\right) V=D \Delta_{\partial E_{t}} \mu & \text { on } \partial E_{t} \\ b V+\psi H_{\partial E_{t}}-\left(\rho+u H_{\partial E_{t}}\right) \mu=0 & \text { on } \partial E_{t}\end{cases}
$$

where

- $\left\{E_{t}\right\}_{t>0}$ are evolving smooth sets,
- V is the normal velocity to ∂E_{t},
- $H_{\partial E_{t}}$ is its mean curvature of ∂E_{t},
- $u(\cdot, t): \partial E_{t} \rightarrow \mathbb{R}^{+}$is the adatom density on ∂E_{t},
- ψ is the adatom energy density, $\mu=\psi^{\prime}(u)$
- $\rho>0$ is the constant volumetric mass density of the crystal,
- $b>0$ is a constant called kinetic coefficient,
- $D>0$ is the diffusion coefficient of the adatoms.

A model with adatoms

Starting from the standard evolutions equations $\rho V=D \Delta_{\partial E_{t}} \mu$ on ∂E_{t}, Fried and Gurtin proposed a model for surface diffusion including adatoms:

$$
\begin{cases}\partial_{t} u+\left(\rho+u H_{\partial E_{t}}\right) V=D \Delta_{\partial E_{t}} \mu & \text { on } \partial E_{t} \\ b V+\psi H_{\partial E_{t}}-\left(\rho+u H_{\partial E_{t}}\right) \mu=0 & \text { on } \partial E_{t}\end{cases}
$$

where

A model with adatoms

Starting from the standard evolutions equations $\rho V=D \Delta_{\partial E_{t}} \mu$ on ∂E_{t}, Fried and Gurtin proposed a model for surface diffusion including adatoms:

$$
\begin{cases}\partial_{t} u+\left(\rho+u H_{\partial E_{t}}\right) V=D \Delta_{\partial E_{t}} \mu & \text { on } \partial E_{t} \\ b V+\psi H_{\partial E_{t}}-\left(\rho+u H_{\partial E_{t}}\right) \mu=0 & \text { on } \partial E_{t}\end{cases}
$$

where

- adatoms diffusion via interfacial atomic balances,

A model with adatoms

Starting from the standard evolutions equations $\rho V=D \Delta_{\partial E_{t}} \mu$ on ∂E_{t}, Fried and Gurtin proposed a model for surface diffusion including adatoms:

$$
\begin{cases}\partial_{t} u+\left(\rho+u H_{\partial E_{t}}\right) V=D \Delta_{\partial E_{t}} \mu & \text { on } \partial E_{t} \\ b V+\psi H_{\partial E_{t}}-\left(\rho+u H_{\partial E_{t}}\right) \mu=0 & \text { on } \partial E_{t}\end{cases}
$$

where

- adatoms diffusion via interfacial atomic balances,
- neglect bulk diffusion,

A model with adatoms

Starting from the standard evolutions equations $\rho V=D \Delta_{\partial E_{t}} \mu$ on ∂E_{t}, Fried and Gurtin proposed a model for surface diffusion including adatoms:

$$
\begin{cases}\partial_{t} u+\left(\rho+u H_{\partial E_{t}}\right) V=D \Delta_{\partial E_{t}} \mu & \text { on } \partial E_{t} \\ b V+\psi H_{\partial E_{t}}-\left(\rho+u H_{\partial E_{t}}\right) \mu=0 & \text { on } \partial E_{t}\end{cases}
$$

where

- adatoms diffusion via interfacial atomic balances,
- neglect bulk diffusion,
- unconstrained material: no elastic energy,

A model with adatoms

Starting from the standard evolutions equations $\rho V=D \Delta_{\partial E_{t}} \mu$ on ∂E_{t}, Fried and Gurtin proposed a model for surface diffusion including adatoms:

$$
\begin{cases}\partial_{t} u+\left(\rho+u H_{\partial E_{t}}\right) V=D \Delta_{\partial E_{t}} \mu & \text { on } \partial E_{t} \\ b V+\psi H_{\partial E_{t}}-\left(\rho+u H_{\partial E_{t}}\right) \mu=0 & \text { on } \partial E_{t}\end{cases}
$$

where

- adatoms diffusion via interfacial atomic balances,
- neglect bulk diffusion,
- unconstrained material: no elastic energy,
- neglecting the standard surface stress: the solid-vapor interface is traction-free,

A model with adatoms

Starting from the standard evolutions equations $\rho V=D \Delta_{\partial E_{t}} \mu$ on ∂E_{t}, Fried and Gurtin proposed a model for surface diffusion including adatoms:

$$
\begin{cases}\partial_{t} u+\left(\rho+u H_{\partial E_{t}}\right) V=D \Delta_{\partial E_{t}} \mu & \text { on } \partial E_{t} \\ b V+\psi H_{\partial E_{t}}-\left(\rho+u H_{\partial E_{t}}\right) \mu=0 & \text { on } \partial E_{t}\end{cases}
$$

where

- adatoms diffusion via interfacial atomic balances,
- neglect bulk diffusion,
- unconstrained material: no elastic energy,
- neglecting the standard surface stress: the solid-vapor interface is traction-free,
- simple materials: mobility coefficient D is constant,

A model with adatoms

Starting from the standard evolutions equations $\rho V=D \Delta_{\partial E_{t}} \mu$ on ∂E_{t}, Fried and Gurtin proposed a model for surface diffusion including adatoms:

$$
\begin{cases}\partial_{t} u+\left(\rho+u H_{\partial E_{t}}\right) V=D \Delta_{\partial E_{t}} \mu & \text { on } \partial E_{t} \\ b V+\psi H_{\partial E_{t}}-\left(\rho+u H_{\partial E_{t}}\right) \mu=0 & \text { on } \partial E_{t}\end{cases}
$$

where

- adatoms diffusion via interfacial atomic balances,
- neglect bulk diffusion,
- unconstrained material: no elastic energy,
- neglecting the standard surface stress: the solid-vapor interface is traction-free,
- simple materials: mobility coefficient D is constant,
- the term $\rho+u H_{\partial E_{t}}$ is the variation of the total mass $\rho|E|+\int_{\partial E_{t}} u \mathrm{~d} \mathcal{H}^{N-1}$ with respect to shape deformations,

A model with adatoms

Starting from the standard evolutions equations $\rho V=D \Delta_{\partial E_{t}} \mu$ on ∂E_{t}, Fried and Gurtin proposed a model for surface diffusion including adatoms:

$$
\begin{cases}\partial_{t} u+\left(\rho+u H_{\partial E_{t}}\right) V=D \Delta_{\partial E_{t}} \mu & \text { on } \partial E_{t} \\ b V+\psi H_{\partial E_{t}}-\left(\rho+u H_{\partial E_{t}}\right) \mu=0 & \text { on } \partial E_{t}\end{cases}
$$

where

- adatoms diffusion via interfacial atomic balances,
- neglect bulk diffusion,
- unconstrained material: no elastic energy,
- neglecting the standard surface stress: the solid-vapor interface is traction-free,
- simple materials: mobility coefficient D is constant,
- the term $\rho+u H_{\partial E_{t}}$ is the variation of the total mass $\rho|E|+\int_{\partial E_{t}} u \mathrm{~d} \mathcal{H}^{N-1}$ with respect to shape deformations,
- the kinetic term $b V$: originates from the constitutive equation $F=b V$, where F is a dissipative force associated with the attachment of vapor atoms on the solid surface.

The plan

Starting from the standard evolutions equations $\rho V=D \Delta_{\partial E_{t}} \mu$ on ∂E_{t}, Fried and Gurtin model for surface diffusion including adatoms

$$
\begin{cases}\partial_{t} u+\left(\rho+u H_{\partial E_{t}}\right) V=D \Delta_{\partial E_{t}}\left[\psi^{\prime}(u)\right] & \text { on } \partial E_{t} \\ b V+\psi H_{\partial E_{t}}-\left(\rho+u H_{\partial E_{t}}\right) \psi^{\prime}(u)=0 & \text { on } \partial E_{t}\end{cases}
$$

To do:

The plan

Starting from the standard evolutions equations $\rho V=D \Delta_{\partial E_{t}} \mu$ on ∂E_{t}, Fried and Gurtin model for surface diffusion including adatoms

$$
\begin{cases}\partial_{t} u+\left(\rho+u H_{\partial E_{t}}\right) V=D \Delta_{\partial E_{t}}\left[\psi^{\prime}(u)\right] & \text { on } \partial E_{t} \\ b V+\psi H_{\partial E_{t}}-\left(\rho+u H_{\partial E_{t}}\right) \psi^{\prime}(u)=0 & \text { on } \partial E_{t}\end{cases}
$$

To do:
\downarrow obtain the above system of equations as a gradient flow of some energy \mathcal{F}

