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The aim of the talk

Our goal 1.: to identify a model for solid-solid phase transitions which allows
both for macroscopic phase transitions and for suitable compactness results in
Sobolev spaces.

Our goal 2.: to prove convergence of the model in a suitable sense to an effective
linearized sharp interface model.
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The elastic energy

Ω= bounded domain in R2 with Lipschitz boundary.

Elastic energy y 7→
´

Ω
W (∇y) dx , where W : M3×3 → [0,+∞) satisfies:

H1. (Regularity) W is continuous;
H2. (Frame indifference) W (RF ) = W (F ) for every R ∈ SO(2) and F ∈ M2×2;
H3. (Two-well rigidity) W (A) = W (B) = 0, where

A = Id, and B =

(
1 0
0 1 + λ

)
, for λ > 0;

Remark: after an affine change of variables one can always suppose that the
two wells have the form given in H3.
λ ∈ (−1, 0)⇒ exactly two rank-one connections.
In our setting λ > 0⇒ exactly one rank-one connection.

QA− B = a⊗ ν with Q ∈ SO(2), a, ν ∈ R2, and |ν| = 1
m

Q = Id, ν = e2, and a = −λe2.
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Ω= bounded domain in R2 with Lipschitz boundary.

Elastic energy y 7→
´

Ω
W (∇y) dx , where W : M3×3 → [0,+∞) satisfies:

H1. (Regularity) W is continuous;
H2. (Frame indifference) W (RF ) = W (F ) for every R ∈ SO(2) and F ∈ M2×2;
H3. (Two-well rigidity) W (A) = W (B) = 0, where

A = Id, and B =

(
1 0
0 1 + λ

)
, for λ > 0;

H4. (Coercivity) there exists a constant c1 > 0 such that

W (F ) ≥ c1dist
2(F , SO(2){A,B}) for every F ∈ M2×2;

H5. (Quadratic behavior around the two wells) there exists δW > 0 such that W is
of class C 2 in

{F ∈ M2×2 : dist(F , SO(2){A,B}) < δW }.

H6. (Growth conditions from above)
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The theory of solid-solid phase transitions

EP
ε (y) :=

1

ε2

ˆ
Ω

W (∇y) dx︸ ︷︷ ︸
Elastic energy with a non-convex density

+

ˆ
Ω

Pε(∇2y) dx︸ ︷︷ ︸
An ε-dependent singular perturbation

The parameter ε in the expressions above is related to the size of transition layers
The first term favors deformations y whose gradient is close to the two wells of
W , whereas the second term penalizes transitions between two different values of
the gradient.
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A sharp interface limit for solid-solid phase transitions

A standard singularly perturbed two-well problem takes the form

Iε(y) :=
1

ε2

ˆ
Ω

W (∇y) dx + ε2

ˆ
Ω

|∇2y |2 dx

for every y ∈ H2(Ω;R2). This corresponds to the choice

Pε(G ) = ε2|G |2 for G ∈ R2×2.

S. Conti - I. Fonseca - G. Leoni (2002): Γ-convergence neglecting
rotational invariance;

S. Conti - B. Schweizer (2006): Γ-convergence via rotational invariance
in the linearized setting;

S. Conti - B. Schweizer (2006): Γ-convergence via rotational
invariance in the nonlinear setting;

S. Conti - B. Schweizer (2006): Γ-convergence via rotational invariance
in the nonlinear setting with impenetrability constraints.
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A sharp interface limit for solid-solid phase transitions

Denote by Y the class of admissible limiting deformations, defined as

Y := ∪R∈SO(2)YR , where YR :=
{
y ∈ H1(Ω;R2) : ∇y ∈ BV (Ω;R{A,B})

}
.

Lemma (S. Conti - B. Schweizer (2006))

Let Ω ⊂ R2 be a bounded Lipschitz domain. Let W satisfy assumptions H1.–H4.
Then, for all sequences {yε}ε ⊂ H2(Ω;R2) for which

sup
ε>0

Iε(yε) < +∞

there exists a map y ∈ Y such that, up to the extraction of a (non-relabeled)
subsequence, there holds

yε −
 

Ω

yε(x) dx → y strongly in H1(Ω;R2).
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The limit sharp interface energy: main ingredients
Limiting deformations y are locally laminates [G. Dolzmann - S. Müller
(1995)], that is

YR :=
{
y : ∂{x ∈ Ω : ∇y(x) ∈ RA} consists of subsets of lines

that intersect ∂Ω and are parallel to e1,

and y is affine on each ball Br ∈ Ω such that

H1
(
Br ∩ ∂{x ∈ Ω : ∇y(x) ∈ RA}

)
= 0
}
.

