Asymptotic stability of the gradient flow of nonlocal energies

Nicola Fusco

Topics in the Calculus of Variations:
Recent Advances and New Trends

Banff, May 21, 2018
H^{-1} - Gradient Flow of energies of the type
$P(E)+$ Volume term (nonlocal)
H^{-1} - Gradient Flow of energies of the type

$$
P(E)+\text { Volume term (nonlocal) }
$$

The simplest example

$$
V_{t}=\kappa \Delta_{\Gamma_{t}} H_{t} \quad(\kappa>0, \text { surface diffusion })
$$

H^{-1} - Gradient Flow of energies of the type

$$
P(E)+\text { Volume term (nonlocal) }
$$

The simplest example

$$
V_{t}=\kappa \Delta_{\Gamma_{t}} H_{t} \quad(\kappa>0, \text { surface diffusion })
$$

$V_{t}=$ normal velocity of the boundary Γ_{t} of the evolving set E_{t} $H_{t}=$ sum of the principal curvatures of Γ_{t}
$\Delta_{r_{t}}=$ Laplace-Beltrami operator on Γ_{t}
H^{-1} - Gradient Flow of energies of the type

$$
P(E)+\text { Volume term (nonlocal) }
$$

The simplest example

$$
V_{t}=\kappa \Delta_{\Gamma_{t}} H_{t} \quad(\kappa>0, \text { surface diffusion })
$$

$V_{t}=$ normal velocity of the boundary Γ_{t} of the evolving set E_{t}
$H_{t}=$ sum of the principal curvatures of Γ_{t}
$\Delta_{\Gamma_{t}}=$ Laplace-Beltrami operator on Γ_{t}

Mullins (1957,1958,1960), Davì-Gurtin (1990)
Evolution of a two phase interface controlled by mass diffusion within the surface

$$
\begin{array}{ll}
V_{t}=\Delta_{r_{t}} H_{t} & \text { (surface diffusion, } H^{-1} \text {-gradient flow) } \\
V_{t}=-H_{t} & \text { (mean curvature flow, } L^{2} \text {-gradient flow) }
\end{array}
$$

- Surface diffusion is volume preserving

$$
\frac{d}{d_{t}}\left|F_{t}\right|=\int_{\partial F_{t}} V_{t} d \mathcal{H}^{n-1}=\int_{\partial F_{t}} \Delta_{r_{t}} H_{t} d \mathcal{H}^{n-1}=0
$$

$$
\begin{array}{ll}
V_{t}=\Delta_{\Gamma_{t}} H_{t} & \text { (surface diffusion, } H^{-1} \text {-gradient flow) } \\
V_{t}=-H_{t} & \text { (mean curvature flow, } L^{2} \text {-gradient flow) }
\end{array}
$$

- Surface diffusion is volume preserving

$$
\frac{d}{d}\left|F_{t}\right|=\int_{\partial F_{t}} V_{t} d \mathcal{H}^{n-1}=\int_{\partial F_{t}} \Delta_{r_{t}} H_{t} d \mathcal{H}^{n-1}=0
$$

- Surface diffusion (and mean curvature flow) reduce the perimeter

$$
\begin{aligned}
\frac{d}{d t} \mathcal{H}^{n-1}\left(\partial F_{t}\right) & =\int_{\partial F_{t}} H_{t} V_{t} d \mathcal{H}^{n-1}=\int_{\partial F_{t}} H_{t} \Delta_{\Gamma_{t}} H_{t} d \mathcal{H}^{n-1} \\
& =-\int_{\partial F_{t}}\left|\nabla_{\Gamma_{t}} H_{t}\right|^{2} d \mathcal{H}^{n-1} \leq 0
\end{aligned}
$$

$$
\begin{array}{ll}
V_{t}=\Delta_{r_{t}} H_{t} & \text { (surface diffusion, } H^{-1} \text {-gradient flow) } \\
V_{t}=-H_{t} & \text { (mean curvature flow, } L^{2} \text {-gradient flow) }
\end{array}
$$