The plan

Starting from the standard evolutions equations $\rho V=D \Delta_{\partial E_{t}} \mu$ on ∂E_{t}, Fried and Gurtin model for surface diffusion including adatoms

$$
\begin{cases}\partial_{t} u+\left(\rho+u H_{\partial E_{t}}\right) V=D \Delta_{\partial E_{t}}\left[\psi^{\prime}(u)\right] & \text { on } \partial E_{t} \\ b V+\psi H_{\partial E_{t}}-\left(\rho+u H_{\partial E_{t}}\right) \psi^{\prime}(u)=0 & \text { on } \partial E_{t}\end{cases}
$$

To do:

- obtain the above system of equations as a gradient flow of some energy \mathcal{F}
- study the energy \mathcal{F}

The plan

Starting from the standard evolutions equations $\rho V=D \Delta_{\partial E_{t}} \mu$ on ∂E_{t}, Fried and Gurtin model for surface diffusion including adatoms

$$
\begin{cases}\partial_{t} u+\left(\rho+u H_{\partial E_{t}}\right) V=D \Delta_{\partial E_{t}}\left[\psi^{\prime}(u)\right] & \text { on } \partial E_{t} \\ b V+\psi H_{\partial E_{t}}-\left(\rho+u H_{\partial E_{t}}\right) \psi^{\prime}(u)=0 & \text { on } \partial E_{t}\end{cases}
$$

To do:

- obtain the above system of equations as a gradient flow of some energy \mathcal{F}
- study the energy \mathcal{F}
- consider an approximation of \mathcal{F} via a diffuse interface energy $\mathcal{F}_{\varepsilon}$

The plan

Starting from the standard evolutions equations $\rho V=D \Delta_{\partial E_{t}} \mu$ on ∂E_{t}, Fried and Gurtin model for surface diffusion including adatoms

$$
\begin{cases}\partial_{t} u+\left(\rho+u H_{\partial E_{t}}\right) V=D \Delta_{\partial E_{t}}\left[\psi^{\prime}(u)\right] & \text { on } \partial E_{t} \\ b V+\psi H_{\partial E_{t}}-\left(\rho+u H_{\partial E_{t}}\right) \psi^{\prime}(u)=0 & \text { on } \partial E_{t}\end{cases}
$$

To do:

- obtain the above system of equations as a gradient flow of some energy \mathcal{F}
- study the energy \mathcal{F}
- consider an approximation of \mathcal{F} via a diffuse interface energy $\mathcal{F}_{\varepsilon}$
- study the two systems of evolution equations

The plan

Starting from the standard evolutions equations $\rho V=D \Delta_{\partial E_{t}} \mu$ on ∂E_{t}, Fried and Gurtin model for surface diffusion including adatoms

$$
\begin{cases}\partial_{t} u+\left(\rho+u H_{\partial E_{t}}\right) V=D \Delta_{\partial E_{t}}\left[\psi^{\prime}(u)\right] & \text { on } \partial E_{t} \\ b V+\psi H_{\partial E_{t}}-\left(\rho+u H_{\partial E_{t}}\right) \psi^{\prime}(u)=0 & \text { on } \partial E_{t}\end{cases}
$$

To do:

- obtain the above system of equations as a gradient flow of some energy \mathcal{F}
- study the energy \mathcal{F}
- consider an approximation of \mathcal{F} via a diffuse interface energy $\mathcal{F}_{\varepsilon}$
- study the two systems of evolution equations
- 'diffuse' evolution equations approximate the 'sharp' evolution equations

The plan

Starting from the standard evolutions equations $\rho V=D \Delta_{\partial E_{t}} \mu$ on ∂E_{t}, Fried and Gurtin model for surface diffusion including adatoms

$$
\begin{cases}\partial_{t} u+\left(\rho+u H_{\partial E_{t}}\right) V=D \Delta_{\partial E_{t}}\left[\psi^{\prime}(u)\right] & \text { on } \partial E_{t} \\ b V+\psi H_{\partial E_{t}}-\left(\rho+u H_{\partial E_{t}}\right) \psi^{\prime}(u)=0 & \text { on } \partial E_{t}\end{cases}
$$

To do:

- obtain the above system of equations as a gradient flow of some energy \mathcal{F}
- study the energy \mathcal{F}
- consider an approximation of \mathcal{F} via a diffuse interface energy $\mathcal{F}_{\varepsilon}$
- study the two systems of evolution equations
- 'diffuse' evolution equations approximate the 'sharp' evolution equations

The plan

Starting from the standard evolutions equations $\rho V=D \Delta_{\partial E_{t}} \mu$ on ∂E_{t}, Fried and Gurtin model for surface diffusion including adatoms

$$
\begin{cases}\partial_{t} u+\left(\rho+u H_{\partial E_{t}}\right) V=D \Delta_{\partial E_{t}}\left[\psi^{\prime}(u)\right] & \text { on } \partial E_{t} \\ b V+\psi H_{\partial E_{t}}-\left(\rho+u H_{\partial E_{t}}\right) \psi^{\prime}(u)=0 & \text { on } \partial E_{t}\end{cases}
$$

To do:

- obtain the above system of equations as a gradient flow of some energy \mathcal{F}
- study the energy \mathcal{F}
- consider an approximation of \mathcal{F} via a diffuse interface energy $\mathcal{F}_{\varepsilon}$
- study the two systems of evolution equations
- 'diffuse' evolution equations approximate the 'sharp' evolution equations

The plan

Starting from the standard evolutions equations $\rho V=D \Delta_{\partial E_{t}} \mu$ on ∂E_{t}, Fried and Gurtin model for surface diffusion including adatoms

$$
\begin{cases}\partial_{t} u+\left(\rho+u H_{\partial E_{t}}\right) V=D \Delta_{\partial E_{t}}\left[\psi^{\prime}(u)\right] & \text { on } \partial E_{t} \\ b V+\psi H_{\partial E_{t}}-\left(\rho+u H_{\partial E_{t}}\right) \psi^{\prime}(u)=0 & \text { on } \partial E_{t}\end{cases}
$$

To do:

- obtain the above system of equations as a gradient flow of some energy \mathcal{F}
- study the energy \mathcal{F}

- consider an approximation of \mathcal{F} via a diffuse interface energy $\mathcal{F}_{\mathcal{E}} \xrightarrow{\text { toanco, } \boldsymbol{P} \text { tease war }}$
- study the two systems of evolution equations
- 'diffuse' evolution equations approximate the 'sharp' evolution equations

The plan

Starting from the standard evolutions equations $\rho V=D \Delta_{\partial E_{t}} \mu$ on ∂E_{t}, Fried and Gurtin model for surface diffusion including adatoms

$$
\begin{cases}\partial_{t} u+\left(\rho+u H_{\partial E_{t}}\right) V=D \Delta_{\partial E_{t}}\left[\psi^{\prime}(u)\right] & \text { on } \partial E_{t} \\ b V+\psi H_{\partial E_{t}}-\left(\rho+u H_{\partial E_{t}}\right) \psi^{\prime}(u)=0 & \text { on } \partial E_{t}\end{cases}
$$

To do:

- obtain the above system of equations as a gradient flow of some energy \mathcal{F}
- study the energy \mathcal{F}

- consider an approximation of \mathcal{F} via a diffuse interface energy $\mathcal{F}_{\varepsilon} \stackrel{\text { toance, peases war }}{ }$
- study the two systems of evolution equations
- 'diffuse' evolution equations approximate the 'sharp' evolution equations

The plan

Starting from the standard evolutions equations $\rho V=D \Delta_{\partial E_{t}} \mu$ on ∂E_{t}, Fried and Gurtin model for surface diffusion including adatoms

$$
\begin{cases}\partial_{t} u+\left(\rho+u H_{\partial E_{t}}\right) V=D \Delta_{\partial E_{t}}\left[\psi^{\prime}(u)\right] & \text { on } \partial E_{t} \\ b V+\psi H_{\partial E_{t}}-\left(\rho+u H_{\partial E_{t}}\right) \psi^{\prime}(u)=0 & \text { on } \partial E_{t}\end{cases}
$$

To do:

- obtain the above system of equations as a gradient flow of some energy \mathcal{F}
- study the energy \mathcal{F}

- consider an approximation of \mathcal{F} via a diffuse interface energy $\mathcal{F}_{\varepsilon} \xrightarrow{\text { Laonom, } \boldsymbol{p} \text { tess war }}$
- study the two systems of evolution equations
- 'diffuse' evolution equations approximate the 'sharp' evolution equations

Previous works

Martin Burger,
Surface diffusion including adatoms,
Commun. Math. Sci., 4 (2006), pp. 1-51

Andreas Rätz, Axel Voigt,
A diffuse-interface approximation for surface diffusion including adatoms Nonlinearity, 20 (2007), pp. 177-192

Christina Stöcker, Axel Voigt, A level set approach to anisotropic surface evolution with free adatoms, SIAM Journal on Applied Mathematics, 69 (2008), pp. 64-80

The energy

Definition
Let $\psi: \mathbb{R}_{+} \rightarrow(0,+\infty)$ such that

The energy

> Definition
> Let $\psi: \mathbb{R}_{+} \rightarrow(0,+\infty)$ such that
> $\quad>$ convex and \mathcal{C}^{1}

The energy

Definition

Let $\psi: \mathbb{R}_{+} \rightarrow(0,+\infty)$ such that

- convex and \mathcal{C}^{1}
- for every $s>0$ it holds

$$
0<\psi(0)<\psi(s)
$$

The energy

Definition

Let $\psi: \mathbb{R}_{+} \rightarrow(0,+\infty)$ such that

- convex and \mathcal{C}^{1}
- for every $s>0$ it holds

$$
0<\psi(0)<\psi(s) .
$$

We define the energy functional

$$
\mathcal{F}(E, u):=\int_{\partial^{*} E} \psi(u) \mathrm{d} \mathcal{H}^{N-1}
$$

where $E \subset \mathbb{R}^{N}$ is a set of finite perimeter and $u \in L^{1}\left(\partial^{*} E ; \mathbb{R}_{+}\right)$.