The limiting sharp interface energy (in the strong L1-topology) is given by

I0(y) :=

{
k0H1(J∇y ) if y ∈ Y
+∞ otherwise in L1(Ω;R2).

The cell formula k0 is the optimal profile between the two phases, defined as

k0 := inf
{

lim inf
ε→0

Iε(yε,Q) : lim
ε→0
‖yε − y0‖L1(Q) = 0

}
,

where y0 is a continuous function with ∇y0 = Aχ{x2>0} + Bχ{x2<0} and Q is
the two-dimensional unit cube centered in the origin.

Elisa Davoli Linearization in solid-solid phase transitions 6 / 24



Linearization

Rescaled displacement u := (y − id)/ε.

Lε(y) :=
1

ε2

ˆ
Ω

W (∇y) dx + 0 ·
ˆ

Ω

|∇2y |2 dx

for every y ∈ H2(Ω;R2). This corresponds to the choice

Pε(G ) = 0 · |G |2 for G ∈ R2×2.

G. Dal Maso - M. Negri - D. Percivale (2002): Γ-convergence for
single-well elasticity, no perturbation;
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for every y ∈ H2(Ω;R2). This corresponds to the choice

Pε(G ) = 0 · |G |2 for G ∈ R2×2.

G. Dal Maso - M. Negri - D. Percivale (2002): Γ-convergence for
single-well elasticity, no perturbation;

B. Schmidt (2008): Γ-convergence for multiwell energies, where the wells
are ε-close to the identity, no perturbation;
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Multiwell linearization for solid-solid phase transitions

[ R. Alicandro - G. Dal Maso - G. Lazzaroni - M. Palombaro
(2018)]

Fε(y) :=
1

ε2

ˆ
Ω

W (∇y) dx + ε2−r
ˆ

Ω

|∇2y |2 dx

for r ∈ [1, 2] and y ∈ H2(Ω;R2). This corresponds to the choice

Pε(G ) = ε2−r |G |2, for G ∈ R2×2×2.

Remark: here the singular higher order term penalizes transitions between different
wells in a stronger way with respect to the functionals Iε.

In [ R. Alicandro - G. Dal Maso - G. Lazzaroni - M. Palombaro
(2018)] arbitrary dimension for a finite number of different wells, more general
growth conditions, external forces, different scalings of the singular perturbation.
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Multiwell linearization for solid-solid phase transitions

Lemma (R. Alicandro - G. Dal Maso - G. Lazzaroni - M.
Palombaro (2018))

Let Ω ⊂ R2 be a bounded Lipschitz domain. Let W satisfy assumptions H1.–H5.
Then, for all sequences {yε}ε ⊂ H2(Ω;R2) satisfying supε>0 Fε(yε) < +∞ we
find rotations Rε ∈ SO(2), translations tε ∈ R2, and phases Mε ∈ {A,B} such
that

sup
ε>0

∥∥∥yε − (RεMε x + tε)

ε

∥∥∥
W 1,r (Ω)

< +∞.

Crucial ingredient: the rigidity estimate in [G. Friesecke - R. James - S.
Müller (2002)]

Remark: Geometric rigidity for sequences with bounded Fε-energy + prescribed
boundary conditions yε = id + εg ensure

sup
ε>0
‖uε‖W 1,r (Ω) < +∞ for uε :=

yε − id

ε
.

Elisa Davoli Linearization in solid-solid phase transitions 9 / 24



Multiwell linearization for solid-solid phase transitions
Write the nonlinear energy in terms of the displacement fields by setting

F̂ε(u) = Fε(Id + εu) for u ∈ H2(Ω;R2).

The effective linearized energy has the form

F0(u) :=

{´
Ω
Q(Id, e(u)) if u ∈ H1(Ω;R2),

+∞ otherwise.

where

Q(Id,F ) :=
1

2
D2W (Id)F : F and e(u) :=

1

2
((∇u)T +∇u).

Theorem (R. Alicandro - G. Dal Maso - G. Lazzaroni -
M. Palombaro (2018))

Let Ω ⊂ R2 be a bounded Lipschitz domain. Let W satisfy assumptions H1.–H5.
Then

Γ− lim
ε→0

F̂ε = F0

with respect to the weak W 1,r -topology.
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Phase transition and linearization: Heuristics

In [R. Alicandro - G. Dal Maso - G. Lazzaroni - M. Palombaro
(2018)] imposing certain boundary conditions, one can always infer that the
same phase, e.g. A = Id, is active. Then it is indeed meaningful to perform a
linearization around the identity.

