A minimization approach (in De Giorgi's style) to the wave equation on time-dependent domains

Gianni Dal Maso Lucia De Luca SISSA, Trieste, Italy

Topics in the Calculus of Variations: Recent Advances and New Trends BIRS, Banff, May 24, 2018

Gianni Dal Maso

- Several problems in dynamic fracture mechanics lead to the study of the wave equation in time-dependent domains.
- The main difficulty is that at every time t the solution belongs to a different function space V_t contained in an ambient space Hilbert space H independent of t.
- A common situation is $V_t = H^1(\Omega \setminus \Gamma_t)$ and $H = L^2(\Omega)$, where Ω is a bounded domain in \mathbb{R}^d and Γ_t is a closed (d-1)-dimensional subset of Ω , representing the crack at time t.
- A natural assumption on Γ_t is that it is monotonically increasing with respect to t, thus encoding the fact that, once created, a crack cannot disappear.
- As a consequence, the spaces V_t are increasing in time too.

- Several problems in dynamic fracture mechanics lead to the study of the wave equation in time-dependent domains.
- The main difficulty is that at every time t the solution belongs to a different function space V_t contained in an ambient space Hilbert space H independent of t.
- A common situation is $V_t = H^1(\Omega \setminus \Gamma_t)$ and $H = L^2(\Omega)$, where Ω is a bounded domain in \mathbb{R}^d and Γ_t is a closed (d-1)-dimensional subset of Ω , representing the crack at time t.
- A natural assumption on Γ_t is that it is monotonically increasing with respect to t, thus encoding the fact that, once created, a crack cannot disappear.
- As a consequence, the spaces V_t are increasing in time too.

- Several problems in dynamic fracture mechanics lead to the study of the wave equation in time-dependent domains.
- The main difficulty is that at every time t the solution belongs to a different function space V_t contained in an ambient space Hilbert space H independent of t.
- A common situation is $V_t = H^1(\Omega \setminus \Gamma_t)$ and $H = L^2(\Omega)$, where Ω is a bounded domain in \mathbb{R}^d and Γ_t is a closed (d-1)-dimensional subset of Ω , representing the crack at time t.
- A natural assumption on Γ_t is that it is monotonically increasing with respect to t, thus encoding the fact that, once created, a crack cannot disappear.
- As a consequence, the spaces V_t are increasing in time too.

- Several problems in dynamic fracture mechanics lead to the study of the wave equation in time-dependent domains.
- The main difficulty is that at every time t the solution belongs to a different function space V_t contained in an ambient space Hilbert space H independent of t.
- A common situation is $V_t = H^1(\Omega \setminus \Gamma_t)$ and $H = L^2(\Omega)$, where Ω is a bounded domain in \mathbb{R}^d and Γ_t is a closed (d-1)-dimensional subset of Ω , representing the crack at time t.
- A natural assumption on Γ_t is that it is monotonically increasing with respect to t, thus encoding the fact that, once created, a crack cannot disappear.
- As a consequence, the spaces V_t are increasing in time too.

- Several problems in dynamic fracture mechanics lead to the study of the wave equation in time-dependent domains.
- The main difficulty is that at every time t the solution belongs to a different function space V_t contained in an ambient space Hilbert space H independent of t.
- A common situation is $V_t = H^1(\Omega \setminus \Gamma_t)$ and $H = L^2(\Omega)$, where Ω is a bounded domain in \mathbb{R}^d and Γ_t is a closed (d-1)-dimensional subset of Ω , representing the crack at time t.
- A natural assumption on Γ_t is that it is monotonically increasing with respect to t, thus encoding the fact that, once created, a crack cannot disappear.
- As a consequence, the spaces V_t are increasing in time too.

• Given $\mathfrak{u}^0 \in V_0$ (= $H^1(\Omega \setminus \Gamma_0)$) and $\mathfrak{u}^1 \in H$ (= $L^2(\Omega)$), the Cauchy problem we are interested in is formally written as

$$\begin{cases} u''(t) + Au(t) = 0 & \text{for a.e. } t > 0, \\ u(t) \in V_t (= H^1(\Omega \setminus \Gamma_t)) & \text{for a.e. } t > 0, \\ u(0) = u^0, u'(0) = u^1, \end{cases}$$

where ' denotes the time derivative and A is a continuous and coercive linear operator mapping V_t into its dual V_t^* ($A = -\Delta$ in the examples).

- Under suitable hypotheses on V_t and A, the existence of a solution has been proven by Larsen and myself through a time-discrete approach, by solving suitable incremental minimum problems and then passing to the limit as the time step tends to zero.
- The purpose of this talk is to show that a solution can be approximated by global minimizers of suitable energy functionals defined as time integrals on [0,∞).

• Given $\mathfrak{u}^0 \in V_0$ (= $H^1(\Omega \setminus \Gamma_0)$) and $\mathfrak{u}^1 \in H$ (= $L^2(\Omega)$), the Cauchy problem we are interested in is formally written as

$$\begin{cases} u''(t) + Au(t) = 0 & \text{for a.e. } t > 0, \\ u(t) \in V_t \ (= H^1(\Omega \setminus \Gamma_t)) & \text{for a.e. } t > 0, \\ u(0) = u^0, \ u'(0) = u^1, \end{cases}$$

where ' denotes the time derivative and A is a continuous and coercive linear operator mapping V_t into its dual V_t^* ($A = -\Delta$ in the examples).

- Under suitable hypotheses on V_t and A, the existence of a solution has been proven by Larsen and myself through a time-discrete approach, by solving suitable incremental minimum problems and then passing to the limit as the time step tends to zero.
- The purpose of this talk is to show that a solution can be approximated by global minimizers of suitable energy functionals defined as time integrals on [0, ∞).

• Given $\mathfrak{u}^0 \in V_0$ (= $H^1(\Omega \setminus \Gamma_0)$) and $\mathfrak{u}^1 \in H$ (= $L^2(\Omega)$), the Cauchy problem we are interested in is formally written as

$$\begin{cases} u''(t) + Au(t) = 0 & \text{for a.e. } t > 0, \\ u(t) \in V_t (= H^1(\Omega \setminus \Gamma_t)) & \text{for a.e. } t > 0, \\ u(0) = u^0, u'(0) = u^1, \end{cases}$$

where ' denotes the time derivative and A is a continuous and coercive linear operator mapping V_t into its dual V_t^* ($A = -\Delta$ in the examples).

- Under suitable hypotheses on V_t and A, the existence of a solution has been proven by Larsen and myself through a time-discrete approach, by solving suitable incremental minimum problems and then passing to the limit as the time step tends to zero.
- The purpose of this talk is to show that a solution can be approximated by global minimizers of suitable energy functionals defined as time integrals on [0, ∞).

- H is a separable Hilbert space and (V_t)_{t∈[0,∞)} is a family of separable Hilbert spaces with the following properties:
 - (H1) for every $t \in [0,\infty)$ the space V_t is contained and dense in H with continuous embedding;
 - (H2) for every $s, t \in [0, \infty)$, with s < t, V_s is a closed subspace of V_t with the induced scalar product; in particular, if $0 \le s < t$ and $\nu \in V_s$, then we have $\|\nu\|_{V_s} = \|\nu\|_{V_t}$.
- The dual of H is identified with H, while for every $t \in [0,\infty)$ the dual of V_t is denoted by V_t^* . Let $\langle \cdot, \cdot \rangle_t$ be the duality product between V_t^* and V_t and let $\|\cdot\|_{V_t^*}$ be the corresponding dual norm. The adjoint of the continuous embedding of V_t into H provides a continuous embedding of H into V_t^* and H is dense in V_t^* .
- On the contrary, for $0 \le s < t$ the adjoint of the continuous embedding of V_s into V_t is not injective from V_t^* into V_s^* , since V_s is not dense in V_t .

- H is a separable Hilbert space and (V_t)_{t∈[0,∞)} is a family of separable Hilbert spaces with the following properties:
 - (H1) for every $t \in [0, \infty)$ the space V_t is contained and dense in H with continuous embedding;
 - (H2) for every $s, t \in [0, \infty)$, with s < t, V_s is a closed subspace of V_t with the induced scalar product; in particular, if $0 \le s < t$ and $\nu \in V_s$, then we have $\|\nu\|_{V_s} = \|\nu\|_{V_t}$.
- The dual of H is identified with H, while for every $t \in [0,\infty)$ the dual of V_t is denoted by V_t^* . Let $\langle \cdot, \cdot \rangle_t$ be the duality product between V_t^* and V_t and let $\|\cdot\|_{V_t^*}$ be the corresponding dual norm. The adjoint of the continuous embedding of V_t into H provides a continuous embedding of H into V_t^* and H is dense in V_t^* .
- On the contrary, for $0 \le s < t$ the adjoint of the continuous embedding of V_s into V_t is not injective from V_t^* into V_s^* , since V_s is not dense in V_t .

