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Time-dependent domains

Several problems in dynamic fracture mechanics lead to the study of the
wave equation in time-dependent domains.

The main difficulty is that at every time t the solution belongs to a
different function space Vt contained in an ambient space Hilbert space
H independent of t .

A common situation is Vt = H1(Ω \ Γt) and H = L2(Ω) , where Ω is a
bounded domain in Rd and Γt is a closed (d− 1)-dimensional subset of
Ω , representing the crack at time t .

A natural assumption on Γt is that it is monotonically increasing with
respect to t , thus encoding the fact that, once created, a crack cannot
disappear.

As a consequence, the spaces Vt are increasing in time too.
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Wave equation in time-dependent domains

Given u0 ∈ V0 (= H1(Ω \ Γ0)) and u1 ∈ H (= L2(Ω)) , the Cauchy
problem we are interested in is formally written as

u ′′(t) +Au(t) = 0 for a.e. t > 0 ,
u(t) ∈ Vt (= H1(Ω \ Γt)) for a.e. t > 0 ,
u(0) = u0 , u ′(0) = u1 ,

where ′ denotes the time derivative and A is a continuous and coercive
linear operator mapping Vt into its dual V∗t (A = −∆ in the examples).
Under suitable hypotheses on Vt and A , the existence of a solution has
been proven by Larsen and myself through a time-discrete approach, by
solving suitable incremental minimum problems and then passing to the
limit as the time step tends to zero.
The purpose of this talk is to show that a solution can be approximated
by global minimizers of suitable energy functionals defined as time
integrals on [0,∞) .
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General hypotheses on the spaces

H is a separable Hilbert space and (Vt)t∈[0,∞) is a family of separable
Hilbert spaces with the following properties:
(H1) for every t ∈ [0,∞) the space Vt is contained and dense in H with

continuous embedding;
(H2) for every s, t ∈ [0,∞) , with s < t , Vs is a closed subspace of Vt with

the induced scalar product; in particular, if 0 ≤ s < t and v ∈ Vs , then
we have ‖v‖Vs

= ‖v‖Vt
.

The dual of H is identified with H , while for every t ∈ [0,∞) the dual
of Vt is denoted by V∗t . Let 〈·, ·〉t be the duality product between V∗t
and Vt and let ‖ · ‖V∗

t
be the corresponding dual norm. The adjoint of

the continuous embedding of Vt into H provides a continuous
embedding of H into V∗t and H is dense in V∗t .

On the contrary, for 0 ≤ s < t the adjoint of the continuous embedding
of Vs into Vt is not injective from V∗t into V∗s , since Vs is not dense in
Vt .
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General hypotheses on the operator

Let V∞ :=
⋃
t≥0 Vt and let a : V∞ × V∞ → R be a bilinear symmetric

form satisfying the following conditions:
(H3) continuity: there exists M0 > 0 such that

|a(u, v)| ≤M0‖u‖Vt
‖v‖Vt

for every t ≥ 0 and u, v ∈ Vt;

(H4) weak coercivity: there exist λ0 ≥ 0 and ν0 > 0 such that

a(u, u) + λ0‖u‖2H ≥ ν0‖u‖2Vt
for every t ≥ 0 and u ∈ Vt ;

(H5) positive semidefiniteness: a(u, u) ≥ 0 for every u ∈ V∞ .
For every t ≥ 0 let At : Vt → V∗t be the continuous linear operator
defined by 〈Atu, v〉t := a(u, v) for every u, v ∈ Vt . Note that

‖Atu‖V∗
t
≤M0‖u‖Vt for every u ∈ Vt.

Finally, we set Q(u) := a(u, u) for every u ∈ V∞ .
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Definition of solution

Given T > 0 , we define W0,1
T := L2((0, T);VT ) ∩H1((0, T);H) , with

the Hilbert space structure induced by the scalar product

(u, v)W0,1
T

= (u, v)L2((0,T);VT ) + (u ′, v ′)L2((0,T);H).