- Surface diffusion is volume preserving

$$
\frac{d}{d}\left|F_{t}\right|=\int_{\partial F_{t}} V_{t} d \mathcal{H}^{n-1}=\int_{\partial F_{t}} \Delta_{r_{t}} H_{t} d \mathcal{H}^{n-1}=0
$$

- Surface diffusion (and mean curvature flow) reduce the perimeter

$$
\begin{aligned}
\frac{d}{d t} \mathcal{H}^{n-1}\left(\partial F_{t}\right) & =\int_{\partial F_{t}} H_{t} V_{t} d \mathcal{H}^{n-1}=\int_{\partial F_{t}} H_{t} \Delta_{\Gamma_{t}} H_{t} d \mathcal{H}^{n-1} \\
& =-\int_{\partial F_{t}}\left|\nabla_{\Gamma_{t}} H_{t}\right|^{2} d \mathcal{H}^{n-1} \leq 0
\end{aligned}
$$

- Surface diffusion does not preserve convexity

Mean curvature flow preserves convexity and shrinks a convex set to a point in finite time, so that by rescaling the evolving sets to the original volume, they converge to a ball (Huisken, 1984)

Singularities may appear in finite time even in 2-D (Giga-Ito, 1998)

Singularities may appear in finite time even in 2-D (Giga-Ito, 1998)

- Existence for small times (Escher-Mayer-Simonett, 1998)

$$
F_{o} \in C^{2, \alpha} \Longrightarrow h \in C^{0}\left([0, T) ; C^{2, \alpha}\left(\Gamma_{0}\right)\right) \cap C^{\infty}\left((0, T) ; C^{\infty}\left(\Gamma_{0}\right)\right)
$$

Singularities may appear in finite time even in 2-D (Giga-Ito, 1998)

- Existence for small times (Escher-Mayer-Simonett, 1998)

$$
F_{o} \in C^{2, \alpha} \Longrightarrow h \in C^{0}\left([0, T) ; C^{2, \alpha}\left(\Gamma_{o}\right)\right) \cap C^{\infty}\left((0, T) ; C^{\infty}\left(\Gamma_{o}\right)\right)
$$

- $n=2$ If the flow exists for all times $\Longrightarrow F_{t}$ converges to a circle (Elliott-Garcke, 1997)

Singularities may appear in finite time even in 2-D (Giga-Ito, 1998)

- Existence for small times (Escher-Mayer-Simonett, 1998)

$$
F_{o} \in C^{2, \alpha} \Longrightarrow h \in C^{0}\left([0, T) ; C^{2, \alpha}\left(\Gamma_{o}\right)\right) \cap C^{\infty}\left((0, T) ; C^{\infty}\left(\Gamma_{o}\right)\right)
$$

- $n=2$ If the flow exists for all times $\Longrightarrow F_{t}$ converges to a circle (Elliott-Garcke, 1997)
- $n \geq 2$
F_{0} is $C^{2, \alpha}$ close to $B_{0} \Longrightarrow F_{t} \rightarrow \sigma+B_{0}$ in C^{k} as $t \rightarrow \infty$ for all k (Escher-Mayer-Simonett, 1998)

Singularities may appear in finite time even in 2-D (Giga-Ito, 1998)

- Existence for small times (Escher-Mayer-Simonett, 1998)

$$
F_{o} \in C^{2, \alpha} \Longrightarrow h \in C^{0}\left([0, T) ; C^{2, \alpha}\left(\Gamma_{o}\right)\right) \cap C^{\infty}\left((0, T) ; C^{\infty}\left(\Gamma_{o}\right)\right)
$$

- $n=2$ If the flow exists for all times $\Longrightarrow F_{t}$ converges to a circle (Elliott-Garcke, 1997)
- $n \geq 2$
F_{0} is $C^{2, \alpha}$ close to $B_{o} \Longrightarrow F_{t} \rightarrow \sigma+B_{o}$ in C^{k} as $t \rightarrow \infty$ for all k (Escher-Mayer-Simonett, 1998)
- $n=3$
F_{o} close to an infinite cylinder (LeCrone, Simonett, 2016)

Evolution of periodic structures (pattern formation)