- H is a separable Hilbert space and (V_t)_{t∈[0,∞)} is a family of separable Hilbert spaces with the following properties:
 - (H1) for every $t \in [0, \infty)$ the space V_t is contained and dense in H with continuous embedding;
 - (H2) for every $s, t \in [0, \infty)$, with s < t, V_s is a closed subspace of V_t with the induced scalar product; in particular, if $0 \le s < t$ and $v \in V_s$, then we have $\|v\|_{V_s} = \|v\|_{V_t}$.
- The dual of H is identified with H, while for every $t \in [0,\infty)$ the dual of V_t is denoted by V_t^* . Let $\langle \cdot, \cdot \rangle_t$ be the duality product between V_t^* and V_t and let $\|\cdot\|_{V_t^*}$ be the corresponding dual norm. The adjoint of the continuous embedding of V_t into H provides a continuous embedding of H into V_t^* and H is dense in V_t^* .
- On the contrary, for $0 \le s < t$ the adjoint of the continuous embedding of V_s into V_t is not injective from V_t^* into V_s^* , since V_s is not dense in V_t .

- H is a separable Hilbert space and (V_t)_{t∈[0,∞)} is a family of separable Hilbert spaces with the following properties:
 - (H1) for every $t \in [0, \infty)$ the space V_t is contained and dense in H with continuous embedding;
 - (H2) for every $s, t \in [0, \infty)$, with s < t, V_s is a closed subspace of V_t with the induced scalar product; in particular, if $0 \le s < t$ and $v \in V_s$, then we have $\|v\|_{V_s} = \|v\|_{V_t}$.
- The dual of H is identified with H, while for every $t \in [0, \infty)$ the dual of V_t is denoted by V_t^* . Let $\langle \cdot, \cdot \rangle_t$ be the duality product between V_t^* and V_t and let $\| \cdot \|_{V_t^*}$ be the corresponding dual norm. The adjoint of the continuous embedding of V_t into H provides a continuous embedding of H into V_t^* and H is dense in V_t^* .
- On the contrary, for $0 \le s < t$ the adjoint of the continuous embedding of V_s into V_t is not injective from V_t^* into V_s^* , since V_s is not dense in V_t .

- H is a separable Hilbert space and (V_t)_{t∈[0,∞)} is a family of separable Hilbert spaces with the following properties:
 - (H1) for every $t \in [0, \infty)$ the space V_t is contained and dense in H with continuous embedding;
 - (H2) for every $s, t \in [0, \infty)$, with s < t, V_s is a closed subspace of V_t with the induced scalar product; in particular, if $0 \le s < t$ and $v \in V_s$, then we have $\|v\|_{V_s} = \|v\|_{V_t}$.
- The dual of H is identified with H, while for every $t \in [0, \infty)$ the dual of V_t is denoted by V_t^* . Let $\langle \cdot, \cdot \rangle_t$ be the duality product between V_t^* and V_t and let $\| \cdot \|_{V_t^*}$ be the corresponding dual norm. The adjoint of the continuous embedding of V_t into H provides a continuous embedding of H into V_t^* and H is dense in V_t^* .
- On the contrary, for $0 \le s < t$ the adjoint of the continuous embedding of V_s into V_t is not injective from V_t^* into V_s^* , since V_s is not dense in V_t .

• Let $V_{\infty} := \bigcup_{t \ge 0} V_t$ and let $a \colon V_{\infty} \times V_{\infty} \to \mathbb{R}$ be a bilinear symmetric form satisfying the following conditions:

(H3) continuity: there exists $M_0 > 0$ such that

 $|a(u,\nu)| \leq M_0 \|u\|_{V_t} \|\nu\|_{V_t} \quad \text{for every } t \geq 0 \text{ and } u, \nu \in V_t;$

(H4) weak coercivity: there exist $\lambda_0 \geq 0$ and $\nu_0 > 0$ such that

 $a(u,u)+\lambda_0\|u\|_H^2\geq \nu_0\|u\|_{V_t}^2\quad \text{for every }t\geq 0 \text{ and } u\in V_t\,;$

(H5) positive semidefiniteness: $a(u, u) \ge 0$ for every $u \in V_{\infty}$.

• For every $t \ge 0$ let $A_t \colon V_t \to V_t^*$ be the continuous linear operator defined by $\langle A_t u, v \rangle_t := a(u, v)$ for every $u, v \in V_t$. Note that

 $\|A_t u\|_{V^*_t} \leq M_0 \|u\|_{V_t} \quad \text{for every } u \in V_t.$

 $|a(u,\nu)| \leq M_0 \|u\|_{V_t} \|\nu\|_{V_t} \quad \text{for every } t \geq 0 \text{ and } u, \nu \in V_t;$

(H4) weak coercivity: there exist $\lambda_0 \ge 0$ and $\nu_0 > 0$ such that

 $a(u,u)+\lambda_0\|u\|_H^2\geq \nu_0\|u\|_{V_t}^2\quad \text{for every }t\geq 0 \text{ and } u\in V_t\,;$

(H5) positive semidefiniteness: $a(u, u) \ge 0$ for every $u \in V_{\infty}$.

• For every $t \ge 0$ let $A_t \colon V_t \to V_t^*$ be the continuous linear operator defined by $\langle A_t u, v \rangle_t := a(u, v)$ for every $u, v \in V_t$. Note that

 $\|A_t u\|_{V^*_t} \leq M_0 \|u\|_{V_t} \quad \text{for every } u \in V_t.$

 $|a(u,\nu)| \leq M_0 \|u\|_{V_t} \|\nu\|_{V_t} \quad \text{for every } t \geq 0 \text{ and } u, \nu \in V_t;$

(H4) weak coercivity: there exist $\lambda_0 \ge 0$ and $\nu_0 > 0$ such that

 $a(u,u)+\lambda_0\|u\|_H^2\geq \nu_0\|u\|_{V_t}^2\quad \text{for every }t\geq 0 \text{ and } u\in V_t\,;$

(H5) positive semidefiniteness: $a(u, u) \ge 0$ for every $u \in V_{\infty}$.

• For every $t \ge 0$ let $A_t \colon V_t \to V_t^*$ be the continuous linear operator defined by $\langle A_t u, v \rangle_t := a(u, v)$ for every $u, v \in V_t$. Note that

 $\|A_t u\|_{V^*_t} \leq M_0 \|u\|_{V_t} \quad \text{for every } u \in V_t.$

 $|a(u,\nu)| \leq M_0 \|u\|_{V_t} \|\nu\|_{V_t} \quad \text{for every } t \geq 0 \text{ and } u, \nu \in V_t;$

(H4) weak coercivity: there exist $\lambda_0 \ge 0$ and $\nu_0 > 0$ such that

 $a(u,u)+\lambda_0\|u\|_H^2\geq \nu_0\|u\|_{V_t}^2\quad \text{for every }t\geq 0 \text{ and } u\in V_t\,;$

(H5) positive semidefiniteness: $a(u,u) \geq 0 \quad \text{for every } u \in V_\infty$.

• For every $t \ge 0$ let $A_t \colon V_t \to V_t^*$ be the continuous linear operator defined by $\langle A_t u, v \rangle_t := a(u, v)$ for every $u, v \in V_t$. Note that

 $\|A_t u\|_{V^*_t} \leq M_0 \|u\|_{V_t} \quad \text{for every } u \in V_t.$

 $|a(u,\nu)| \leq M_0 \|u\|_{V_t} \|\nu\|_{V_t} \quad \text{for every } t \geq 0 \text{ and } u, \nu \in V_t;$

(H4) weak coercivity: there exist $\lambda_0 \ge 0$ and $\nu_0 > 0$ such that

 $a(u,u)+\lambda_0\|u\|_H^2\geq \nu_0\|u\|_{V_t}^2\quad \text{for every }t\geq 0 \text{ and } u\in V_t\,;$

(H5) positive semidefiniteness: $a(u,u) \geq 0 \quad \text{for every } u \in V_\infty$.