The energy

Definition

Let $\psi: \mathbb{R}_{+} \rightarrow(0,+\infty)$ such that

- convex and \mathcal{C}^{1}
- for every $s>0$ it holds

$$
0<\psi(0)<\psi(s) .
$$

We define the energy functional

$$
\mathcal{F}(E, u):=\int_{\partial^{*} E} \psi(u) \mathrm{d} \mathcal{H}^{N-1}
$$

where $E \subset \mathbb{R}^{N}$ is a set of finite perimeter and $u \in L^{1}\left(\partial^{*} E ; \mathbb{R}_{+}\right)$.

- E is the solid

The energy

Definition

Let $\psi: \mathbb{R}_{+} \rightarrow(0,+\infty)$ such that

- convex and \mathcal{C}^{1}
- for every $s>0$ it holds

$$
0<\psi(0)<\psi(s)
$$

We define the energy functional

$$
\mathcal{F}(E, u):=\int_{\partial^{*} E} \psi(u) \mathrm{d} \mathcal{H}^{N-1}
$$

where $E \subset \mathbb{R}^{N}$ is a set of finite perimeter and $u \in L^{1}\left(\partial^{*} E ; \mathbb{R}_{+}\right)$.

- E is the solid
- u is the adatom density on $\partial^{*} E$

The energy

Definition

Let $\psi: \mathbb{R}_{+} \rightarrow(0,+\infty)$ such that

- convex and \mathcal{C}^{1}
- for every $s>0$ it holds

$$
0<\psi(0)<\psi(s)
$$

We define the energy functional

$$
\mathcal{F}(E, u):=\int_{\partial^{*} E} \psi(u) \mathrm{d} \mathcal{H}^{N-1}
$$

where $E \subset \mathbb{R}^{N}$ is a set of finite perimeter and $u \in L^{1}\left(\partial^{*} E ; \mathbb{R}_{+}\right)$.

- E is the solid
- u is the adatom density on $\partial^{*} E$
- prototype of ψ is $\psi(s):=1+s^{2} / 2$ (suggested by Fried and Gurtin)

The minimum problem

Definition

Given $E \subset \mathbb{R}^{N}$ is a set of finite perimeter and $u \in L^{1}\left(\partial^{*} E ; \mathbb{R}_{+}\right)$, we define the total mass

$$
\mathcal{M}(E, u):=\rho|E|+\int_{\partial^{*} E} u \mathrm{~d} \mathcal{H}^{N-1}
$$

The minimum problem

Definition

Given $E \subset \mathbb{R}^{N}$ is a set of finite perimeter and $u \in L^{1}\left(\partial^{*} E ; \mathbb{R}_{+}\right)$, we define the total mass

$$
\mathcal{M}(E, u):=\rho|E|+\int_{\partial^{*} E} u \mathrm{~d} \mathcal{H}^{N-1}
$$

Definition

For $m>0$, we define the admissible class of competitors
$\mathrm{Cl}(m):=\left\{(E, u): E\right.$ is a set of finite perimeter, $\left.u \in L^{1}\left(\partial^{*} E ; \mathbb{R}_{+}\right), \mathcal{M}(E, u)=m\right\}$.

The minimum problem

Definition

Given $E \subset \mathbb{R}^{N}$ is a set of finite perimeter and $u \in L^{1}\left(\partial^{*} E ; \mathbb{R}_{+}\right)$, we define the total mass

$$
\mathcal{M}(E, u):=\rho|E|+\int_{\partial^{*} E} u \mathrm{~d} \mathcal{H}^{N-1}
$$

Definition

For $m>0$, we define the admissible class of competitors
$\mathrm{Cl}(m):=\left\{(E, u): E\right.$ is a set of finite perimeter, $\left.u \in L^{1}\left(\partial^{*} E ; \mathbb{R}_{+}\right), \mathcal{M}(E, u)=m\right\}$.

We are interested in the following constrained minimization problem

$$
\gamma_{m}:=\inf \left\{\mathcal{F}(E, u)=\int_{\partial^{*} E} \psi(u) \mathrm{d} \mathcal{H}^{N-1}:(E, u) \in \mathrm{Cl}(m)\right\}
$$

Equilibria configurations

Equilibria configurations

Equilibria configurations

Equilibria configurations

A simple observation

$$
\mathcal{F}(E, u)=\int_{\partial^{*} E} \psi(u) \mathrm{d} \mathcal{H}^{N-1}
$$

Equilibria configurations

A simple observation

$$
\begin{aligned}
\mathcal{F}(E, u) & =\int_{\partial^{*} E} \psi(u) \mathrm{d} \mathcal{H}^{N-1} \\
& \geq \mathcal{H}^{N-1}\left(\partial^{*} E\right) \psi\left(\frac{1}{\mathcal{H}^{N-1}\left(\partial^{*} E\right)} \int_{\partial^{*} E} u \mathrm{~d} \mathcal{H}^{N-1}\right)
\end{aligned}
$$

by applying Jensen's inequality

Equilibria configurations

A simple observation

$$
\begin{aligned}
\mathcal{F}(E, u) & =\int_{\partial^{*} E} \psi(u) \mathrm{d} \mathcal{H}^{N-1} \\
& \geq \mathcal{H}^{N-1}\left(\partial^{*} E\right) \psi\left(\frac{1}{\mathcal{H}^{N-1}\left(\partial^{*} E\right)} \int_{\partial^{*} E} u \mathrm{~d} \mathcal{H}^{N-1}\right) \\
& =\mathcal{F}(E, \bar{u})
\end{aligned}
$$

where

$$
\bar{u}:=\frac{1}{\mathcal{H}^{N-1}\left(\partial^{*} E\right)} \int_{\partial^{*} E} u \mathrm{~d} \mathcal{H}^{N-1}
$$

Equilibria configurations

$$
\mathcal{F}(E, u) \geq \mathcal{F}(E, \bar{u})=\psi(\bar{u}) \mathcal{H}^{N-1}\left(\partial^{*} E\right)
$$

Equilibria configurations

$$
\mathcal{F}(E, u) \geq \mathcal{F}(E, \bar{u})=\psi(\bar{u}) \mathcal{H}^{N-1}\left(\partial^{*} E\right)
$$

\Downarrow
standard isoperimetric problem $\Rightarrow E$ is a ball

Equilibria configurations

$$
\begin{gathered}
\mathcal{F}(E, u) \geq \mathcal{F}(E, \bar{u})=\psi(\bar{u}) \mathcal{H}^{N-1}\left(\partial^{*} E\right) \\
\Downarrow
\end{gathered}
$$

standard isoperimetric problem $\Rightarrow E$ is a ball

Achtung! Volume constraint

$$
\mathcal{M}(E, u)=\rho|E|+\bar{u} \mathcal{H}^{N-1}\left(\partial^{*} E\right)=m
$$

Equilibria configurations

Theorem
 Fix $m>0$. Assume ψ behaves nicely at $s=0$ and at infinity (technical conditions).