Evolution of periodic structures (pattern formation)

$n=3 \quad$ Periodic sets with constant mean curvature boundary

Evolution of periodic structures (pattern formation)

$n=3 \quad$ Periodic sets with constant mean curvature boundary
For $F \subset \mathbb{T}^{n}$ we set

$$
J(F):=P_{\mathbb{T}^{n}}(F)
$$

Evolution of periodic structures (pattern formation)

$n=3 \quad$ Periodic sets with constant mean curvature boundary
For $F \subset \mathbb{T}^{n}$ we set

$$
J(F):=P_{\mathbb{T}^{n}}(F)
$$

F is a critical point for the perimeter with the respect to variations
with the same volume if

$$
H_{\partial F}=\text { const } .
$$

Evolution of periodic structures (pattern formation)

$n=3 \quad$ Periodic sets with constant mean curvature boundary
For $F \subset \mathbb{T}^{n}$ we set

$$
J(F):=P_{\mathbb{T}^{n}}(F)
$$

F is a critical point for the perimeter with the respect to variations with the same volume if

$$
H_{\partial F}=\text { const. }
$$

Recall that for a critical point F and for $\varphi \in H^{1}(\partial F)$ we have

$$
\partial^{2} J(F)[\varphi]=\int_{\partial F}\left(|\nabla \varphi|^{2}-\left|B_{\partial F}\right|^{2} \varphi^{2}\right) d \mathcal{H}^{n-1}
$$

$$
\tilde{H}^{1}(\partial F):=\{\varphi \in H^{1}(\partial F): \underbrace{\int_{\partial F} \varphi=0,}_{\text {volume pres. }} \underbrace{\int_{\partial \nu_{F}} \varphi \nu_{F}=0}_{\text {translation inv. }}\}
$$

$$
\widetilde{H}^{1}(\partial F):=\{\varphi \in H^{1}(\partial F): \underbrace{\int_{\partial F} \varphi=0}_{\text {volume pres. }}, \underbrace{\int_{\partial F} \varphi \nu_{F}=0}_{\text {translation inv. }}\}
$$

Then we say that a C^{2} critical point F is strictly stable if

$$
\partial^{2} J(F)[\varphi]>0 \quad \text { for all } \varphi \in \widetilde{H}^{1}(\partial F) \backslash\{0\}
$$

$$
\widetilde{H}^{1}(\partial F):=\{\varphi \in H^{1}(\partial F): \underbrace{\int_{\partial F} \varphi=0}_{\text {volume pres. }}, \underbrace{\int_{\partial F} \varphi \nu_{F}=0}_{\text {translation inv. }}\}
$$

Then we say that a C^{2} critical point F is strictly stable if

$$
\partial^{2} J(F)[\varphi]>0 \quad \text { for all } \varphi \in \widetilde{H}^{1}(\partial F) \backslash\{0\}
$$

Theorem (Acerbi-F.-Morini 2013)

Let F be a strictly stable C^{2} critical configuration.
Then, F is a strict local minimizer, i.e., there exists $\delta, C_{0}>0$, s.t. if $\min _{\tau}|F \Delta(\tau+G)|<\delta$, then

$$
J(G) \geq J(F)+C_{0} \min _{\tau}|F \Delta(\tau+G)|^{2}
$$

$$
\widetilde{H}^{1}(\partial F):=\{\varphi \in H^{1}(\partial F): \underbrace{\int_{\partial F} \varphi=0}_{\text {volume pres. }}, \underbrace{\int_{\partial F} \varphi \nu_{F}=0}_{\text {translation inv. }}\}
$$

Then we say that a C^{2} critical point F is strictly stable if

$$
\partial^{2} J(F)[\varphi]>0 \quad \text { for all } \varphi \in \widetilde{H}^{1}(\partial F) \backslash\{0\}
$$

Theorem (Acerbi-F.-Morini 2013)