• For every $t \ge 0$ let $A_t \colon V_t \to V_t^*$ be the continuous linear operator defined by $\langle A_t u, v \rangle_t := a(u, v)$ for every $u, v \in V_t$. Note that

 $\|A_t u\|_{V_t^*} \leq M_0 \|u\|_{V_t} \quad \text{for every } u \in V_t.$

 $|a(u,\nu)| \leq M_0 \|u\|_{V_t} \|\nu\|_{V_t} \quad \text{for every } t \geq 0 \text{ and } u, \nu \in V_t;$

(H4) weak coercivity: there exist $\lambda_0 \ge 0$ and $\nu_0 > 0$ such that

 $a(u,u)+\lambda_0\|u\|_H^2\geq \nu_0\|u\|_{V_t}^2\quad \text{for every }t\geq 0 \text{ and } u\in V_t\,;$

(H5) positive semidefiniteness: $a(u,u) \geq 0 \quad \text{for every } u \in V_\infty$.

• For every $t \ge 0$ let $A_t \colon V_t \to V_t^*$ be the continuous linear operator defined by $\langle A_t u, v \rangle_t := a(u, v)$ for every $u, v \in V_t$. Note that

 $\|A_t u\|_{V_t^*} \leq M_0 \|u\|_{V_t} \quad \text{for every } u \in V_t.$

Definition of solution

• Given T > 0, we define $\mathcal{W}_T^{0,1} := L^2((0,T); V_T) \cap H^1((0,T); H)$, with the Hilbert space structure induced by the scalar product

 $(u,\nu)_{\mathcal{W}^{0,1}_T}=(u,\nu)_{L^2((0,T);V_T)}+(u',\nu')_{L^2((0,T);H)}.$

 $\bullet\,$ In order to take into account the constraint $\,u(t)\in V_t$, we define

 $\mathcal{V}_T^{0,1} := \{ u \in \mathcal{W}_T^{0,1} \, : \, u(t) \in V_t \text{ for a.e. } t \in (0,T) \},\$

and note that it is a closed subspace of $\mathcal{W}_{T}^{0,1}$.

• We say that \mathbf{u} is a weak solution of the equation

 $\mathfrak{u}''(t) + A_t\mathfrak{u}(t) = 0, \quad \mathfrak{u}(t) \in V_t \qquad \text{for } t \in [0,\infty)$

if for every T > 0 we have $u \in \mathcal{V}_T^{0,1}$ and

$$\int_0^T (\mathfrak{u}'(t), \psi'(t))_H dt = \int_0^T \mathfrak{a}(\mathfrak{u}(t), \psi(t)) dt$$

for every $\psi \in \mathcal{V}_T^{0,1}$ with $\psi(0) = \psi(T) = 0$.

Definition of solution

• Given T > 0, we define $\mathcal{W}_T^{0,1} := L^2((0,T); V_T) \cap H^1((0,T); H)$, with the Hilbert space structure induced by the scalar product

 $(\mathfrak{u},\nu)_{\mathcal{W}_T^{0,1}}=(\mathfrak{u},\nu)_{L^2((0,T);V_T)}+(\mathfrak{u}',\nu')_{L^2((0,T);H)}.$

• In order to take into account the constraint $u(t) \in V_t,$ we define

 $\mathcal{V}_T^{0,1}:=\{u\in\mathcal{W}_T^{0,1}\,:\,u(t)\in V_t \text{ for a.e. }t\in(0,T)\},$

and note that it is a closed subspace of $\mathcal{W}_{T}^{0,1}$.

• We say that u is a weak solution of the equation

 $\mathfrak{u}''(t) + A_t \mathfrak{u}(t) = 0, \quad \mathfrak{u}(t) \in V_t \qquad \text{for } t \in [0, \infty)$

if for every T > 0 we have $u \in \mathcal{V}_T^{0,1}$ and

$$\int_0^T (\mathfrak{u}'(t), \psi'(t))_H dt = \int_0^T \mathfrak{a}(\mathfrak{u}(t), \psi(t)) dt$$

for every $\psi \in \mathcal{V}_T^{0,1}$ with $\psi(0) = \psi(T) = 0$.

Definition of solution

• Given T > 0, we define $\mathcal{W}_T^{0,1} := L^2((0,T); V_T) \cap H^1((0,T); H)$, with the Hilbert space structure induced by the scalar product

 $(u,\nu)_{\mathcal{W}_T^{0,1}} = (u,\nu)_{L^2((0,T);V_T)} + (u',\nu')_{L^2((0,T);H)}.$

 $\bullet\,$ In order to take into account the constraint $u(t)\in V_t,$ we define

 $\mathcal{V}_T^{0,1} := \{ u \in \mathcal{W}_T^{0,1} \, : \, u(t) \in V_t \text{ for a.e. } t \in (0,T) \},$

and note that it is a closed subspace of $\mathcal{W}_{T}^{0,1}$.

• We say that **u** is a weak solution of the equation

 $u''(t) + A_t u(t) = 0, \quad u(t) \in V_t \qquad \text{for } t \in [0,\infty)$

if for every T > 0 we have $u \in \mathcal{V}_T^{0,1}$ and

$$\int_0^T (\mathfrak{u}'(t), \psi'(t))_H dt = \int_0^T \mathfrak{a}(\mathfrak{u}(t), \psi(t)) dt$$

for every $\psi\in \mathcal{V}_T^{0,1}$ with $\psi(0)=\psi(T)=0.$

- This definition is different from the one of DM-Larsen 2011, since we use an integration by parts with respect to time. This allows us to avoid the technical problem of the definition of u"(t) as an element of V^{*}_t, where some difficulties come from the time dependence of the spaces.
- The two definitions turn out to be equivalent (see DM-Toader 2018).
- The existence of a solution with prescribed initial conditions (for u(0) and u'(0)) was proved in DM-Larsen 2011. A new proof, which avoids the use of u''(t), in given in DM-Toader 2018.
- The uniqueness of the solution to the Cauchy problem is still open. So far uniqueness has been proved only under very strong additional assumptions on $(V_t)_{t \in [0,\infty)}$, which are satisfied in the case $V_t = H^1(\Omega \setminus \Gamma_t)$ and $H = L^2(\Omega)$, when the cracks Γ_t are sufficiently regular (d-1)-dimensional manifolds and depend regularly on t.

- This definition is different from the one of DM-Larsen 2011, since we use an integration by parts with respect to time. This allows us to avoid the technical problem of the definition of u"(t) as an element of V^{*}_t, where some difficulties come from the time dependence of the spaces.
- The two definitions turn out to be equivalent (see DM-Toader 2018).
- The existence of a solution with prescribed initial conditions (for u(0) and u'(0)) was proved in DM-Larsen 2011. A new proof, which avoids the use of u"(t), in given in DM-Toader 2018.
- The uniqueness of the solution to the Cauchy problem is still open. So far uniqueness has been proved only under very strong additional assumptions on $(V_t)_{t \in [0,\infty)}$, which are satisfied in the case $V_t = H^1(\Omega \setminus \Gamma_t)$ and $H = L^2(\Omega)$, when the cracks Γ_t are sufficiently regular (d-1)-dimensional manifolds and depend regularly on t.

- This definition is different from the one of DM-Larsen 2011, since we use an integration by parts with respect to time. This allows us to avoid the technical problem of the definition of u"(t) as an element of V_t^{*}, where some difficulties come from the time dependence of the spaces.
- The two definitions turn out to be equivalent (see DM-Toader 2018).
- The existence of a solution with prescribed initial conditions (for u(0) and u'(0)) was proved in DM-Larsen 2011. A new proof, which avoids the use of u''(t), in given in DM-Toader 2018.
- The uniqueness of the solution to the Cauchy problem is still open. So far uniqueness has been proved only under very strong additional assumptions on $(V_t)_{t \in [0,\infty)}$, which are satisfied in the case $V_t = H^1(\Omega \setminus \Gamma_t)$ and $H = L^2(\Omega)$, when the cracks Γ_t are sufficiently regular (d-1)-dimensional manifolds and depend regularly on t.

- This definition is different from the one of DM-Larsen 2011, since we use an integration by parts with respect to time. This allows us to avoid the technical problem of the definition of u"(t) as an element of V_t^{*}, where some difficulties come from the time dependence of the spaces.
- The two definitions turn out to be equivalent (see DM-Toader 2018).
- The existence of a solution with prescribed initial conditions (for u(0) and u'(0)) was proved in DM-Larsen 2011. A new proof, which avoids the use of u"(t), in given in DM-Toader 2018.
- The uniqueness of the solution to the Cauchy problem is still open. So far uniqueness has been proved only under very strong additional assumptions on $(V_t)_{t \in [0,\infty)}$, which are satisfied in the case $V_t = H^1(\Omega \setminus \Gamma_t)$ and $H = L^2(\Omega)$, when the cracks Γ_t are sufficiently regular (d-1)-dimensional manifolds and depend regularly on t.