Equilibria configurations

Theorem

Fix $m>0$. Assume ψ behaves nicely at $s=0$ and at infinity (technical conditions). Then there exist $R \in\left(0, \bar{R}_{m}\right)$ and a constant $c>0$ such that $\left(B_{R}, c\right) \in C l(m)$ and

$$
\mathcal{F}\left(B_{R}, c\right)=\gamma_{m}
$$

Equilibria configurations

Theorem

Fix $m>0$. Assume ψ behaves nicely at $s=0$ and at infinity (technical conditions). Then there exist $R \in\left(0, \bar{R}_{m}\right)$ and a constant $c>0$ such that $\left(B_{R}, c\right) \in C I(m)$ and

$$
\mathcal{F}\left(B_{R}, c\right)=\gamma_{m}
$$

Moreover, if $(E, u) \in C I(m)$ is a minimizing couple, then

Equilibria configurations

Theorem

Fix $m>0$. Assume ψ behaves nicely at $s=0$ and at infinity (technical conditions). Then there exist $R \in\left(0, \bar{R}_{m}\right)$ and a constant $c>0$ such that $\left(B_{R}, c\right) \in C I(m)$ and

$$
\mathcal{F}\left(B_{R}, c\right)=\gamma_{m}
$$

Moreover, if $(E, u) \in C I(m)$ is a minimizing couple, then

- E is a ball,

Equilibria configurations

Theorem

Fix $m>0$. Assume ψ behaves nicely at $s=0$ and at infinity (technical conditions). Then there exist $R \in\left(0, \bar{R}_{m}\right)$ and a constant $c>0$ such that $\left(B_{R}, c\right) \in C I(m)$ and

$$
\mathcal{F}\left(B_{R}, c\right)=\gamma_{m}
$$

Moreover, if $(E, u) \in C I(m)$ is a minimizing couple, then

- E is a ball,
- if ψ is strictly convex, then u is constant on ∂E.

Equilibria configurations

Theorem

Fix $m>0$. Assume ψ behaves nicely at $s=0$ and at infinity (technical conditions). Then there exist $R \in\left(0, \bar{R}_{m}\right)$ and a constant $c>0$ such that $\left(B_{R}, c\right) \in C I(m)$ and

$$
\mathcal{F}\left(B_{R}, c\right)=\gamma_{m}
$$

Moreover, if $(E, u) \in C I(m)$ is a minimizing couple, then

- E is a ball,
- if ψ is strictly convex, then u is constant on ∂E.

Remark

ψ behaves nicely at $s=0$ and at infinity is in order to avoid as minimizers balls with zero radius and infinite adatom density or balls with zero adatom density.

Equilibria configurations

Theorem

Fix $m>0$. Assume ψ behaves nicely at $s=0$ and at infinity (technical conditions). Then there exist $R \in\left(0, \bar{R}_{m}\right)$ and a constant $c>0$ such that $\left(B_{R}, c\right) \in C I(m)$ and

$$
\mathcal{F}\left(B_{R}, c\right)=\gamma_{m}
$$

Moreover, if $(E, u) \in C I(m)$ is a minimizing couple, then

- E is a ball,
- if ψ is strictly convex, then u is constant on ∂E.

Remark

ψ behaves nicely at $s=0$ and at infinity is in order to avoid as minimizers balls with zero radius and infinite adatom density or balls with zero adatom density.

Remark

Non-uniqueness of the solution: different size of balls (other than translation invariance).

Is the energy l.s.c.?

Is the energy l.s.c.?

The pacman example

Is the energy l.s.c.?

The wriggling example

The extended energy

$$
(E, u)
$$

E set of finite perimeter

$$
u \in L^{1}\left(\partial^{*} E ; \mathbb{R}_{+}\right)
$$

The extended energy

$$
(E, u) \quad \rightarrow \quad(E, \mu)
$$

E set of finite perimeter

$$
u \in L^{1}\left(\partial^{*} E ; \mathbb{R}_{+}\right)
$$

The extended energy

$$
\begin{array}{clc}
(E, u) & \rightarrow & (E, \mu) \\
E \text { set of finite perimeter } & \rightarrow & E \text { set of finite perimeter } \\
u \in L^{1}\left(\partial^{*} E ; \mathbb{R}_{+}\right) & &
\end{array}
$$

The extended energy

$$
\begin{array}{clc}
(E, u) & \rightarrow & (E, \mu) \\
E \text { set of finite perimeter } & \rightarrow & E \text { set of finite perimeter } \\
u \in L^{1}\left(\partial^{*} E ; \mathbb{R}_{+}\right) & \rightarrow & \mu=u \mathcal{H}^{N-1}\left\llcorner\partial^{*} E=u\left|D \mathbb{1}_{E}\right|\right.
\end{array}
$$

The extended energy

$$
\begin{array}{ccc}
(E, u) & \rightarrow & (E, \mu) \\
E \text { set of finite perimeter } & \rightarrow & E \text { set of finite perimeter } \\
u \in L^{1}\left(\partial^{*} E ; \mathbb{R}_{+}\right) & \rightarrow & \mu=u \mathcal{H}^{N-1}\left\llcorner\partial^{*} E=u\left|D \mathbb{1}_{E}\right|\right. \\
\mathcal{F}(E, \mu):= \begin{cases}\int_{\partial^{*} E} \psi(u) \mathrm{d} \mathcal{H}^{N-1} & \text { if } \mu=u\left|D \mathbb{1}_{E}\right| \text { with } u \in L^{1}\left(\partial^{*} E ; \mathbb{R}_{+}\right), \\
+\infty & \text { otherwise, }\end{cases} \\
\text { where } E \text { is a set with finite perimeter } \\
\mu \text { is a non-negative finite Radon measure on } \mathbb{R}^{N} \\
\text { in brief }(E, \mu) \in \mathbb{S} .
\end{array}
$$

The topology

Definition

We say that $\left(\left(E_{k}, \mu_{k}\right)\right)_{k \in \mathbb{N}} \subset \mathfrak{S}$ convergence to $(E, \mu) \in \mathfrak{S}$ if

The topology

Definition

We say that $\left(\left(E_{k}, \mu_{k}\right)\right)_{k \in \mathbb{N}} \subset \mathfrak{S}$ convergence to $(E, \mu) \in \mathfrak{S}$ if

- $\mathbb{1}_{E_{k}} \rightarrow \mathbb{1}_{E}$ in L^{1},

The topology

Definition

We say that $\left(\left(E_{k}, \mu_{k}\right)\right)_{k \in \mathbb{N}} \subset \mathfrak{S}$ convergence to $(E, \mu) \in \mathfrak{S}$ if

- $\mathbb{1}_{E_{k}} \rightarrow \mathbb{1}_{E}$ in L^{1},
$\triangleright \mu_{k} \stackrel{*}{\rightharpoonup} \mu$ locally weakly*, i.e., for every $\varphi \in C_{c}\left(\mathbb{R}^{N}\right)$ we have that

$$
\int_{\mathbb{R}^{N}} \varphi \mathrm{~d} \mu_{k} \rightarrow \int_{\mathbb{R}^{N}} \varphi \mathrm{~d} \mu
$$

as $k \rightarrow \infty$.

The topology

Definition

We say that $\left(\left(E_{k}, \mu_{k}\right)\right)_{k \in \mathbb{N}} \subset \mathfrak{S}$ convergence to $(E, \mu) \in \mathfrak{S}$ if

- $\mathbb{1}_{E_{k}} \rightarrow \mathbb{1}_{E}$ in L^{1},
$\triangleright \mu_{k} \stackrel{*}{\rightharpoonup} \mu$ locally weakly*, i.e., for every $\varphi \in C_{c}\left(\mathbb{R}^{N}\right)$ we have that

$$
\int_{\mathbb{R}^{N}} \varphi \mathrm{~d} \mu_{k} \rightarrow \int_{\mathbb{R}^{N}} \varphi \mathrm{~d} \mu
$$

as $k \rightarrow \infty$.

Lemma

The above topology is metrizable.

Necessary conditions for l.s.c.

Necessary conditions for l.s.c.

oscillating phenomena

Necessary conditions for l.s.c.

$\Rightarrow \quad \psi$ convex and subadditive
oscillating phenomena

Necessary conditions for l.s.c.

oscillating phenomena

concentration phenomena

Necessary conditions for l.s.c.

$\Rightarrow \quad \psi$ convex and subadditive
oscillating phenomena

\Rightarrow
recession function
concentration phenomena

Did anybody computed the relaxation of \mathcal{F} ?

Did anybody computed the relaxation of \mathcal{F} ?

Did anybody computed the relaxation of \mathcal{F} ?