Let F be a strictly stable C^{2} critical configuration.
Then, F is a strict local minimizer, i.e., there exists $\delta, C_{0}>0$, s.t. if $\min _{\tau}|F \Delta(\tau+G)|<\delta$, then

$$
J(G) \geq J(F)+C_{0} \min _{\tau}|F \Delta(\tau+G)|^{2}
$$

The local minimality w.r.t. L^{∞} perturbations (B.White, 1994) or w.r.t. L^{1} perturbations ($n \leq 7$, Morgan-Ros, 2010)
In both cases there was no quantitative estimate

Theorem (Acerbi, F., Julin, Morini, JDG to appear)

Let $G \subset \mathbb{T}^{3}$ be a smooth strictly stable critical set. For every $M>0$ there exists $\delta>0$ s.t.:

If $\partial F_{o}=\left\{x+h_{O}(x) \nu_{G}: x \in \partial G,\left\|h_{O}\right\|_{H^{3}(\partial G)} \leq M\right\}$,

$$
\left|F_{0}\right|=|G|, \quad\left|F_{0} \Delta G\right| \leq \delta, \quad \text { and } \quad \int_{\partial F_{0}}\left|\nabla H_{\partial \sigma_{0}}\right|^{2} d \mathcal{H}^{2} \leq \delta,
$$

then the unique classical solution $\left(F_{t}\right)_{t}$ to the surface diffusion flow with initial datum F_{0} exists for all $t>0$.
Moreover, $F_{t} \rightarrow G+\sigma$ in H^{3} as $t \rightarrow+\infty$, for some $\sigma \in \mathbb{R}^{3}$.
The convergence is exponentially fast, i.e., there exist $\eta, c_{G}>0$ such that for all $t>0$, writing

$$
\partial F_{t}=\left\{x+\psi_{\sigma, t}(x) \nu_{G+\sigma}(x): x \in \partial G+\sigma\right\},
$$

we have

$$
\left\|\psi_{\sigma, t}\right\|_{H^{3}(\partial G+\sigma)} \leq \eta e^{-c_{G} t}
$$

Both $|\sigma|$ and η vanish as $\delta \rightarrow 0^{+}$.

Idea of the proof

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{1}{2} \int_{\partial F_{t}}\left|\nabla_{\tau} H_{t}\right|^{2} d x\right)= & -\partial^{2} J\left(F_{t}\right)\left[\Delta_{\tau} H_{t}\right]-\int_{\partial F_{t}} B_{t}\left[\nabla_{\tau} H_{t}\right] \Delta_{\tau} H_{t} d \mathcal{H}^{2} \\
& +\frac{1}{2} \int_{\partial F_{t}} H_{t}\left|\nabla_{\tau} H_{t}\right|^{2} \Delta_{\tau} H_{t} d \mathcal{H}^{2}
\end{aligned}
$$

Idea of the proof

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{1}{2} \int_{\partial F_{t}}\left|\nabla_{\tau} H_{t}\right|^{2} d x\right)= & -\partial^{2} J\left(F_{t}\right)\left[\Delta_{\tau} H_{t}\right]-\int_{\partial F_{t}} B_{t}\left[\nabla_{\tau} H_{t}\right] \Delta_{\tau} H_{t} d \mathcal{H}^{2} \\
& +\frac{1}{2} \int_{\partial F_{t}} H_{t}\left|\nabla_{\tau} H_{t}\right|^{2} \Delta_{\tau} H_{t} d \mathcal{H}^{2}
\end{aligned}
$$

But if F_{t} is sufficiently close to the stable critical point G then

$$
\partial^{2} J\left(F_{t}\right)\left[\Delta_{\tau} H_{t}\right] \geq c_{0}\left\|\Delta_{\tau} H_{t}\right\|_{H^{\prime}\left(F_{t}\right)}^{2}
$$

Idea of the proof

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{1}{2} \int_{\partial F_{t}}\left|\nabla_{\tau} H_{t}\right|^{2} d x\right)= & -\partial^{2} J\left(F_{t}\right)\left[\Delta_{\tau} H_{t}\right]-\int_{\partial F_{t}} B_{t}\left[\nabla_{\tau} H_{t}\right] \Delta_{\tau} H_{t} d \mathcal{H}^{2} \\
& +\frac{1}{2} \int_{\partial F_{t}} H_{t}\left|\nabla_{\tau} H_{t}\right|^{2} \Delta_{\tau} H_{t} d \mathcal{H}^{2}
\end{aligned}
$$