• The following conjecture by De Giorgi links the solution of a nonlinear hyperbolic equation to a sequence of minimum problems.

Conjecture (De Giorgi, 1996 in a paper for a celebration of John Nash)

Let $\mathfrak{u}^0, \mathfrak{u}^1 \in C^\infty_c(\mathbb{R}^d)$ and let k > 1 be an integer; for every $\varepsilon > 0$ let $\mathfrak{u}_{\varepsilon}$ be a minimizer if the functional

 $\int_{0}^{\infty} e^{-t/\varepsilon} \left(\varepsilon^{2} \| \mathbf{u}''(t) \|_{L^{2}(\Omega)}^{2} + \| \nabla \mathbf{u}(t) \|_{L^{2}(\Omega;\mathbb{R}^{d})}^{2} + \| (\mathbf{u}(t))^{k} \|_{L^{2}(\Omega)}^{2} \right) dt$ in the class of all \mathbf{u} satisfying $\mathbf{u}(0) = \mathbf{u}^{0}$ and $\mathbf{u}'(0) = \mathbf{u}^{1}$. Then for every t > 0 there exists $\mathbf{u}(t) = \lim_{\varepsilon \to 0^{+}} \mathbf{u}_{\varepsilon}(t)$, and \mathbf{u} satisfies the wave equation $\mathbf{u}''(t) = \Delta_{x}\mathbf{u}(t) - \mathbf{k}(\mathbf{u}(t))^{2k-1}$ for t > 0.

• This conjecture was proven by Serra and Tilli in 2012. A 2016 paper contains more general results on the minimization approach to a large class of nonlinear hyperbolic Cauchy problems.

• The following conjecture by De Giorgi links the solution of a nonlinear hyperbolic equation to a sequence of minimum problems.

Conjecture (De Giorgi, 1996 in a paper for a celebration of John Nash)

Let $u^0, u^1 \in C^\infty_c(\mathbb{R}^d)$ and let k > 1 be an integer; for every $\varepsilon > 0$ let u_ε be a minimizer if the functional

$$\begin{split} &\int_{0}^{\infty} e^{-t/\epsilon} \left(\epsilon^{2} \| u''(t) \|_{L^{2}(\Omega)}^{2} + \| \nabla u(t) \|_{L^{2}(\Omega;\mathbb{R}^{d})}^{2} + \| (u(t))^{k} \|_{L^{2}(\Omega)}^{2} \right) dt \\ & \text{in the class of all } u \text{ satisfying } u(0) = u^{0} \text{ and } u'(0) = u^{1}. \text{ Then for every} \\ t > 0 \text{ there exists } u(t) = \lim_{\epsilon \to 0+} u_{\epsilon}(t), \text{ and } u \text{ satisfies the wave equation} \\ & u''(t) = \Delta_{x} u(t) - k(u(t))^{2k-1} \quad \text{for } t > 0. \end{split}$$

• This conjecture was proven by Serra and Tilli in 2012. A 2016 paper contains more general results on the minimization approach to a large class of nonlinear hyperbolic Cauchy problems.

• The following conjecture by De Giorgi links the solution of a nonlinear hyperbolic equation to a sequence of minimum problems.

Conjecture (De Giorgi, 1996 in a paper for a celebration of John Nash)

Let $u^0, u^1 \in C^\infty_c(\mathbb{R}^d)$ and let k > 1 be an integer; for every $\varepsilon > 0$ let u_ε be a minimizer if the functional

$$\begin{split} &\int_{0}^{\infty} e^{-t/\epsilon} \left(\epsilon^{2} \| u''(t) \|_{L^{2}(\Omega)}^{2} + \| \nabla u(t) \|_{L^{2}(\Omega;\mathbb{R}^{d})}^{2} + \| (u(t))^{k} \|_{L^{2}(\Omega)}^{2} \right) dt \\ & \text{in the class of all } u \text{ satisfying } u(0) = u^{0} \text{ and } u'(0) = u^{1}. \text{ Then for every} \\ t > 0 \text{ there exists } u(t) = \lim_{\epsilon \to 0+} u_{\epsilon}(t), \text{ and } u \text{ satisfies the wave equation} \\ & u''(t) = \Delta_{x} u(t) - k(u(t))^{2k-1} \quad \text{for } t > 0. \end{split}$$

• This conjecture was proven by Serra and Tilli in 2012. A 2016 paper contains more general results on the minimization approach to a large class of nonlinear hyperbolic Cauchy problems.

The function spaces for our minimum problems

• Given T > 0, we define $\mathcal{W}_T^{0,2} := L^2((0,T); V_T) \cap H^2((0,T); H)$, with the Hilbert space structure induced by the scalar product

 $(\mathfrak{u},\nu)_{\mathcal{W}_{T}^{0,2}}=(\mathfrak{u},\nu)_{L^{2}((0,T);V_{T})}+(\mathfrak{u}',\nu')_{L^{2}((0,T);H)}+(\mathfrak{u}'',\nu'')_{L^{2}((0,T);H)}.$

• In order to take into account the constraint $u(t) \in V_t$, we define

 $\mathcal{V}_T^{0,2} := \{ u \in \mathcal{W}_T^{0,2} \, : \, u(t) \in V_t \text{ for a.e. } t \in (0,T) \},$

and note that it is a closed subspace of $\mathcal{W}^{0,2}_{\mathsf{T}}$.

- $\mathcal{V}^{0,2}$ is defined as the space of functions $\mathfrak{u}: (0, +\infty) \to H$ whose restrictions to (0, T) belong to $\mathcal{V}_T^{0,2}$ for every T > 0.
- To take into account the initial conditions, given $\mathfrak{u}^0 \in V_0$ and $\mathfrak{u}^1 \in H$, we set

$$\mathcal{V}^{0,2}(\mathfrak{u}^0,\mathfrak{u}^1):=\{\mathfrak{u}\in\mathcal{V}^{0,2}\,:\mathfrak{u}(0)=\mathfrak{u}^0,\,\mathfrak{u}'(0)=\mathfrak{u}^1\}.$$

The function spaces for our minimum problems

• Given T > 0, we define $\mathcal{W}_T^{0,2} := L^2((0,T); V_T) \cap H^2((0,T); H)$, with the Hilbert space structure induced by the scalar product

 $(\mathfrak{u},\nu)_{\mathcal{W}^{0,2}_{T}}=(\mathfrak{u},\nu)_{L^{2}((0,T);V_{T})}+(\mathfrak{u}',\nu')_{L^{2}((0,T);H)}+(\mathfrak{u}'',\nu'')_{L^{2}((0,T);H)}.$

 $\bullet\,$ In order to take into account the constraint $u(t)\in V_t,$ we define

 $\mathcal{V}_T^{0,2} := \{ u \in \mathcal{W}_T^{0,2} \, : \, u(t) \in V_t \text{ for a.e. } t \in (0,T) \},$

and note that it is a closed subspace of $\mathcal{W}_{T}^{0,2}$.

- $\mathcal{V}^{0,2}$ is defined as the space of functions $\mathfrak{u} \colon (0, +\infty) \to H$ whose restrictions to (0, T) belong to $\mathcal{V}_T^{0,2}$ for every T > 0.
- To take into account the initial conditions, given $\mathfrak{u}^0 \in V_0$ and $\mathfrak{u}^1 \in H$, we set

$$\mathcal{V}^{0,2}(\mathfrak{u}^0,\mathfrak{u}^1):=\{\mathfrak{u}\in\mathcal{V}^{0,2}\,:\mathfrak{u}(0)=\mathfrak{u}^0,\,\mathfrak{u}'(0)=\mathfrak{u}^1\}.$$

• Given T > 0, we define $\mathcal{W}_T^{0,2} := L^2((0,T); V_T) \cap H^2((0,T); H)$, with the Hilbert space structure induced by the scalar product

 $(\mathfrak{u},\nu)_{\mathcal{W}^{0,2}_{T}}=(\mathfrak{u},\nu)_{L^{2}((0,T);V_{T})}+(\mathfrak{u}',\nu')_{L^{2}((0,T);H)}+(\mathfrak{u}'',\nu'')_{L^{2}((0,T);H)}.$

 $\bullet\,$ In order to take into account the constraint $u(t)\in V_t,$ we define

 $\mathcal{V}_T^{0,2} := \{ u \in \mathcal{W}_T^{0,2} \, : \, u(t) \in V_t \text{ for a.e. } t \in (0,T) \},$

and note that it is a closed subspace of $W_T^{0,2}$.