Convex subadditive envelope

Definition

Let $\psi: \mathbb{R} \rightarrow \mathbb{R}$. We say that ψ is subadditive if for every $r, s \in \mathbb{R}$,

$$
\psi(r+s) \leq \psi(r)+\psi(s)
$$

Convex subadditive envelope

Definition

Let $\psi: \mathbb{R} \rightarrow \mathbb{R}$. We say that ψ is subadditive if for every $r, s \in \mathbb{R}$,

$$
\psi(r+s) \leq \psi(r)+\psi(s)
$$

Definition

Let $\psi:[0, \infty) \rightarrow \mathbb{R}$ be a function. We define its convex subadditive envelope $\bar{\psi}:[0, \infty) \rightarrow \mathbb{R}$ as

$$
\bar{\psi}(s):=\sup \{f(s): f:[0, \infty) \rightarrow \mathbb{R} \text { is convex, subadditive and } f \leq \psi\}
$$

Convex subadditive envelope

Lemma

$$
\bar{\psi}(s)=\sup \left\{a_{j} s+b_{j}: j \in \mathbb{N}, b_{j} \geq 0\right\}
$$

Convex subadditive envelope

Lemma

$$
\bar{\psi}(s)=\sup \left\{a_{j} s+b_{j}: j \in \mathbb{N}, b_{j} \geq 0\right\}
$$

Convex subadditive envelope

Lemma

$$
\bar{\psi}(s)=\sup \left\{a_{j} s+b_{j}: j \in \mathbb{N}, b_{j} \geq 0\right\}
$$

Convex subadditive envelope

Lemma

$$
\bar{\psi}(s)=\sup \left\{a_{j} s+b_{j}: j \in \mathbb{N}, b_{j} \geq 0\right\}
$$

The relaxed energy

Definition

Let $\psi: \mathbb{R}_{+} \rightarrow(0,+\infty)$ be a C^{1} convex non-decreasing function, and set

$$
\Theta:=\lim _{s \rightarrow+\infty} \frac{\bar{\psi}(s)}{s}
$$

The relaxed energy

Definition

Let $\psi: \mathbb{R}_{+} \rightarrow(0,+\infty)$ be a C^{1} convex non-decreasing function, and set

$$
\Theta:=\lim _{s \rightarrow+\infty} \frac{\bar{\psi}(s)}{s}
$$

We define the functional $\overline{\mathcal{F}}:=\mathfrak{S} \rightarrow[0, \infty)$ as

$$
\overline{\mathcal{F}}(E, \mu):=\int_{\partial^{*} E} \bar{\psi}(u) \mathrm{d} \mathcal{H}^{N-1}+\Theta \mu^{s}\left(\mathbb{R}^{N}\right)
$$

where we write $\mu=u \mathcal{H}^{N-1}\left\llcorner\partial^{*} E+\mu^{s}\right.$ using the Radon-Nikodym decomposition.

The relaxed energy

Definition

Let $\psi: \mathbb{R}_{+} \rightarrow(0,+\infty)$ be a C^{1} convex non-decreasing function, and set

$$
\Theta:=\lim _{s \rightarrow+\infty} \frac{\bar{\psi}(s)}{s}
$$

We define the functional $\overline{\mathcal{F}}:=\mathfrak{S} \rightarrow[0, \infty)$ as

$$
\overline{\mathcal{F}}(E, \mu):=\int_{\partial^{*} E} \bar{\psi}(u) \mathrm{d} \mathcal{H}^{N-1}+\Theta \mu^{s}\left(\mathbb{R}^{N}\right)
$$

where we write $\mu=u \mathcal{H}^{N-1}\left\llcorner\partial^{*} E+\mu^{s}\right.$ using the Radon-Nikodym decomposition.

Theorem

$\overline{\mathcal{F}}$ is the relaxed functional of \mathcal{F} w.r.t. the topology in \mathfrak{S}.

Relaxation - liminf inequality

Liminf inequality:

Relaxation - liminf inequality

Liminf inequality:

Proposition

The functional $\overline{\mathcal{F}}$ is lower semi-continuous w.r.t. the topology in \mathfrak{S}.

Relaxation - liminf inequality

Liminf inequality:

Proposition

The functional $\overline{\mathcal{F}}$ is lower semi-continuous w.r.t. the topology in \mathfrak{S}.

Let $\left(E_{k}, u_{k}\right) \rightarrow(E, \mu)$.

Relaxation - liminf inequality

Liminf inequality:

Proposition

The functional $\overline{\mathcal{F}}$ is lower semi-continuous w.r.t. the topology in \mathfrak{S}.

Let $\left(E_{k}, u_{k}\right) \rightarrow(E, \mu)$. Then

$$
\mathcal{F}\left(E_{k}, u_{k}\right)=\int_{\partial^{*} E_{k}} \psi\left(u_{k}\right) \mathrm{d} \mathcal{H}^{N-1}
$$

Relaxation - liminf inequality

Liminf inequality:

Proposition

The functional $\overline{\mathcal{F}}$ is lower semi-continuous w.r.t. the topology in \mathfrak{S}.

Let $\left(E_{k}, u_{k}\right) \rightarrow(E, \mu)$. Then

$$
\mathcal{F}\left(E_{k}, u_{k}\right)=\int_{\partial^{*} E_{k}} \psi\left(u_{k}\right) \mathrm{d} \mathcal{H}^{N-1} \geq \int_{\partial^{*} E_{k}} \bar{\psi}\left(u_{k}\right) \mathrm{d} \mathcal{H}^{N-1}
$$

Relaxation - liminf inequality

Liminf inequality:

Proposition

The functional $\overline{\mathcal{F}}$ is lower semi-continuous w.r.t. the topology in \mathfrak{S}.

Let $\left(E_{k}, u_{k}\right) \rightarrow(E, \mu)$. Then

$$
\mathcal{F}\left(E_{k}, u_{k}\right)=\int_{\partial^{*} E_{k}} \psi\left(u_{k}\right) \mathrm{d} \mathcal{H}^{N-1} \geq \int_{\partial^{*} E_{k}} \bar{\psi}\left(u_{k}\right) \mathrm{d} \mathcal{H}^{N-1}=\overline{\mathcal{F}}\left(E_{k}, \mu_{k}\right)
$$

where $\mu_{k}:=u_{k} \mathcal{H}^{N-1}\left\llcorner\partial^{*} E\right.$.

Relaxation - liminf inequality

Liminf inequality:

Proposition

The functional $\overline{\mathcal{F}}$ is lower semi-continuous w.r.t. the topology in \mathfrak{S}.

Let $\left(E_{k}, u_{k}\right) \rightarrow(E, \mu)$. Then

$$
\mathcal{F}\left(E_{k}, u_{k}\right)=\int_{\partial^{*} E_{k}} \psi\left(u_{k}\right) \mathrm{d} \mathcal{H}^{N-1} \geq \int_{\partial^{*} E_{k}} \bar{\psi}\left(u_{k}\right) \mathrm{d} \mathcal{H}^{N-1}=\overline{\mathcal{F}}\left(E_{k}, \mu_{k}\right)
$$

where $\mu_{k}:=u_{k} \mathcal{H}^{N-1}\left\llcorner\partial^{*} E\right.$.

By the I.s.c. of $\overline{\mathcal{F}}$ we obtain that

$$
\liminf _{k \rightarrow \infty} \mathcal{F}\left(E_{k}, \mu_{k}\right) \geq \overline{\mathcal{F}}(E, \mu)
$$

Relaxation - idea for the recovery sequence

Recovery sequence: let $(E, \mu) \in \mathfrak{S}$. Write

$$
\mu=u \mathcal{H}^{N-1}\left\llcorner\partial^{*} E+\mu^{s}=u\left|D \mathbb{1}_{E}\right|+\mu^{s}\right.
$$

using the Radon-Nikodym decomposition. Then

$$
\overline{\mathcal{F}}(E, \mu)=\int_{\partial^{*} E} \bar{\psi}(u) \mathrm{d} \mathcal{H}^{N-1}+\Theta \mu^{s}\left(\mathbb{R}^{N}\right) .
$$

Relaxation - idea for the recovery sequence

Recovery sequence: let $(E, \mu) \in \mathfrak{S}$. Write

$$
\mu=u \mathcal{H}^{N-1}\left\llcorner\partial^{*} E+\mu^{s}=u\left|D \mathbb{1}_{E}\right|+\mu^{s}\right.
$$

using the Radon-Nikodym decomposition. Then

$$
\overline{\mathcal{F}}(E, \mu)=\int_{\partial^{*} E} \bar{\psi}(u) \mathrm{d} \mathcal{H}^{N-1}+\Theta \mu^{s}\left(\mathbb{R}^{N}\right)
$$

We will construct:
(i) $\left(F_{k}, v_{k}\right)$ with $\left(F_{k}, v_{k}\right) \rightarrow\left(E, u\left|D \mathbb{1}_{E}\right|\right)$ such that

$$
\mathcal{F}\left(F_{k}, v_{k}\right) \rightarrow \int_{\partial^{*} E} \bar{\psi}(u) \mathrm{d} \mathcal{H}^{N-1}
$$

Relaxation - idea for the recovery sequence

Recovery sequence: let $(E, \mu) \in \mathfrak{S}$. Write

$$
\mu=u \mathcal{H}^{N-1}\left\llcorner\partial^{*} E+\mu^{s}=u\left|D \mathbb{1}_{E}\right|+\mu^{s}\right.
$$

using the Radon-Nikodym decomposition. Then

$$
\overline{\mathcal{F}}(E, \mu)=\int_{\partial^{*} E} \bar{\psi}(u) \mathrm{d} \mathcal{H}^{N-1}+\Theta \mu^{s}\left(\mathbb{R}^{N}\right)
$$