In [S. Conti - B. Schweizer (2006)]: laminate structure of the limiting
configurations, different phases may be active and phase transitions between
the different phase regions occur.

Why?

In [R. Alicandro - G. Dal Maso - G. Lazzaroni - M. Palombaro
(2018)], the second-order penalization is so strong that basically phase transitions
are forbidden.

In particular, the B-phase region, i.e., the set where the deformation gradient ∇yε

takes values in a neighborhood SO(2)B, denoted by T ε
B in the following, has small

L2-measure.
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A heuristic argument for the smallness of T ε
B

Boundedness of the energy + H4.
⇓

H1(∂T ε
B) ≤ ‖dist(∇yε,SO(2))‖L2(Ω)‖∇2yε‖L2(Ω) ≤ Cεε

r
2−1 = ε

r
2 .

Isoperimetric inequality in dimension two
⇓

min{L2(T ε
B),L2(Ω \ T ε

B)} ≤ Cεr .

Assuming that T ε
B is the minority phase, i.e. the minimum is attained for T ε

B

L2(T ε
B) ≤ Cεr .
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Phase transition and linearization: challenges

This scaling of the area of the minority phase excludes phase transitions
where both L2(T ε

B) and L2(Ω \ T ε
B) are bounded uniformly from below. The

same calculation for the model in [S. Conti - B. Schweizer (2006)]
would give

H1(∂T ε
B) ≤ C .

This reflects the fact that (macroscopic) phase transitions are expected in
that framework.

For compactness of the displacement fields uε = (yε − Id)/ε we necessarily
need L2(T ε

B)→ 0 as otherwise |∇uε| → +∞ on a set of positive measure.
Since |∇uε| ∼ 1/ε on T ε

B , it turns out that the bound L2(T ε
B) ≤ Cεr is sharp

in order to derive the uniform estimate ‖∇u‖Lr (Ω) ≤ C .
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Then, how to see phase transitions and linearization
together?

Key idea : to use a generalized definition of the rescaled displacement fields
which measures the distance of the deformations yε from suitable rigid
movements which may be different on the components of a partition of Ω which is
induced by the A and B phase regions. This allows us to

derive a linearization result for configurations where both phases are present,
in particular where (macroscopic) phase transitions occur;

obtain compactness results in a piecewise Sobolev setting.
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The model

Eε(y) :=
1

ε2

ˆ
Ω

W (∇y) dx + ε2

ˆ
Ω

|∇2y |2 dx + η2
ε

ˆ
Ω

(|∂2
11y |2 + |∂2

12y |2) dx︸ ︷︷ ︸
higher-order penalization in direction e2

.

for every y ∈ H2(Ω;R2), where {ηε}ε ⊂ [0,+∞) is an increasing sequence
satisfying limε→0 ηε = +∞. This corresponds to the choice

Pε(G ) = ε2|G |2 + η2
ε

∑
i=1,2

(|Gi11|2 + |Gi12|2), for G ∈ R2×2×2.

Remark:

Without the assumption limε→0 ηε = +∞ the limit model would be be
defined in GSBD2(Ω) and would exhibit branching. Price to pay: one
rank-one connection.

The additional penalization term does not affect the qualitative behavior of
the sharp interface limit.
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A two-well rigidity estimate

A crucial ingredient for the compactness result is the following

Theorem (E.D. - M. Friedrich)

Let Ω be a bounded simply connected Lipschitz domain in R2. Then there exists a
constant C = C (Ω,A,B) > 0 such that for every y ∈ H2(Ω;R2) there exist a
rotation R ∈ SO(2) and a function M∈ BV (Ω; {A,B}) satisfying

‖∇y − RM‖L2(Ω) ≤ Cε
√
Fε(y) + C

ηε
ε
Fε(y) and |DM|(Ω) ≤ CFε(y).

Remark: The analogous result holds true in arbitrary dimensions.
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Main ideas for the proof

Strategy: to replace the gradient ∇y , which satisfies ∇y ≈ SO(2){A,B}, by
an associated vector field γ = ∇yχ{∇y≈SO(2)A} +∇yB−1χ{∇y≈SO(2)B}.

Usage of rigidity estimates for vector fields with nonzero curl established in
[A. Chambolle - A. Giacomini - M. Ponsiglione (2007)], and [S.
Müller - L. Scardia - C. Zeppieri (2014).
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Compactness result

Sequences of deformations {yε}ε with equibounded ε-energies can be decomposed
into the sum of two parts:

(a) Piecewise rigid movements, where ‘piecewise’ refers to associated Caccioppoli
partitions induced by the A and B phase region. These converge to the limit
y of the original deformations.