- $\mathcal{V}^{0,2}$ is defined as the space of functions $u: (0, +\infty) \to H$ whose restrictions to (0, T) belong to $\mathcal{V}_T^{0,2}$ for every T > 0.
- To take into account the initial conditions, given $\mathfrak{u}^0 \in V_0$ and $\mathfrak{u}^1 \in H$, we set

$$\mathcal{V}^{0,2}(\mathfrak{u}^0,\mathfrak{u}^1):=\{\mathfrak{u}\in\mathcal{V}^{0,2}\,:\mathfrak{u}(0)=\mathfrak{u}^0,\,\mathfrak{u}'(0)=\mathfrak{u}^1\}.$$

• Given T > 0, we define $\mathcal{W}_T^{0,2} := L^2((0,T); V_T) \cap H^2((0,T); H)$, with the Hilbert space structure induced by the scalar product

 $(\mathfrak{u},\nu)_{\mathcal{W}^{0,2}_{T}}=(\mathfrak{u},\nu)_{L^{2}((0,T);V_{T})}+(\mathfrak{u}',\nu')_{L^{2}((0,T);H)}+(\mathfrak{u}'',\nu'')_{L^{2}((0,T);H)}.$

 $\bullet\,$ In order to take into account the constraint $u(t)\in V_t,$ we define

 $\mathcal{V}_T^{0,2} := \{ u \in \mathcal{W}_T^{0,2} \, : \, u(t) \in V_t \text{ for a.e. } t \in (0,T) \},$

and note that it is a closed subspace of $\mathcal{W}_{T}^{0,2}$.

- $\mathcal{V}^{0,2}$ is defined as the space of functions $u: (0, +\infty) \to H$ whose restrictions to (0, T) belong to $\mathcal{V}_T^{0,2}$ for every T > 0.
- To take into account the initial conditions, given $u^0 \in V_0$ and $u^1 \in H,$ we set

$$\mathcal{V}^{0,2}(\mathfrak{u}^0,\mathfrak{u}^1) := \{\mathfrak{u} \in \mathcal{V}^{0,2} : \mathfrak{u}(0) = \mathfrak{u}^0, \, \mathfrak{u}'(0) = \mathfrak{u}^1\}.$$

• We fix $\mathbf{u}^0 \in \mathbf{V}_0$, $\mathbf{u}^1 \in \mathbf{H}$, and a sequence $\{\mathbf{u}_{\varepsilon}^1\} \subset \mathbf{V}_0$ such that

 $\|u_{\epsilon}^1-u^1\|_{H} \to 0 \text{ as } \epsilon \to 0+ \quad \text{and} \quad \epsilon\|u_{\epsilon}^1\|_{V_0} \leq C_1,$

for some constant $C_1 > 0$.

• For every $\varepsilon > 0$ we consider the functional

$$\mathcal{F}_{\varepsilon}(\mathfrak{u}) \coloneqq \frac{1}{2} \int_0^{\infty} e^{-t/\varepsilon} \Big(\varepsilon^2 \|\mathfrak{u}''(t)\|_{H}^2 + \mathcal{Q}(\mathfrak{u}(t)) \Big) dt \,.$$

• We consider the minimum problems

 $\min_{\mathfrak{u}\in\mathcal{V}^{0,2}(\mathfrak{u}^0,\mathfrak{u}^1_{\epsilon})}\mathcal{F}_{\epsilon}(\mathfrak{u}),$

where

$$\mathcal{V}^{0,2}(\mathfrak{u}^0,\mathfrak{u}^1_{\epsilon}):=\{\mathfrak{u}\in\mathcal{V}^{0,2}\,:\mathfrak{u}(0)=\mathfrak{u}^0,\,\mathfrak{u}'(0)=\mathfrak{u}^1_{\epsilon}\}.$$

• We fix $\mathfrak{u}^0 \in V_0$, $\mathfrak{u}^1 \in H$, and a sequence $\{\mathfrak{u}^1_{\epsilon}\} \subset V_0$ such that

 $\|u_{\epsilon}^1-u^1\|_{H}\to 0 \text{ as } \epsilon\to 0+ \quad \text{and} \quad \epsilon\|u_{\epsilon}^1\|_{V_0}\leq C_1,$

for some constant $C_1 > 0$.

• For every $\varepsilon > 0$ we consider the functional

$$\mathcal{F}_{\varepsilon}(\mathfrak{u}) := \frac{1}{2} \int_0^{\infty} e^{-t/\varepsilon} \Big(\varepsilon^2 \|\mathfrak{u}''(t)\|_{H}^2 + \mathcal{Q}(\mathfrak{u}(t)) \Big) dt \,.$$

• We consider the minimum problems

 $\min_{\mathfrak{u}\in\mathcal{V}^{0,2}(\mathfrak{u}^0,\mathfrak{u}^1_{\epsilon})}\mathcal{F}_{\epsilon}(\mathfrak{u}),$

where

$$\mathcal{V}^{0,2}(\mathfrak{u}^0,\mathfrak{u}^1_{\epsilon}):=\{\mathfrak{u}\in\mathcal{V}^{0,2}\,:\mathfrak{u}(0)=\mathfrak{u}^0,\,\mathfrak{u}'(0)=\mathfrak{u}^1_{\epsilon}\}.$$

• We fix $\mathfrak{u}^0 \in V_0$, $\mathfrak{u}^1 \in H$, and a sequence $\{\mathfrak{u}^1_{\epsilon}\} \subset V_0$ such that

 $\|u_{\epsilon}^1-u^1\|_{H}\to 0 \text{ as } \epsilon\to 0+ \quad \text{and} \quad \epsilon\|u_{\epsilon}^1\|_{V_0}\leq C_1,$

for some constant $C_1 > 0$.

• For every $\varepsilon > 0$ we consider the functional

$$\mathcal{F}_{\epsilon}(\mathfrak{u}) := \frac{1}{2} \int_0^\infty e^{-t/\epsilon} \Big(\epsilon^2 \|\mathfrak{u}''(t)\|_H^2 + \mathcal{Q}(\mathfrak{u}(t)) \Big) dt \,.$$

• We consider the minimum problems

$$\min_{\mathfrak{u}\in\mathcal{V}^{0,2}(\mathfrak{u}^0,\mathfrak{u}^1_{\epsilon})}\mathcal{F}_{\epsilon}(\mathfrak{u}),$$

where

$$\mathcal{V}^{0,2}(\mathfrak{u}^0,\mathfrak{u}^1_\epsilon):=\{\mathfrak{u}\in\mathcal{V}^{0,2}\,:\mathfrak{u}(0)=\mathfrak{u}^0,\,\mathfrak{u}'(0)=\mathfrak{u}^1_\epsilon\}.$$

For every $\varepsilon \in (0, 1)$ the functional $\mathcal{F}_{\varepsilon}$ admits a unique global minimizer $\mathfrak{u}_{\varepsilon}$ in the set $\mathcal{V}^{0,2}(\mathfrak{u}^0, \mathfrak{u}^1_{\varepsilon})$. Moreover,

 $\mathcal{F}_{\varepsilon}(\mathfrak{u}_{\varepsilon}) \leq \bar{C}\varepsilon,$

for some constant $\bar{C} > 0$ depending only on $\|u^0\|_{V_0}$ and C_1 .

• Since $t \mapsto v_{\epsilon}(t) := u^{0} + tu^{1}_{\epsilon}$ belongs to $\mathcal{V}^{0,2}(u^{0}, u^{1}_{\epsilon})$, we have that $\inf_{u \in \mathcal{V}^{0,2}(u^{0}, u^{1}_{\epsilon})} \mathcal{F}_{\epsilon}(u) \leq \mathcal{F}_{\epsilon}(v_{\epsilon}) \leq \bar{C}\epsilon.$

The existence of a solution follows from the direct methods of the calculus of variations, since the set V^{0,2}(u⁰, u¹_ε) is closed in W^{0,2}_T and the functional F_ε is convex and lower semicontinuous in W^{0,2}_T.

• Uniqueness follows from strict convexity on $\mathcal{V}^{0,2}(\mathfrak{u}^0,\mathfrak{u}^1_\epsilon)$.