In order to take into account the constraint u(t) ∈ Vt , we define

V0,1T := {u ∈ W0,1
T : u(t) ∈ Vt for a.e. t ∈ (0, T)} ,

and note that it is a closed subspace of W0,1
T .

We say that u is a weak solution of the equation

u ′′(t) +Atu(t) = 0, u(t) ∈ Vt for t ∈ [0,∞)

if for every T > 0 we have u ∈ V0,1T and∫ T
0

(u ′(t), ψ ′(t))Hdt =

∫ T
0

a(u(t), ψ(t))dt

for every ψ ∈ V0,1T with ψ(0) = ψ(T) = 0 .
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Existence and uniqueness

This definition is different from the one of DM-Larsen 2011, since we
use an integration by parts with respect to time. This allows us to avoid
the technical problem of the definition of u ′′(t) as an element of V∗t ,
where some difficulties come from the time dependence of the spaces.

The two definitions turn out to be equivalent (see DM-Toader 2018).

The existence of a solution with prescribed initial conditions (for u(0)
and u ′(0)) was proved in DM-Larsen 2011. A new proof, which avoids
the use of u ′′(t) , in given in DM-Toader 2018.

The uniqueness of the solution to the Cauchy problem is still open. So
far uniqueness has been proved only under very strong additional
assumptions on (Vt)t∈[0,∞) , which are satisfied in the case
Vt = H

1(Ω \ Γt) and H = L2(Ω) , when the cracks Γt are sufficiently
regular (d− 1)-dimensional manifolds and depend regularly on t .
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De Giorgi’s approach to the wave equation

The following conjecture by De Giorgi links the solution of a nonlinear
hyperbolic equation to a sequence of minimum problems.

Conjecture (De Giorgi, 1996 in a paper for a celebration of John Nash)

Let u0, u1 ∈ C∞
c (Rd) and let k > 1 be an integer; for every ε > 0 let uε be

a minimizer if the functional∫∞
0

e−t/ε
(
ε2‖u ′′(t)‖2L2(Ω) + ‖∇u(t)‖

2
L2(Ω;Rd) + ‖(u(t))

k‖2L2(Ω)

)
dt

in the class of all u satisfying u(0) = u0 and u ′(0) = u1 . Then for every
t > 0 there exists u(t) = lim

ε→0+uε(t) , and u satisfies the wave equation

u ′′(t) = ∆xu(t) − k(u(t))
2k−1 for t > 0.

This conjecture was proven by Serra and Tilli in 2012. A 2016 paper
contains more general results on the minimization approach to a large
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The function spaces for our minimum problems

Given T > 0 , we define W0,2
T := L2((0, T);VT ) ∩H2((0, T);H) , with

the Hilbert space structure induced by the scalar product

(u, v)W0,2
T

= (u, v)L2((0,T);VT ) + (u ′, v ′)L2((0,T);H) + (u ′′, v ′′)L2((0,T);H).

In order to take into account the constraint u(t) ∈ Vt , we define

V0,2T := {u ∈ W0,2
T : u(t) ∈ Vt for a.e. t ∈ (0, T)} ,

and note that it is a closed subspace of W0,2
T .

V0,2 is defined as the space of functions u : (0,+∞)→ H whose
restrictions to (0, T) belong to V0,2T for every T > 0 .
To take into account the initial conditions, given u0 ∈ V0 and u1 ∈ H ,
we set

V0,2(u0, u1) := {u ∈ V0,2 : u(0) = u0, u ′(0) = u1}.
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The minimum problems for time dependent domains

We fix u0 ∈ V0 , u1 ∈ H , and a sequence {u1ε} ⊂ V0 such that

‖u1ε − u1‖H → 0 as ε→ 0+ and ε‖u1ε‖V0 ≤ C1,

for some constant C1 > 0 .