But if F_{t} is sufficiently close to the stable critical point G then

$$
\partial^{2} J\left(F_{t}\right)\left[\Delta_{\tau} H_{t}\right] \geq c_{0}\left\|\Delta_{\tau} H_{t}\right\|_{H^{1}\left(F_{t}\right)}^{2}
$$

$$
\frac{d}{d t}\left(\frac{1}{2} \int_{\partial F_{t}}\left|\nabla_{\tau} H_{t}\right|^{2} d \mathcal{H}^{2}\right) \leq-\frac{c_{0}}{2}\left\|\Delta_{\tau} H_{t}\right\|_{H^{1}\left(\partial F_{t}\right)}^{2} \leq-c_{1}\left\|\nabla_{\tau} H_{t}\right\|_{L^{2}\left(\partial F_{t}\right)}^{2}
$$

Idea of the proof

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{1}{2} \int_{\partial F_{t}}\left|\nabla_{\tau} H_{t}\right|^{2} d x\right)= & -\partial^{2} J\left(F_{t}\right)\left[\Delta_{\tau} H_{t}\right]-\int_{\partial F_{t}} B_{t}\left[\nabla_{\tau} H_{t}\right] \Delta_{\tau} H_{t} d \mathcal{H}^{2} \\
& +\frac{1}{2} \int_{\partial F_{t}} H_{t}\left|\nabla_{\tau} H_{t}\right|^{2} \Delta_{\tau} H_{t} d \mathcal{H}^{2}
\end{aligned}
$$

But if F_{t} is sufficiently close to the stable critical point G then

$$
\partial^{2} J\left(F_{t}\right)\left[\Delta_{\tau} H_{t}\right] \geq c_{0}\left\|\Delta_{\tau} H_{t}\right\|_{H^{\prime}\left(F_{t}\right)}^{2}
$$

$$
\frac{d}{d t}\left(\frac{1}{2} \int_{\partial F_{t}}\left|\nabla_{\tau} H_{t}\right|^{2} d \mathcal{H}^{2}\right) \leq-\frac{c_{0}}{2}\left\|\Delta_{\tau} H_{t}\right\|_{H^{1}\left(\partial F_{t}\right)}^{2} \leq-c_{1}\left\|\nabla_{\tau} H_{t}\right\|_{L^{2}\left(\partial F_{t}\right)}^{2}
$$

$$
\Downarrow
$$

$$
\int_{\partial F_{t}}\left|\nabla_{\tau} H_{t}\right|^{2} d \mathcal{H}^{2} \leq \mathrm{e}^{-c_{1} t} \int_{\partial F_{0}}\left|\nabla_{\tau} H_{E_{0}}\right|^{2} d \mathcal{H}^{2}=C_{0} \mathrm{e}^{-c_{1} t}
$$

Evolution of material voids

Material void inside a stressed elastic material (Siegel-Miksis-Voorhees 2004)

Evolution of material voids

Material void inside a stressed elastic material (Siegel-Miksis-Voorhees 2004)
$\Omega=$ the container
$\Omega \backslash F=$ the region occupied by the material
$F=$ the void
$u_{F}: \Omega \backslash F \mapsto \mathbb{R}^{2}=$ the elastic equilibrium
$u_{F}=\operatorname{argmin}\left\{\int_{\Omega \backslash F} W(E(u)) d x: u=u_{0}\right.$ on $\left.\partial \Omega\right\}$
$E(u)=\frac{D u+D^{T} u}{2}$ the symmetric gradient of u

Evolution of material voids

Material void inside a stressed elastic material (Siegel-Miksis-Voorhees 2004)
$\Omega=$ the container

Evolution of material voids

Material void inside a stressed elastic material (Siegel-Miksis-Voorhees 2004)
$\Omega=$ the container

$$
J(F)=\int_{\Omega \backslash F} W\left(E\left(u_{F}\right)\right)+\int_{\partial F} \varphi\left(\nu_{F}\right)
$$

$$
J(F)=\int_{\Omega \backslash F} W\left(E\left(u_{F}\right)\right)+\int_{\partial F} \varphi\left(\nu_{F}\right)
$$