For every $\varepsilon \in (0, 1)$ the functional $\mathcal{F}_{\varepsilon}$ admits a unique global minimizer $\mathfrak{u}_{\varepsilon}$ in the set $\mathcal{V}^{0,2}(\mathfrak{u}^0, \mathfrak{u}^1_{\varepsilon})$. Moreover,

 $\mathcal{F}_{\epsilon}(\mathfrak{u}_{\epsilon})\leq \bar{C}\epsilon,$

for some constant $\bar{C} > 0$ depending only on $\|u^0\|_{V_0}$ and C_1 .

• Since $t \mapsto v_{\epsilon}(t) := u^{0} + tu^{1}_{\epsilon}$ belongs to $\mathcal{V}^{0,2}(u^{0}, u^{1}_{\epsilon})$, we have that $\inf_{u \in \mathcal{V}^{0,2}(u^{0}, u^{1}_{\epsilon})} \mathcal{F}_{\epsilon}(u) \leq \mathcal{F}_{\epsilon}(v_{\epsilon}) \leq \bar{C}\epsilon.$

The existence of a solution follows from the direct methods of the calculus of variations, since the set V^{0,2}(u⁰, u¹_ε) is closed in W^{0,2}_T and the functional F_ε is convex and lower semicontinuous in W^{0,2}_T.

• Uniqueness follows from strict convexity on $\mathcal{V}^{0,2}(\mathfrak{u}^0,\mathfrak{u}^1_\epsilon)$.

For every $\varepsilon \in (0, 1)$ the functional $\mathcal{F}_{\varepsilon}$ admits a unique global minimizer $\mathfrak{u}_{\varepsilon}$ in the set $\mathcal{V}^{0,2}(\mathfrak{u}^0, \mathfrak{u}^1_{\varepsilon})$. Moreover,

 $\mathcal{F}_{\varepsilon}(\mathfrak{u}_{\varepsilon}) \leq \bar{C}\varepsilon$,

for some constant $\bar{C} > 0$ depending only on $\|u^0\|_{V_0}$ and C_1 .

• Since $t \mapsto v_{\epsilon}(t) := u^0 + tu^1_{\epsilon}$ belongs to $\mathcal{V}^{0,2}(u^0, u^1_{\epsilon})$, we have that

 $\inf_{u\in \mathcal{V}^{0,2}(u^0,u_{\epsilon}^1)}\mathcal{F}_{\epsilon}(u)\leq \mathcal{F}_{\epsilon}(\nu_{\epsilon})\leq \bar{C}\epsilon.$

- The existence of a solution follows from the direct methods of the calculus of variations, since the set V^{0,2}(u⁰, u¹_ε) is closed in W^{0,2}_T and the functional F_ε is convex and lower semicontinuous in W^{0,2}_T.
- Uniqueness follows from strict convexity on $\mathcal{V}^{0,2}(\mathfrak{u}^0,\mathfrak{u}^1_\epsilon)$.

For every $\varepsilon \in (0, 1)$ the functional $\mathcal{F}_{\varepsilon}$ admits a unique global minimizer $\mathfrak{u}_{\varepsilon}$ in the set $\mathcal{V}^{0,2}(\mathfrak{u}^0, \mathfrak{u}^1_{\varepsilon})$. Moreover,

 $\mathcal{F}_{\epsilon}(\mathfrak{u}_{\epsilon}) \leq \bar{C}\epsilon,$

for some constant $\bar{C} > 0$ depending only on $\|u^0\|_{V_0}$ and C_1 .

• Since $t \mapsto v_{\epsilon}(t) := u^0 + tu^1_{\epsilon}$ belongs to $\mathcal{V}^{0,2}(u^0, u^1_{\epsilon})$, we have that

 $\inf_{u\in \mathcal{V}^{0,2}(u^0,u^1_\epsilon)}\mathcal{F}_\epsilon(u)\leq \mathcal{F}_\epsilon(\nu_\epsilon)\leq \bar{C}\epsilon.$

- The existence of a solution follows from the direct methods of the calculus of variations, since the set V^{0,2}(u⁰, u¹_ε) is closed in W^{0,2}_T and the functional F_ε is convex and lower semicontinuous in W^{0,2}_T.
- Uniqueness follows from strict convexity on $\mathcal{V}^{0,2}(\mathfrak{u}^0,\mathfrak{u}^1_\epsilon)$.

For every $\varepsilon \in (0,1)$ let $\mathfrak{u}_{\varepsilon}$ be the minimizer of $\mathcal{F}_{\varepsilon}$ in $\mathcal{V}^{0,2}(\mathfrak{u}^0,\mathfrak{u}^1_{\varepsilon})$. Then for every sequence $\{\varepsilon_n\} \subset (0,1)$, with $\varepsilon_n \to 0$ as $n \to \infty$, there exist a subsequence, not relabeled, and a weak solution \mathfrak{u} of

 $u''(t)+A_tu(t)=0, \quad u(t)\in V_t \qquad \textit{for } t\in [0,\infty)$

such that $\mathfrak{u}_{\mathfrak{e}_n} \rightharpoonup \mathfrak{u}$ weakly in $\mathcal{W}_T^{0,1}$ for every T > 0. Moreover the following properties hold:

(a) weak continuity: $u \in C_w([0,T];V_T)$ and $u' \in C_w([0,T];H)$ for every T > 0;

(b) initial conditions: $u(0) = u^0$ and $u'(0) = u^1$.

If, in addition, $\varepsilon \|u_{\varepsilon}^{1}\|_{V_{0}} \to 0$ as $\varepsilon \to 0+$, then the energy inequality holds: $\|u'(t)\|_{H}^{2} + Q(u(t)) \leq \|u^{1}\|_{H}^{2} + Q(u^{0})$ for every t > 0.

For every $\varepsilon \in (0,1)$ let $\mathfrak{u}_{\varepsilon}$ be the minimizer of $\mathcal{F}_{\varepsilon}$ in $\mathcal{V}^{0,2}(\mathfrak{u}^0,\mathfrak{u}^1_{\varepsilon})$. Then for every sequence $\{\varepsilon_n\} \subset (0,1)$, with $\varepsilon_n \to 0$ as $n \to \infty$, there exist a subsequence, not relabeled, and a weak solution \mathfrak{u} of

 $u''(t)+A_tu(t)=0, \quad u(t)\in V_t \qquad \textit{for } t\in [0,\infty)$

such that $u_{\varepsilon_n} \rightarrow u$ weakly in $W_T^{0,1}$ for every T > 0. Moreover the following properties hold:

(a) weak continuity: $u \in C_w([0,T];V_T)$ and $u' \in C_w([0,T];H)$ for every T > 0;

(b) *initial conditions:* $u(0) = u^0$ and $u'(0) = u^1$.

If, in addition, $\varepsilon \|u_{\varepsilon}^{1}\|_{V_{0}} \to 0$ as $\varepsilon \to 0+$, then the energy inequality holds: $\|u'(t)\|_{H}^{2} + Q(u(t)) \leq \|u^{1}\|_{H}^{2} + Q(u^{0})$ for every t > 0.

For every $\varepsilon \in (0,1)$ let $\mathfrak{u}_{\varepsilon}$ be the minimizer of $\mathcal{F}_{\varepsilon}$ in $\mathcal{V}^{0,2}(\mathfrak{u}^0,\mathfrak{u}^1_{\varepsilon})$. Then for every sequence $\{\varepsilon_n\} \subset (0,1)$, with $\varepsilon_n \to 0$ as $n \to \infty$, there exist a subsequence, not relabeled, and a weak solution \mathfrak{u} of

 $u''(t)+A_tu(t)=0, \quad u(t)\in V_t \qquad \textit{for } t\in [0,\infty)$

such that $u_{\varepsilon_n} \rightharpoonup u$ weakly in $W_T^{0,1}$ for every T > 0. Moreover the following properties hold:

- (a) weak continuity: $u \in C_w([0,T];V_T)$ and $u' \in C_w([0,T];H)$ for every T > 0;
- (b) initial conditions: $u(0) = u^0$ and $u'(0) = u^1$.

If, in addition, $\varepsilon \|u_{\varepsilon}^{1}\|_{V_{0}} \to 0$ as $\varepsilon \to 0+$, then the energy inequality holds: $\|u'(t)\|_{H}^{2} + Q(u(t)) \leq \|u^{1}\|_{H}^{2} + Q(u^{0})$ for every t > 0.