(b) Elastic displacements of order ε whose strain is equibounded in L2. These
converge to a limiting displacement field, which is piecewise Sobolev, with
possible jumps along horizontal lines.
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Compactness result

Denote by P the following collection of Caccioppoli partitions of Ω

P :=
{
P = {Pj}j partition of Ω :

⋃
j

∂Pj ∩ Ω consists of subsets of lines

parallel to the e1 − axis which extend up to the boundary of Ω
}
.

Let U be the set of elastic displacements whose jump sets are the union of
countably many horizontal lines, namely

U :=
{
u ∈ SBV 2

loc(Ω;R2) : H1(Ju) < +∞, ∇u ∈ L2(Ω;M2×2),

and Ju ⊂
⋃

i∈N
(R× {si}) ∩ Ω

}
.
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Compactness result

Theorem (E.D. - M. Friedrich)

Let {yε}ε ⊂ H2(Ω;R2) be a sequence of deformations satisfying the uniform
energy estimate

sup
ε>0

Eε(yε) < +∞.

Then, up to the extraction of a non-relabeled subsequence, the following holds:
(a) There exists a constant C̃ > 0, and Caccioppoli partitions Pε := {Pε

j }j of Ω
such that

sup
ε>0
H1
(⋃

j
∂∗Pε

j

)
< +∞, sup

ε>0

ηε
ε

ˆ +∞

−∞
H0
(
(R× {t}) ∩

⋃
j
∂∗Pε

j ∩ Ω
)
dt < +∞.

There exist associated rotations Rε ∈ SO(2), as well as collections of matrices
Mε := {Mε

j }j , with Mε
j ∈ {A,B} for every j and ε, such that

sup
ε>0

1

ε
‖∇yε −

∑
j
RεMε

j χPε
j
‖L2(Ω) < +∞.
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Compactness result

Theorem (E.D. - M. Friedrich)

(b) There exist a limiting rotation R ∈ SO(2), a limiting deformation y ∈ YR , and
a limiting partition P = {Pj}j ∈P such that

Rε → R,

Pε
j → Pj in measure for all j ∈ N,

yε −
 

Ω

yε(x) dx → y strongly in H1(Ω;R2),∑
j
RεMε

j χPε
j
⇀∗ ∇y weakly* in BV (Ω;M2×2).
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Compactness result

Theorem (E.D. - M. Friedrich)

(c) Defining the rescaled displacement fields associated to Pε,Mε, T ε, and Rε by

uε :=
∑

j

yε − (RεMε
j x + tεj )χPε

j

ε
,

there exists u ∈ U such that

uε → u a.e. in Ω,

∇uε ⇀ ∇u weakly in L2(Ω;M2×2).
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The effective limiting model (E.D. - M. Friedrich)

The asymptotic cell formula is given by

k1 := inf
{

lim inf
ε→0

Eε(yε,Q) : lim
ε→0
‖yε − y1‖L1(Q) = 0

}
,

where y1 is a continuous function with ∇y1 = Aχ{x2>0} + Bχ{x2<0}. The
asymptotic cell formula represents the energy of an optimal profile
transitioning from phase A to B, and satisfies k1 ≥ k0.

Our effective linearized energy is defined as

E0(y , u,P) :=

ˆ
Ω

Q(∇y(x),∇u(x)) dx

+ k1H1(J∇y ) + 2k1H1
((

Ju ∪
(⋃

j

∂Pj ∩ Ω
))
\ J∇y

)
for (y , u,P) admissible limiting triple.
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Some final remarks

1. Besides the elastic energy, the functional contains two surface terms: the
jumps of ∇y represent the energy associated to single phase transitions
between A and B. The second surface term corresponds to two consecutive
phase transitions with a small intermediate layer. It enters the energy
functional with double cost with respect to single phase transitions.

2. Our effective energy reduces to the one in [S. Conti - B. Schweizer
(2006)] for u = 0 and P coinciding with the collection of connected
components of the two sets {x ∈ Ω : ∇y(x) = A}, and
{x ∈ Ω : ∇y(x) = B}. In particular, our additional penalization does not
affect the qualitative behavior of the sharp interface limit.

3. Our linearization result reduces to the one in [ R. Alicandro - G. Dal
Maso - G. Lazzaroni - M. Palombaro (2018)] for u ∈ H1(Ω;R2), for
the trivial partition P consisting only of Ω, and for a deformation y ∈ Y with
∇y = Id in Ω.
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Thank you for your attention!
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