We shall assume that if $A \in \mathcal{M}^{n \times n}(n=2,3)$

$$
W(A)=\frac{1}{2} \mathbb{C} A: A
$$

where \mathbb{C} is a tensor such that $\mathbb{C} A: A>0$ for all $A \neq 0$

$$
J(F)=\int_{\Omega \backslash F} W\left(E\left(u_{F}\right)\right)+\int_{\partial F} \varphi\left(\nu_{F}\right)
$$

We shall assume that if $A \in \mathcal{M}^{n \times n}(n=2,3)$

$$
W(A)=\frac{1}{2} \mathbb{C} A: A
$$

where \mathbb{C} is a tensor such that $\mathbb{C} A: A>0$ for all $A \neq 0$ Thus

$$
\begin{cases}\operatorname{div} \mathbb{C} E\left(u_{F}\right)=0 & \text { in } \Omega \backslash F \\ u_{F}=u_{o} & \text { on } \partial \Omega \\ C E\left(u_{F}\right)\left[\nu_{F}\right]=0 & \text { on } \partial F\end{cases}
$$

$$
J(F)=\int_{\Omega \backslash F} W\left(E\left(u_{F}\right)\right)+\int_{\partial F} \varphi\left(\nu_{F}\right)
$$

We shall assume that if $A \in \mathcal{M}^{n \times n}(n=2,3)$

$$
W(A)=\frac{1}{2} \mathbb{C} A: A
$$

where \mathbb{C} is a tensor such that $\mathbb{C} A: A>0$ for all $A \neq 0$ Thus

$$
\begin{cases}\operatorname{div} \mathbb{C} E\left(u_{F}\right)=0 & \text { in } \Omega \backslash F \\ u_{F}=u_{o} & \text { on } \partial \Omega \\ C E\left(u_{F}\right)\left[\nu_{F}\right]=0 & \text { on } \partial F\end{cases}
$$

$\min \left\{\int_{\Omega \backslash F} W\left(E\left(u_{F}\right)\right)+\int_{\partial F} \varphi\left(\nu_{F}\right): F \subset \Omega,|F|=m<|\Omega|\right\}$

$$
J(F)=\int_{\Omega \backslash F} W\left(E\left(u_{F}\right)\right)+\int_{\partial F} \varphi\left(\nu_{F}\right)
$$

We shall assume that if $A \in \mathcal{M}^{n \times n}(n=2,3)$

$$
W(A)=\frac{1}{2} \mathbb{C} A: A
$$

where \mathbb{C} is a tensor such that $\mathbb{C} A: A>0$ for all $A \neq 0$ Thus

$$
\begin{gathered}
\begin{cases}\operatorname{div} \mathbb{C} E\left(u_{F}\right)=0 & \text { in } \Omega \backslash F \\
u_{F}=u_{o} & \text { on } \partial \Omega \\
C E\left(u_{F}\right)\left[\nu_{F}\right]=0 & \text { on } \partial F\end{cases} \\
\min \left\{\int_{\Omega \backslash F} W\left(E\left(u_{F}\right)\right)+\int_{\partial F} \varphi\left(\nu_{F}\right): F \subset \Omega,|F|=m<|\Omega|\right\}
\end{gathered}
$$

Existence and regularity in 2D (Fonseca-F-Leoni-Millot, 2011)

Morphology evolution: surface diffusion

$$
J(F)=\int_{\Omega \backslash F} W\left(E\left(u_{F}\right)\right) d x+\int_{\partial F} \varphi(F) d \mathcal{H}^{n-1}
$$

Einstein-Nernst law: surface flux of atoms $\propto \nabla_{\Gamma_{t}} \mu$
$\mu=$ chemical potential $\leadsto V_{t}=\kappa \Delta_{\Gamma_{t}} \mu$