For every ε > 0 we consider the functional

Fε(u) :=
1

2

∫∞
0

e−t/ε
(
ε2‖u ′′(t)‖2H +Q(u(t))

)
dt .

We consider the minimum problems

min
u∈V0,2(u0,u1ε)

Fε(u),

where

V0,2(u0, u1ε) := {u ∈ V0,2 : u(0) = u0, u ′(0) = u1ε}.
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Existence and uniqueness of minimizers

Theorem (DM-De Luca 2018)
For every ε ∈ (0, 1) the functional Fε admits a unique global minimizer uε
in the set V0,2(u0, u1ε) . Moreover,

Fε(uε) ≤ C̄ε,

for some constant C̄ > 0 depending only on ‖u0‖V0 and C1 .

Since t 7→ vε(t) := u
0 + tu1ε belongs to V0,2(u0, u1ε) , we have that

inf
u∈V0,2(u0,u1ε)

Fε(u) ≤ Fε(vε) ≤ C̄ε.

The existence of a solution follows from the direct methods of the
calculus of variations, since the set V0,2(u0, u1ε) is closed in W0,2

T and
the functional Fε is convex and lower semicontinuous in W0,2

T .
Uniqueness follows from strict convexity on V0,2(u0, u1ε) .
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Limit of minimizers

Theorem (DM-De Luca 2018)

For every ε ∈ (0, 1) let uε be the minimizer of Fε in V0,2(u0, u1ε) . Then for
every sequence {εn} ⊂ (0, 1) , with εn → 0 as n→∞ , there exist a
subsequence, not relabeled, and a weak solution u of

u ′′(t) +Atu(t) = 0, u(t) ∈ Vt for t ∈ [0,∞)

such that uεn ⇀ u weakly in W0,1
T for every T > 0 . Moreover the following

properties hold:

(a) weak continuity: u ∈ Cw([0, T ];VT ) and u ′ ∈ Cw([0, T ];H) for every
T > 0;

(b) initial conditions: u(0) = u0 and u ′(0) = u1 .

If, in addition, ε‖u1ε‖V0 → 0 as ε→ 0+ , then the energy inequality holds:

‖u ′(t)‖2H +Q(u(t)) ≤ ‖u1‖2H +Q(u0) for every t > 0 .
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Remarks

The previous theorem provides an alternative proof of the existence of a
weak solution u of

u ′′(t) +Atu(t) = 0, u(t) ∈ Vt for t ∈ [0,∞)

satisfying the initial conditions u(0) = u0 and u ′(0) = u1 .

In the case Vt = H1(Ω \ Γt) , H = L2(Ω) , and At = −∆ , the
Euler-Lagrange equation of the minimum problem solved by uε
formally reads as

ε2u ′′′′ε (t) − 2εu ′′′ε (t) + u ′′ε (t) − ∆uε(t) = 0 inΩ \ Γt,

and hence, letting ε→ 0 , one formally obtains a solution to the wave
equation in Ω \ Γt .

The proof is based on the estimates collected in the next theorem.
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Main estimates

Theorem (Main estimates)
There exists a constantC > 0 such that for every ε ∈ (0, 1) the minimizer uε
of Fε in V0,2(u0, u1ε) satisfies the estimates:∫ t+τ

t

Q(uε(s))ds ≤ Cτ for every t ≥ 0 and τ ≥ ε ,

‖uε(t)‖2H ≤ C(1+ t2) for every t ≥ 0,

‖u ′ε(t)‖H ≤ C for every t ≥ 0.

The proof of these estimates follows the lines of Serra-Tilli 2016 with an
important change, described in the next slide.
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Main change in the proof of the estimates

A step is obtained by using an inner variation uε(ϕδ(t)) for a suitable
function ϕδ : [0,∞)→ [0,∞) . Since in our case we have to require that
uε(ϕδ(t)) ∈ Vt for a.e. t > 0 , by the monotonicity of t 7→ Vt this
variation is admissible only if ϕδ(t) ≤ t for a.e. t > 0 .