We will construct:
(i) $\left(F_{k}, v_{k}\right)$ with $\left(F_{k}, v_{k}\right) \rightarrow\left(E, u\left|D \mathbb{1}_{E}\right|\right)$ such that

$$
\mathcal{F}\left(F_{k}, v_{k}\right) \rightarrow \int_{\partial^{*} E} \bar{\psi}(u) \mathrm{d} \mathcal{H}^{N-1}
$$

(ii) $\left(G_{k}, w_{k}\right)$ with $\left(G_{k}, w_{k}\right) \rightarrow\left(\emptyset, \mu^{s}\right)$ such that

$$
\mathcal{F}\left(G_{k}, w_{k}\right) \rightarrow \Theta \mu^{s}\left(\mathbb{R}^{N}\right)
$$

Relaxation - idea

We want $\left(F_{k}, v_{k}\right)$ with $\left(F_{k}, v_{k}\right) \rightarrow\left(E, u\left|D \mathbb{1}_{E}\right|\right)$ such that

$$
\mathcal{F}\left(F_{k}, v_{k}\right)=\int_{\partial^{*} F_{k}} \psi\left(v_{k}\right) \mathrm{d} \mathcal{H}^{N-1} \rightarrow \int_{\partial^{*} E} \bar{\psi}(u) \mathrm{d} \mathcal{H}^{N-1} .
$$

Relaxation - idea for the recovery sequence

Let $(E, c) \in \mathfrak{S}$ with E smooth set and a constant adatom density $c>s_{0}$.

Relaxation - idea for the recovery sequence

Let $(E, c) \in \mathfrak{S}$ with E smooth set and a constant adatom density $c>s_{0}$. Let $r>1$ be such that

$$
c=r s_{0}
$$

Relaxation - idea for the recovery sequence

Let $(E, c) \in \mathfrak{S}$ with E smooth set and a constant adatom density $c>s_{0}$. Let $r>1$ be such that

$$
c=r s_{0}
$$

$$
\bar{\psi} \text { linear in }\left[s_{0}, \infty\right) \Rightarrow \bar{\psi}(c)=\bar{\psi}\left(r s_{0}\right)=r \bar{\psi}\left(s_{0}\right)=r \psi\left(s_{0}\right)
$$

Relaxation - idea for the recovery sequence

Let $(E, c) \in \mathfrak{S}$ with E smooth set and a constant adatom density $c>s_{0}$. Let $r>1$ be such that

$$
c=r s_{0}
$$

$$
\bar{\psi} \text { linear in }\left[s_{0}, \infty\right) \quad \Rightarrow \quad \bar{\psi}(c)=\bar{\psi}\left(r s_{0}\right)=r \bar{\psi}\left(s_{0}\right)=r \psi\left(s_{0}\right)
$$

Let $\left(F_{k}\right)_{k \in \mathbb{N}}$ be a sequence of smooth sets converging to E in L^{1} and such that

$$
\mathcal{H}^{N-1}\left(\partial F_{k}\right) \rightarrow r \mathcal{H}^{N-1}(\partial E) .
$$

Relaxation - idea for the recovery sequence

Let $(E, c) \in \mathfrak{S}$ with E smooth set and a constant adatom density $c>s_{0}$. Let $r>1$ be such that

$$
\begin{gathered}
c=r s_{0} \\
\bar{\psi} \text { linear in }\left[s_{0}, \infty\right) \Rightarrow \bar{\psi}(c)=\bar{\psi}\left(r s_{0}\right)=r \bar{\psi}\left(s_{0}\right)=r \psi\left(s_{0}\right)
\end{gathered}
$$

Let $\left(F_{k}\right)_{k \in \mathbb{N}}$ be a sequence of smooth sets converging to E in L^{1} and such that

$$
\mathcal{H}^{N-1}\left(\partial F_{k}\right) \rightarrow r \mathcal{H}^{N-1}(\partial E) .
$$

Relaxation - idea for the recovery sequence

Let $(E, c) \in \mathfrak{S}$ with E smooth set and a constant adatom density $c>s_{0}$. Let $r>1$ be such that

$$
\begin{gathered}
c=r s_{0} \\
\bar{\psi} \text { linear in }\left[s_{0}, \infty\right) \Rightarrow \bar{\psi}(c)=\bar{\psi}\left(r s_{0}\right)=r \bar{\psi}\left(s_{0}\right)=r \psi\left(s_{0}\right)
\end{gathered}
$$

Let $\left(F_{k}\right)_{k \in \mathbb{N}}$ be a sequence of smooth sets converging to E in L^{1} and such that

$$
\mathcal{H}^{N-1}\left(\partial F_{k}\right) \rightarrow r \mathcal{H}^{N-1}(\partial E) .
$$

Relaxation - idea for the recovery sequence

Let $(E, c) \in \mathfrak{S}$ with E smooth set and a constant adatom density $c>s_{0}$. Let $r>1$ be such that

$$
\begin{gathered}
c=r s_{0} \\
\bar{\psi} \text { linear in }\left[s_{0}, \infty\right) \Rightarrow \bar{\psi}(c)=\bar{\psi}\left(r s_{0}\right)=r \bar{\psi}\left(s_{0}\right)=r \psi\left(s_{0}\right)
\end{gathered}
$$

Let $\left(F_{k}\right)_{k \in \mathbb{N}}$ be a sequence of smooth sets converging to E in L^{1} and such that

$$
\mathcal{H}^{N-1}\left(\partial F_{k}\right) \rightarrow r \mathcal{H}^{N-1}(\partial E) .
$$

Then

$$
\mathcal{F}\left(F_{k}, s_{0}\right)=\psi\left(s_{0}\right) \mathcal{H}^{N-1}\left(\partial F_{k}\right)
$$

Relaxation - idea for the recovery sequence

Let $(E, c) \in \mathfrak{S}$ with E smooth set and a constant adatom density $c>s_{0}$. Let $r>1$ be such that

$$
\begin{gathered}
c=r s_{0} \\
\bar{\psi} \text { linear in }\left[s_{0}, \infty\right) \Rightarrow \bar{\psi}(c)=\bar{\psi}\left(r s_{0}\right)=r \bar{\psi}\left(s_{0}\right)=r \psi\left(s_{0}\right)
\end{gathered}
$$

Let $\left(F_{k}\right)_{k \in \mathbb{N}}$ be a sequence of smooth sets converging to E in L^{1} and such that

$$
\mathcal{H}^{N-1}\left(\partial F_{k}\right) \rightarrow r \mathcal{H}^{N-1}(\partial E) .
$$

Then

$$
\mathcal{F}\left(F_{k}, s_{0}\right)=\psi\left(s_{0}\right) \mathcal{H}^{N-1}\left(\partial F_{k}\right) \rightarrow r \psi\left(s_{0}\right) \mathcal{H}^{N-1}(\partial E)
$$

Relaxation - idea for the recovery sequence

Let $(E, c) \in \mathfrak{S}$ with E smooth set and a constant adatom density $c>s_{0}$. Let $r>1$ be such that

$$
\begin{gathered}
c=r s_{0} \\
\bar{\psi} \text { linear in }\left[s_{0}, \infty\right) \Rightarrow \bar{\psi}(c)=\bar{\psi}\left(r s_{0}\right)=r \bar{\psi}\left(s_{0}\right)=r \psi\left(s_{0}\right)
\end{gathered}
$$

Let $\left(F_{k}\right)_{k \in \mathbb{N}}$ be a sequence of smooth sets converging to E in L^{1} and such that

$$
\mathcal{H}^{N-1}\left(\partial F_{k}\right) \rightarrow r \mathcal{H}^{N-1}(\partial E) .
$$

Then

$$
\mathcal{F}\left(F_{k}, s_{0}\right)=\psi\left(s_{0}\right) \mathcal{H}^{N-1}\left(\partial F_{k}\right) \rightarrow r \psi\left(s_{0}\right) \mathcal{H}^{N-1}(\partial E)=\bar{\psi}(c) \mathcal{H}^{N-1}(\partial E)
$$

Relaxation - idea for the recovery sequence

Let $(E, c) \in \mathfrak{S}$ with E smooth set and a constant adatom density $c>s_{0}$. Let $r>1$ be such that

$$
\begin{gathered}
c=r s_{0} \\
\bar{\psi} \text { linear in }\left[s_{0}, \infty\right) \Rightarrow \bar{\psi}(c)=\bar{\psi}\left(r s_{0}\right)=r \bar{\psi}\left(s_{0}\right)=r \psi\left(s_{0}\right)
\end{gathered}
$$

Let $\left(F_{k}\right)_{k \in \mathbb{N}}$ be a sequence of smooth sets converging to E in L^{1} and such that

$$
\mathcal{H}^{N-1}\left(\partial F_{k}\right) \rightarrow r \mathcal{H}^{N-1}(\partial E) .
$$