For every $\varepsilon \in (0,1)$ let $\mathfrak{u}_{\varepsilon}$ be the minimizer of $\mathcal{F}_{\varepsilon}$ in $\mathcal{V}^{0,2}(\mathfrak{u}^0,\mathfrak{u}^1_{\varepsilon})$. Then for every sequence $\{\varepsilon_n\} \subset (0,1)$, with $\varepsilon_n \to 0$ as $n \to \infty$, there exist a subsequence, not relabeled, and a weak solution \mathfrak{u} of

 $u''(t)+A_tu(t)=0, \quad u(t)\in V_t \qquad \textit{for } t\in [0,\infty)$

such that $\mathbf{u}_{\varepsilon_n} \rightharpoonup \mathbf{u}$ weakly in $\mathcal{W}_T^{0,1}$ for every T > 0. Moreover the following properties hold:

- (a) weak continuity: $u \in C_w([0,T];V_T)$ and $u' \in C_w([0,T];H)$ for every T > 0;
- (b) initial conditions: $u(0) = u^0$ and $u'(0) = u^1$.

If, in addition, $\varepsilon \| u_{\varepsilon}^{1} \|_{V_{0}} \to 0$ *as* $\varepsilon \to 0+$ *, then the energy inequality holds:*

 $\|u'(t)\|_{H}^{2}+Q(u(t))\leq\|u^{1}\|_{H}^{2}+Q(u^{0})\quad \textit{for every }t>0\,.$

• The previous theorem provides an alternative proof of the existence of a weak solution u of

 $u''(t)+A_tu(t)=0, \quad u(t)\in V_t \qquad \text{for } t\in [0,\infty)$

satisfying the initial conditions $u(0) = u^0$ and $u'(0) = u^1$.

• In the case $V_t = H^1(\Omega \setminus \Gamma_t)$, $H = L^2(\Omega)$, and $A_t = -\Delta$, the Euler-Lagrange equation of the minimum problem solved by u_{ε} formally reads as

 $\epsilon^2 u_\epsilon''''(t) - 2\epsilon u_\epsilon'''(t) + u_\epsilon''(t) - \Delta u_\epsilon(t) = 0 \qquad \text{in } \Omega \setminus \Gamma_t,$

and hence, letting $\epsilon \to 0$, one *formally* obtains a solution to the wave equation in $\Omega \setminus \Gamma_t$.

• The proof is based on the estimates collected in the next theorem.

• The previous theorem provides an alternative proof of the existence of a weak solution u of

 $u''(t)+A_tu(t)=0, \quad u(t)\in V_t \qquad \text{for } t\in [0,\infty)$

satisfying the initial conditions $u(0) = u^0$ and $u'(0) = u^1$.

• In the case $V_t = H^1(\Omega \setminus \Gamma_t)$, $H = L^2(\Omega)$, and $A_t = -\Delta$, the Euler-Lagrange equation of the minimum problem solved by u_{ε} formally reads as

 $\epsilon^2 u_\epsilon''''(t) - 2\epsilon u_\epsilon'''(t) + u_\epsilon''(t) - \Delta u_\epsilon(t) = 0 \qquad \text{in } \Omega \setminus \Gamma_t,$

and hence, letting $\epsilon \to 0$, one *formally* obtains a solution to the wave equation in $\Omega \setminus \Gamma_t$.

• The proof is based on the estimates collected in the next theorem.

• The previous theorem provides an alternative proof of the existence of a weak solution u of

 $u''(t)+A_tu(t)=0, \quad u(t)\in V_t \qquad \text{for } t\in [0,\infty)$

satisfying the initial conditions $u(0) = u^0$ and $u'(0) = u^1$.

• In the case $V_t = H^1(\Omega \setminus \Gamma_t)$, $H = L^2(\Omega)$, and $A_t = -\Delta$, the Euler-Lagrange equation of the minimum problem solved by u_{ε} formally reads as

 $\epsilon^2 u_\epsilon''''(t) - 2\epsilon u_\epsilon'''(t) + u_\epsilon''(t) - \Delta u_\epsilon(t) = 0 \qquad \text{in } \Omega \setminus \Gamma_t,$

and hence, letting $\epsilon \to 0$, one *formally* obtains a solution to the wave equation in $\Omega \setminus \Gamma_t$.

• The proof is based on the estimates collected in the next theorem.

Main estimates

Theorem (Main estimates)

There exists a constant C > 0 such that for every $\varepsilon \in (0, 1)$ the minimizer $\mathfrak{u}_{\varepsilon}$ of $\mathcal{F}_{\varepsilon}$ in $\mathcal{V}^{0,2}(\mathfrak{u}^0, \mathfrak{u}^1_{\varepsilon})$ satisfies the estimates:

$$\begin{split} &\int_{t}^{t+\tau} \mathcal{Q}(u_{\epsilon}(s)) ds \leq C \, \tau \quad \ \ \textit{for every } t \geq 0 \textit{ and } \tau \geq \epsilon \,, \\ &\|u_{\epsilon}(t)\|_{H}^{2} \leq C(1+t^{2}) \quad \ \ \textit{for every } t \geq 0, \\ &\|u_{\epsilon}'(t)\|_{H} \leq C \quad \ \ \textit{for every } t \geq 0. \end{split}$$

• The proof of these estimates follows the lines of Serra-Tilli 2016 with an important change, described in the next slide.

- A step is obtained by using an inner variation $u_{\epsilon}(\phi_{\delta}(t))$ for a suitable function $\phi_{\delta} \colon [0, \infty) \to [0, \infty)$. Since in our case we have to require that $u_{\epsilon}(\phi_{\delta}(t)) \in V_t$ for a.e. t > 0, by the monotonicity of $t \mapsto V_t$ this variation is admissible only if $\phi_{\delta}(t) \leq t$ for a.e. t > 0.
- By the technical definition of φ_δ, this inequality leads to the constraint δ > 0. Therefore the standard comparison between the functional on u_ε(φ_δ(t)) and on the minimizer u_ε(t), in the limit as δ → 0+, gives only an inequality, instead of the equality proven in Serra-Tilli 2016. This inequality, however, turns out to be enough to obtain the estimates of the theorem with minor changes.

- A step is obtained by using an inner variation $u_{\epsilon}(\phi_{\delta}(t))$ for a suitable function $\phi_{\delta} \colon [0, \infty) \to [0, \infty)$. Since in our case we have to require that $u_{\epsilon}(\phi_{\delta}(t)) \in V_t$ for a.e. t > 0, by the monotonicity of $t \mapsto V_t$ this variation is admissible only if $\phi_{\delta}(t) \leq t$ for a.e. t > 0.
- By the technical definition of φ_{δ} , this inequality leads to the constraint $\delta > 0$. Therefore the standard comparison between the functional on $u_{\epsilon}(\varphi_{\delta}(t))$ and on the minimizer $u_{\epsilon}(t)$, in the limit as $\delta \to 0+$, gives only an inequality, instead of the equality proven in Serra-Tilli 2016. This inequality, however, turns out to be enough to obtain the estimates of the theorem with minor changes.

Proof of the main theorem (first part)

- By the estimates for every T > 0 the sequence $\{u_{\epsilon_n}\}$ is equibounded in $\mathcal{W}_T^{0,1}$ and hence there exist a subsequence, not relabeled, and a function $u \in \mathcal{W}_T^{0,1}$ such that $u_{\epsilon_n} \rightharpoonup u$ weakly in $\mathcal{W}_T^{0,1}$. Moreover, since $\{u_{\epsilon_n}\} \subset \mathcal{V}_T^{0,2} \subset \mathcal{V}_T^{0,1}$ and $\mathcal{V}_T^{0,1}$ is a closed subspace of $\mathcal{W}_T^{0,1}$, we have that $u \in \mathcal{V}_T^{0,1}$.
- For every T>0 the Euler equation satisfied by u_{ϵ_n} and an integration by parts lead to

 $\int_0^T (u_{\epsilon_n}'(t), \epsilon_n^2 \psi'''(t) + 2\epsilon_n \psi''(t) + \psi'(t))_H dt = \int_0^T a(u_{\epsilon_n}(t), \psi(t)) dt.$

for every $\psi\in C^\infty_c((0,T);V_T)$ with $\psi(t)\in V_t$ for every $t\in (0,T)$.

• To prove the previous result we have to approximate an arbitrary test function ψ satisfying the constraint $\psi(t) \in V_t$ for a.e. t > 0 by sums of functions of the form $\phi(t)\nu$ with $\nu \in V_s$ and $\phi \in C^2(\mathbb{R})$ with $\sup p(\phi) \subset [s, \infty)$, which still satisfy the constraint.