By the technical definition of ϕδ , this inequality leads to the constraint
δ > 0 . Therefore the standard comparison between the functional on
uε(ϕδ(t)) and on the minimizer uε(t) , in the limit as δ→ 0+ , gives
only an inequality, instead of the equality proven in Serra-Tilli 2016.
This inequality, however, turns out to be enough to obtain the estimates
of the theorem with minor changes.

Gianni Dal Maso Wave equation on time-dependent domains Banff 14 / 16



Main change in the proof of the estimates

A step is obtained by using an inner variation uε(ϕδ(t)) for a suitable
function ϕδ : [0,∞)→ [0,∞) . Since in our case we have to require that
uε(ϕδ(t)) ∈ Vt for a.e. t > 0 , by the monotonicity of t 7→ Vt this
variation is admissible only if ϕδ(t) ≤ t for a.e. t > 0 .

By the technical definition of ϕδ , this inequality leads to the constraint
δ > 0 . Therefore the standard comparison between the functional on
uε(ϕδ(t)) and on the minimizer uε(t) , in the limit as δ→ 0+ , gives
only an inequality, instead of the equality proven in Serra-Tilli 2016.
This inequality, however, turns out to be enough to obtain the estimates
of the theorem with minor changes.

Gianni Dal Maso Wave equation on time-dependent domains Banff 14 / 16



Proof of the main theorem (first part)

By the estimates for every T > 0 the sequence {uεn} is equibounded in
W0,1
T and hence there exist a subsequence, not relabeled, and a function

u ∈ W0,1
T such that uεn ⇀ u weakly in W0,1

T . Moreover, since
{uεn} ⊂ V0,2T ⊂ V0,1T and V0,1T is a closed subspace of W0,1

T , we have
that u ∈ V0,1T .
For every T > 0 the Euler equation satisfied by uεn and an integration
by parts lead to∫ T
0

(u ′εn(t), ε
2
nψ
′′′(t) + 2εnψ

′′(t) +ψ ′(t))Hdt =

∫ T
0

a(uεn(t), ψ(t))dt.

for every ψ ∈ C∞
c ((0, T);VT ) with ψ(t) ∈ Vt for every t ∈ (0, T) .

To prove the previous result we have to approximate an arbitrary test
function ψ satisfying the constraint ψ(t) ∈ Vt for a.e. t > 0 by sums of
functions of the form ϕ(t)v with v ∈ Vs and ϕ ∈ C2(R) with
supp(ϕ) ⊂ [s,∞) , which still satisfy the constraint.
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Proof of the main theorem (conclusion)

For every T > 0 we can pass to the limit as n→∞ in the equality∫ T
0

(u ′εn(t), ε
2
nψ
′′′(t) + 2εnψ

′′(t) +ψ ′(t))Hdt =

∫ T
0

a(uεn(t), ψ(t))dt

and we obtain ∫ T
0

(u ′(t), ψ ′(t))Hdt =

∫ T
0

a(u(t), ψ(t))dt

for every ψ ∈ C∞
c ((0, T);VT ) with ψ(t) ∈ Vt for every t ∈ (0, T) .

An easy approximation argument shows that the same equality is
satisfied for every ψ ∈ V0,1T with ψ(0) = ψ(T) = 0 .
Therefore u is a weak solution of the equation

u ′′(t) +Atu(t) = 0, u(t) ∈ Vt for t ∈ [0,∞).

The weak continuity u ∈ Cw([0, T ];VT ) and u ′ ∈ Cw([0, T ];H) for
every T > 0 and the initial conditions u(0) = u0 and u ′(0) = u1 can
be obtained in a straightforward way.
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THANK YOU FOR YOUR ATTENTION!

AND MANY THANKS TO THE ORGANIZERS!
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