Then

$$
\mathcal{F}\left(F_{k}, s_{0}\right)=\psi\left(s_{0}\right) \mathcal{H}^{N-1}\left(\partial F_{k}\right) \rightarrow r \psi\left(s_{0}\right) \mathcal{H}^{N-1}(\partial E)=\bar{\psi}(c) \mathcal{H}^{N-1}(\partial E)=\overline{\mathcal{F}}(E, c)
$$

Relaxation - idea for the recovery sequence

We now want $\left(G_{k}, w_{k}\right)$ with $\left(G_{k}, w_{k}\right) \rightarrow\left(\emptyset, \mu^{s}\right)$ such that

$$
\mathcal{F}\left(G_{k}, w_{k}\right) \rightarrow \Theta \mu^{s}\left(\mathbb{R}^{N}\right)
$$

Relaxation - idea for the recovery sequence

We now want $\left(G_{k}, w_{k}\right)$ with $\left(G_{k}, w_{k}\right) \rightarrow\left(\emptyset, \mu^{s}\right)$ such that

$$
\mathcal{F}\left(G_{k}, w_{k}\right) \rightarrow \Theta \mu^{s}\left(\mathbb{R}^{N}\right)
$$

Let $\left(\rho_{\varepsilon}\right)_{\varepsilon>0}$ be a sequence of convolution kernels and consider

$$
f_{\varepsilon}:=\mu^{s} * \rho_{\varepsilon}
$$

Relaxation - idea for the recovery sequence

We now want $\left(G_{k}, w_{k}\right)$ with $\left(G_{k}, w_{k}\right) \rightarrow\left(\emptyset, \mu^{s}\right)$ such that

$$
\mathcal{F}\left(G_{k}, w_{k}\right) \rightarrow \Theta \mu^{s}\left(\mathbb{R}^{N}\right)
$$

Let $\left(\rho_{\varepsilon}\right)_{\varepsilon>0}$ be a sequence of convolution kernels and consider

$$
f_{\varepsilon}:=\mu^{s} * \rho_{\varepsilon}
$$

Then

$$
\overline{\mathcal{F}}\left(\emptyset, f_{\varepsilon} \mathcal{L}^{N}\right) \rightarrow \overline{\mathcal{F}}\left(\emptyset, \mu^{s}\right)
$$

Relaxation - idea for the recovery sequence

Consider a $1 / k$-diadic division $\left(Q^{k}\right)_{j \in \mathbb{N}}$ of \mathbb{R}^{N}.

Relaxation - idea for the recovery sequence

Consider a $1 / k$-diadic division $\left(Q^{k}\right)_{j \in \mathbb{N}}$ of \mathbb{R}^{N}. On each little cube Q_{j}^{k} :

$$
f_{\varepsilon} \mathcal{L}^{N} \rightsquigarrow c_{j}^{k} \mathrm{~d} \mathcal{H}^{N-1}\left\llcorner\partial B_{j}^{k}, \quad \text { with } c_{j} \rightarrow \infty\right.
$$

Relaxation - idea for the recovery sequence

Consider a $1 / k$-diadic division $\left(Q^{k}\right)_{j \in \mathbb{N}}$ of \mathbb{R}^{N}. On each little cube Q_{j}^{k} :

$$
f_{\varepsilon} \mathcal{L}^{N} \rightsquigarrow c_{j}^{k} \mathrm{~d} \mathcal{H}^{N-1}\left\llcorner\partial B_{j}^{k}, \quad \text { with } c_{j} \rightarrow \infty\right.
$$

Consider $H^{k}:=\cup_{j \in \mathbb{N}} B_{j}^{k}$.

Relaxation - idea for the recovery sequence

Consider a $1 / k$-diadic division $\left(Q^{k}\right)_{j \in \mathbb{N}}$ of \mathbb{R}^{N}. On each little cube Q_{j}^{k} :

$$
f_{\varepsilon} \mathcal{L}^{N} \rightsquigarrow c_{j}^{k} \mathrm{~d} \mathcal{H}^{N-1}\left\llcorner\partial B_{j}^{k}, \quad \text { with } c_{j} \rightarrow \infty\right.
$$

Consider $H^{k}:=\cup_{j \in \mathbb{N}} B_{j}^{k}$. We apply the wriggling process to $H^{k} \rightarrow$ done!

Minimization of the relaxed functional

Definition

Give $(E, \mu) \in \mathfrak{S}$, we define the total mass

$$
\overline{\mathcal{M}}(E, \mu):=\rho|E|+\mu\left(\mathbb{R}^{n}\right)
$$

Minimization of the relaxed functional

Definition

Give $(E, \mu) \in \mathfrak{S}$, we define the total mass

$$
\overline{\mathcal{M}}(E, \mu):=\rho|E|+\mu\left(\mathbb{R}^{n}\right)
$$

Definition

For $m>0$, we define the admissible class of competitors

$$
\overline{\mathrm{Cl}}(m):=\{(E, \mu) \in \mathfrak{S}: \overline{\mathcal{M}}(E, \mu)=m\}
$$

Minimization of the relaxed functional

Definition

Give $(E, \mu) \in \mathfrak{S}$, we define the total mass

$$
\overline{\mathcal{M}}(E, \mu):=\rho|E|+\mu\left(\mathbb{R}^{n}\right)
$$

Definition

For $m>0$, we define the admissible class of competitors

$$
\overline{\mathrm{Cl}}(m):=\{(E, \mu) \in \mathfrak{S}: \overline{\mathcal{M}}(E, \mu)=m\}
$$

We are interested in the following constrained minimization problem

$$
\bar{\gamma}_{m}:=\inf \{\overline{\mathcal{F}}(E, \mu):(E, \mu) \in \overline{\mathrm{Cl}}(m)\}
$$

Minimization of the relaxed functional

Theorem
 Fix $m>0$. Assume ψ behaves nicely at $s=0$ and at infinity (technical conditions).

Minimization of the relaxed functional

Theorem

Fix $m>0$. Assume ψ behaves nicely at $s=0$ and at infinity (technical conditions). Then, there exist $R>0$ and $0<c<s_{0}$ such that $\left(B_{R}, c\right) \in \overline{C l}(m)$ and

$$
\overline{\mathcal{F}}\left(B_{R}, c\right)=\bar{\gamma}_{m}=\gamma_{m}
$$

Minimization of the relaxed functional

Theorem

Fix $m>0$. Assume ψ behaves nicely at $s=0$ and at infinity (technical conditions). Then, there exist $R>0$ and $0<c<s_{0}$ such that ($\left.B_{R}, c\right) \in \overline{C l}(m)$ and

$$
\overline{\mathcal{F}}\left(B_{R}, c\right)=\bar{\gamma}_{m}=\gamma_{m} .
$$

Moreover, every minimizing couple $(E, \mu) \in \overline{C l}(m)$ is such that either E is a ball or $E=\emptyset$.

Minimization of the relaxed functional

Theorem

Fix $m>0$. Assume ψ behaves nicely at $s=0$ and at infinity (technical conditions). Then, there exist $R>0$ and $0<c<s_{0}$ such that ($\left.B_{R}, c\right) \in \overline{C l}(m)$ and

$$
\overline{\mathcal{F}}\left(B_{R}, c\right)=\bar{\gamma}_{m}=\gamma_{m} .
$$

Moreover, every minimizing couple $(E, \mu) \in \overline{C l}(m)$ is such that

$$
\text { either } E \text { is a ball or } E=\emptyset \text {. }
$$

Remark

Due to the presence of the singular part of the measure, minimizers of $\overline{\mathcal{F}}$ have less structure than minimizers of \mathcal{F}.

A diffuse phase approximation of the energy

For $\varepsilon>0$ define the diffuse energy $\mathcal{F}_{\varepsilon}: W^{1,2}\left(\mathbb{R}^{N}\right) \times C\left(\mathbb{R}^{N}\right) \rightarrow[0,+\infty]$ as

$$
\mathcal{F}_{\varepsilon}(\phi, u):=\int_{\mathbb{R}^{N}}\left(\frac{1}{\varepsilon} W(\phi)+\varepsilon|\nabla \phi|^{2}\right) \psi(u) \mathrm{d} x .
$$

where $W: \mathbb{R} \rightarrow \mathbb{R}$ is a double well potential.

A diffuse phase approximation of the energy

For $\varepsilon>0$ define the diffuse energy $\mathcal{F}_{\varepsilon}: W^{1,2}\left(\mathbb{R}^{N}\right) \times C\left(\mathbb{R}^{N}\right) \rightarrow[0,+\infty]$ as

$$
\mathcal{F}_{\varepsilon}(\phi, u):=\int_{\mathbb{R}^{N}}\left(\frac{1}{\varepsilon} W(\phi)+\varepsilon|\nabla \phi|^{2}\right) \psi(u) \mathrm{d} x
$$

where $W: \mathbb{R} \rightarrow \mathbb{R}$ is a double well potential.