- By the estimates for every T > 0 the sequence $\{u_{\epsilon_n}\}$ is equibounded in $\mathcal{W}_T^{0,1}$ and hence there exist a subsequence, not relabeled, and a function $u \in \mathcal{W}_T^{0,1}$ such that $u_{\epsilon_n} \rightharpoonup u$ weakly in $\mathcal{W}_T^{0,1}$. Moreover, since $\{u_{\epsilon_n}\} \subset \mathcal{V}_T^{0,2} \subset \mathcal{V}_T^{0,1}$ and $\mathcal{V}_T^{0,1}$ is a closed subspace of $\mathcal{W}_T^{0,1}$, we have that $u \in \mathcal{V}_T^{0,1}$.
- For every T>0 the Euler equation satisfied by u_{ϵ_n} and an integration by parts lead to

 $\int_0^T (\mathfrak{u}_{\epsilon_n}'(t), \epsilon_n^2 \psi'''(t) + 2\epsilon_n \psi''(t) + \psi'(t))_H dt = \int_0^T \mathfrak{a}(\mathfrak{u}_{\epsilon_n}(t), \psi(t)) dt.$

for every $\psi \in C_c^{\infty}((0,T);V_T)$ with $\psi(t) \in V_t$ for every $t \in (0,T)$.

• To prove the previous result we have to approximate an arbitrary test function ψ satisfying the constraint $\psi(t) \in V_t$ for a.e. t > 0 by sums of functions of the form $\phi(t)\nu$ with $\nu \in V_s$ and $\phi \in C^2(\mathbb{R})$ with $\sup p(\phi) \subset [s, \infty)$, which still satisfy the constraint.

- By the estimates for every T > 0 the sequence $\{u_{\epsilon_n}\}$ is equibounded in $\mathcal{W}_T^{0,1}$ and hence there exist a subsequence, not relabeled, and a function $u \in \mathcal{W}_T^{0,1}$ such that $u_{\epsilon_n} \rightharpoonup u$ weakly in $\mathcal{W}_T^{0,1}$. Moreover, since $\{u_{\epsilon_n}\} \subset \mathcal{V}_T^{0,2} \subset \mathcal{V}_T^{0,1}$ and $\mathcal{V}_T^{0,1}$ is a closed subspace of $\mathcal{W}_T^{0,1}$, we have that $u \in \mathcal{V}_T^{0,1}$.
- For every T>0 the Euler equation satisfied by u_{ϵ_n} and an integration by parts lead to

 $\int_0^T (\mathfrak{u}_{\epsilon_n}'(t), \epsilon_n^2 \psi'''(t) + 2\epsilon_n \psi''(t) + \psi'(t))_H dt = \int_0^T \mathfrak{a}(\mathfrak{u}_{\epsilon_n}(t), \psi(t)) dt.$

for every $\psi\in C^\infty_c((0,T);V_T)$ with $\psi(t)\in V_t$ for every $t\in (0,T)$.

To prove the previous result we have to approximate an arbitrary test function ψ satisfying the constraint ψ(t) ∈ V_t for a.e. t > 0 by sums of functions of the form φ(t)ν with ν ∈ V_s and φ ∈ C²(ℝ) with supp(φ) ⊂ [s,∞), which still satisfy the constraint.

• For every T > 0 we can pass to the limit as $n \to \infty$ in the equality $\int_0^T (u_{\epsilon_n}'(t), \epsilon_n^2 \psi'''(t) + 2\epsilon_n \psi''(t) + \psi'(t))_H dt = \int_0^T \alpha(u_{\epsilon_n}(t), \psi(t)) dt$

and we obtain

$$\int_0^T (\mathfrak{u}'(t), \psi'(t))_H dt = \int_0^T \mathfrak{a}(\mathfrak{u}(t), \psi(t)) dt$$

for every $\psi\in C^\infty_c((0,T);V_T)$ with $\psi(t)\in V_t$ for every $t\in (0,T).$

- An easy approximation argument shows that the same equality is satisfied for every $\psi \in \mathcal{V}_{T}^{0,1}$ with $\psi(0) = \psi(T) = 0$.
- Therefore u is a weak solution of the equation

 $u''(t)+A_tu(t)=0, \quad u(t)\in V_t \qquad \text{for } t\in [0,\infty).$

• The weak continuity $u \in C_w([0,T]; V_T)$ and $u' \in C_w([0,T]; H)$ for every T > 0 and the initial conditions $u(0) = u^0$ and $u'(0) = u^1$ can be obtained in a straightforward way.

• For every T > 0 we can pass to the limit as $n \to \infty$ in the equality $\int_0^T (u_{\epsilon_n}'(t), \epsilon_n^2 \psi'''(t) + 2\epsilon_n \psi''(t) + \psi'(t))_H dt = \int_0^T \alpha(u_{\epsilon_n}(t), \psi(t)) dt$

and we obtain

$$\int_0^T (\mathfrak{u}'(t), \psi'(t))_H dt = \int_0^T \mathfrak{a}(\mathfrak{u}(t), \psi(t)) dt$$

for every $\psi\in C^\infty_c((0,T);V_T)$ with $\psi(t)\in V_t$ for every $t\in (0,T).$

- An easy approximation argument shows that the same equality is satisfied for every $\psi \in \mathcal{V}_T^{0,1}$ with $\psi(0) = \psi(T) = 0$.
- Therefore u is a weak solution of the equation

 $\mathfrak{u}''(t)+A_t\mathfrak{u}(t)=0,\quad \mathfrak{u}(t)\in V_t\qquad \text{for }t\in [0,\infty).$

The weak continuity u ∈ C_w([0, T]; V_T) and u' ∈ C_w([0, T]; H) for every T > 0 and the initial conditions u(0) = u⁰ and u'(0) = u¹ can be obtained in a straightforward way.

Gianni Dal Maso

• For every T > 0 we can pass to the limit as $n \to \infty$ in the equality $\int_0^T (u_{\epsilon_n}'(t), \epsilon_n^2 \psi'''(t) + 2\epsilon_n \psi''(t) + \psi'(t))_H dt = \int_0^T a(u_{\epsilon_n}(t), \psi(t)) dt$

and we obtain

$$\int_0^T (\mathfrak{u}'(t), \psi'(t))_H dt = \int_0^T \mathfrak{a}(\mathfrak{u}(t), \psi(t)) dt$$

for every $\psi\in C^\infty_c((0,T);V_T)$ with $\psi(t)\in V_t$ for every $t\in (0,T).$

- An easy approximation argument shows that the same equality is satisfied for every $\psi \in \mathcal{V}_{T}^{0,1}$ with $\psi(0) = \psi(T) = 0$.
- Therefore **u** is a weak solution of the equation

 $u''(t)+A_tu(t)=0, \quad u(t)\in V_t \qquad \text{for } t\in [0,\infty).$

• The weak continuity $u \in C_w([0,T]; V_T)$ and $u' \in C_w([0,T]; H)$ for every T > 0 and the initial conditions $u(0) = u^0$ and $u'(0) = u^1$ can be obtained in a straightforward way.

• For every T > 0 we can pass to the limit as $n \to \infty$ in the equality $\int_0^T (u_{\epsilon_n}'(t), \epsilon_n^2 \psi'''(t) + 2\epsilon_n \psi''(t) + \psi'(t))_H dt = \int_0^T a(u_{\epsilon_n}(t), \psi(t)) dt$

and we obtain

$$\int_0^T (\mathfrak{u}'(t), \psi'(t))_H dt = \int_0^T \mathfrak{a}(\mathfrak{u}(t), \psi(t)) dt$$

for every $\psi\in C^\infty_c((0,T);V_T)$ with $\psi(t)\in V_t$ for every $t\in (0,T).$

- An easy approximation argument shows that the same equality is satisfied for every $\psi \in \mathcal{V}_T^{0,1}$ with $\psi(0) = \psi(T) = 0$.
- Therefore **u** is a weak solution of the equation

 $u''(t)+A_tu(t)=0, \quad u(t)\in V_t \qquad \text{for } t\in [0,\infty).$

The weak continuity u ∈ C_w([0, T]; V_T) and u' ∈ C_w([0, T]; H) for every T > 0 and the initial conditions u(0) = u⁰ and u'(0) = u¹ can be obtained in a straightforward way.

THANK YOU FOR YOUR ATTENTION! AND MANY THANKS TO THE ORGANIZERS!