Theorem

$\mathcal{F}_{\varepsilon} \xrightarrow{\Gamma} c_{W} \overline{\mathcal{F}}$.

A diffuse phase approximation of the energy

For $\varepsilon>0$ define the diffuse energy $\mathcal{F}_{\varepsilon}: W^{1,2}\left(\mathbb{R}^{N}\right) \times C\left(\mathbb{R}^{N}\right) \rightarrow[0,+\infty]$ as

$$
\mathcal{F}_{\varepsilon}(\phi, u):=\int_{\mathbb{R}^{N}}\left(\frac{1}{\varepsilon} W(\phi)+\varepsilon|\nabla \phi|^{2}\right) \psi(u) \mathrm{d} x
$$

where $W: \mathbb{R} \rightarrow \mathbb{R}$ is a double well potential.

Theorem

$\mathcal{F}_{\varepsilon} \xrightarrow{\Gamma} c_{W} \overline{\mathcal{F}}$.

Idea of the proof By the Modica-Mortola result, for any set $E \subset \mathbb{R}^{N}$ with finite perimeter there exists $\left\{\phi_{\varepsilon}\right\}_{\varepsilon>0}$ with $\phi_{\varepsilon} \rightarrow \mathbb{1}_{E}$, such that

$$
\left(\frac{1}{\varepsilon} W\left(\phi_{\varepsilon}\right)+\varepsilon\left|\nabla \phi_{\varepsilon}\right|^{2}\right) \mathcal{L}^{N} \xrightarrow{*} \mathcal{P}(E, \cdot)
$$

A diffuse phase approximation of the energy

For $\varepsilon>0$ define the diffuse energy $\mathcal{F}_{\varepsilon}: W^{1,2}\left(\mathbb{R}^{N}\right) \times C\left(\mathbb{R}^{N}\right) \rightarrow[0,+\infty]$ as

$$
\mathcal{F}_{\varepsilon}(\phi, u):=\int_{\mathbb{R}^{N}}\left(\frac{1}{\varepsilon} W(\phi)+\varepsilon|\nabla \phi|^{2}\right) \psi(u) \mathrm{d} x
$$

where $W: \mathbb{R} \rightarrow \mathbb{R}$ is a double well potential.

Theorem

$\mathcal{F}_{\varepsilon} \xrightarrow{\Gamma} c_{W} \overline{\mathcal{F}}$.

Idea of the proof By the Modica-Mortola result, for any set $E \subset \mathbb{R}^{N}$ with finite perimeter there exists $\left\{\phi_{\varepsilon}\right\}_{\varepsilon>0}$ with $\phi_{\varepsilon} \rightarrow \mathbb{1}_{E}$, such that

$$
\left(\frac{1}{\varepsilon} W\left(\phi_{\varepsilon}\right)+\varepsilon\left|\nabla \phi_{\varepsilon}\right|^{2}\right) \mathcal{L}^{N} \stackrel{*}{*} \mathcal{P}(E, \cdot) .
$$

So that $\mathcal{F}_{\varepsilon}(\phi, u) \sim \mathcal{F}(E, u)$.

A diffuse phase approximation of the energy

For $\varepsilon>0$ define the diffuse energy $\mathcal{F}_{\varepsilon}: W^{1,2}\left(\mathbb{R}^{N}\right) \times C\left(\mathbb{R}^{N}\right) \rightarrow[0,+\infty]$ as

$$
\mathcal{F}_{\varepsilon}(\phi, u):=\int_{\mathbb{R}^{N}}\left(\frac{1}{\varepsilon} W(\phi)+\varepsilon|\nabla \phi|^{2}\right) \psi(u) \mathrm{d} x .
$$

where $W: \mathbb{R} \rightarrow \mathbb{R}$ is a double well potential.

Theorem

$\mathcal{F}_{\varepsilon} \xrightarrow{\Gamma} c_{W} \overline{\mathcal{F}}$.

Idea of the proof By the Modica-Mortola result, for any set $E \subset \mathbb{R}^{N}$ with finite perimeter there exists $\left\{\phi_{\varepsilon}\right\}_{\varepsilon>0}$ with $\phi_{\varepsilon} \rightarrow \mathbb{1}_{E}$, such that

$$
\left(\frac{1}{\varepsilon} W\left(\phi_{\varepsilon}\right)+\varepsilon\left|\nabla \phi_{\varepsilon}\right|^{2}\right) \mathcal{L}^{N} \stackrel{*}{\rightharpoonup} \mathcal{P}(E, \cdot) .
$$

So that $\mathcal{F}_{\varepsilon}(\phi, u) \sim \mathcal{F}(E, u)$. Use the idea for the recovery sequence for $\overline{\mathcal{F}}$.

A discrete non-local approximation of the energy

Fix $R>0$. For $n \in \mathbb{N}$ let $X_{n}:=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{N}$ be such that x_{i} are chosen randomly in $B_{R}(0)$ uniformly.

A discrete non-local approximation of the energy

Fix $R>0$. For $n \in \mathbb{N}$ let $X_{n}:=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{N}$ be such that x_{i} are chosen randomly in $B_{R}(0)$ uniformly. For $p \geq 1$ and $n \in \mathbb{N}$ define the functional $\mathcal{G}_{n}^{(p)}: L^{1}\left(X_{n}\right) \rightarrow[0, \infty)$ by

$$
\mathcal{F}_{n}^{(p)}(v, u):=\frac{1}{n} \sum_{i=1}^{n}\left[\frac{1}{n} \sum_{j=1}^{n} \epsilon_{n}^{p-1} M_{i j}^{\epsilon_{n}}\left|\frac{v\left(x_{i}\right)-v\left(x_{j}\right)}{\epsilon_{n}}\right|^{p}+\frac{1}{\epsilon_{n}} W\left(v\left(x_{i}\right)\right)\right] \psi\left(u\left(x_{i}\right)\right)
$$

where

$$
M_{i j}^{\epsilon_{n}}:=\frac{1}{\epsilon_{n}^{d}} \eta\left(\frac{\left|x_{i}-x_{j}\right|}{\epsilon_{n}}\right),
$$

where $\eta \in C_{c}^{\infty}(\mathbb{R})$ is such that $\int_{\mathbb{R}} \eta(x) \mathrm{d} x=1$.

A discrete non-local approximation of the energy

Fix $R>0$. For $n \in \mathbb{N}$ let $X_{n}:=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{N}$ be such that x_{i} are chosen randomly in $B_{R}(0)$ uniformly. For $p \geq 1$ and $n \in \mathbb{N}$ define the functional $\mathcal{G}_{n}^{(p)}: L^{1}\left(X_{n}\right) \rightarrow[0, \infty)$ by

$$
\mathcal{F}_{n}^{(p)}(v, u):=\frac{1}{n} \sum_{i=1}^{n}\left[\frac{1}{n} \sum_{j=1}^{n} \epsilon_{n}^{p-1} M_{i j}^{\epsilon_{n}}\left|\frac{v\left(x_{i}\right)-v\left(x_{j}\right)}{\epsilon_{n}}\right|^{p}+\frac{1}{\epsilon_{n}} W\left(v\left(x_{i}\right)\right)\right] \psi\left(u\left(x_{i}\right)\right)
$$

where

$$
M_{i j}^{\epsilon_{n}}:=\frac{1}{\epsilon_{n}^{d}} \eta\left(\frac{\left|x_{i}-x_{j}\right|}{\epsilon_{n}}\right),
$$

where $\eta \in C_{c}^{\infty}(\mathbb{R})$ is such that $\int_{\mathbb{R}} \eta(x) \mathrm{d} x=1$.

Theorem (True at 93% (2% more w.r.t. last week!))

If $\epsilon_{n} \rightarrow 0$ with a certain rate, then $\mathcal{F}_{n}^{(p)} \xrightarrow{\Gamma} c_{\eta, p, W} \overline{\mathcal{F}}$.

Ongoing project/Future plans

Ongoing project/Future plans

- finish the above Γ-convergence theorem

Ongoing project/Future plans

- finish the above Γ-convergence theorem
- study the gradient flows of the 'sharp' energy and the approximate ones

Ongoing project/Future plans

- finish the above Γ-convergence theorem
- study the gradient flows of the 'sharp' energy and the approximate ones
- study the convergence of the solutions of the gradient flows (approximate -> sharp)

Ongoing project/Future plans

- finish the above Γ-convergence theorem
- study the gradient flows of the 'sharp' energy and the approximate ones
- study the convergence of the solutions of the gradient flows (approximate -> sharp)
- include more effects in the energy (more general materials)

That's all folks!

Thank you for your attention!