Morphology evolution: surface diffusion

$$
J(F)=\int_{\Omega \backslash F} W\left(E\left(u_{F}\right)\right) d x+\int_{\partial F} \varphi(F) d \mathcal{H}^{n-1}
$$

Einstein-Nernst law: surface flux of atoms $\propto \nabla_{\Gamma_{t}} \mu$
$\mu=$ chemical potential $\leadsto V_{t}=\kappa \Delta_{\Gamma_{t}} \mu$
$\mu=$ first variation of energy $=\operatorname{div}_{\Gamma_{t}} \nabla \varphi\left(\nu_{t}\right)-W\left(E\left(u_{t}\right)\right)+\lambda$

Morphology evolution: surface diffusion

$$
J(F)=\int_{\Omega \backslash F} W\left(E\left(u_{F}\right)\right) d x+\int_{\partial F} \varphi(F) d \mathcal{H}^{n-1}
$$

Einstein-Nernst law: surface flux of atoms $\propto \nabla_{\Gamma_{t}} \mu$
$\mu=$ chemical potential $\leadsto V_{t}=\kappa \Delta_{\Gamma_{t}} \mu$
$\mu=$ first variation of energy $=\operatorname{div}_{\Gamma_{t}} \nabla \varphi\left(\nu_{t}\right)-W\left(E\left(u_{t}\right)\right)+\lambda$
$\operatorname{div}_{\Gamma_{t}} \nabla \varphi\left(\nu_{t}\right):=H_{\varphi, t}=$ anisotropic curvature

$$
V_{t}=\kappa \Delta_{\Gamma_{t}}\left(H_{\varphi, t}-W\left(E\left(u_{t}\right)\right)\right)
$$

$$
V_{t}=\Delta_{\Gamma_{t}}\left(H_{\varphi, t}-W\left(E\left(u_{t}\right)\right)\right)
$$

$$
V_{t}=\Delta_{\Gamma_{t}}\left(H_{\varphi, t}-W\left(E\left(u_{t}\right)\right)\right)
$$

- This is the H^{-1} flow of $J(F)$
- The flow is volume preserving (no information on the perimeter)
- No existence results available!

$$
V_{t}=\Delta_{\Gamma_{t}}\left(H_{\varphi, t}-W\left(E\left(u_{t}\right)\right)\right)
$$

- This is the H^{-1} flow of $J(F)$
- The flow is volume preserving (no information on the perimeter)
- No existence results available!

If $n=2$, then

$$
H_{\varphi, t}=g\left(\nu_{t}\right) k_{t}
$$

where
$k_{t}=$ curvature of $\partial F_{t}, \quad g(\nu)=\left\langle D^{2} \varphi(\nu) \tau, \tau\right\rangle \quad$ for all $\nu, \tau \in \mathbb{S}^{1}, \nu \perp \tau$

$$
V_{t}=\Delta_{\Gamma_{t}}\left(H_{\varphi, t}-W\left(E\left(u_{t}\right)\right)\right)
$$

- This is the H^{-1} flow of $J(F)$
- The flow is volume preserving (no information on the perimeter)
- No existence results available!

If $n=2$, then

$$
H_{\varphi, t}=g\left(\nu_{t}\right) k_{t}
$$

where
$k_{t}=$ curvature of $\partial F_{t}, \quad g(\nu)=\left\langle D^{2} \varphi(\nu) \tau, \tau\right\rangle \quad$ for all $\nu, \tau \in \mathbb{S}^{1}, \nu \perp \tau$
The equation becomes

$$
V_{t}=\partial_{\sigma \sigma}\left(g\left(\nu_{t}\right) k_{t}-W\left(E\left(u_{t}\right)\right)\right)
$$

Theorem (F.-Julin-Morini, 2017)
Let $G \subset \subset \Omega \subset \subset \mathbb{R}^{2}$ smooth. For every $M>0$ there exist $\delta>0, T>0$ s.t. if

$$
\partial F_{o}=\left\{x+h_{0}(x) \nu_{G}: x \in \partial G,\left\|h_{0}\right\|_{H^{\beta}(\partial G)} \leq M\right\}, \quad\left|G \Delta F_{0}\right| \leq \delta,
$$

then there exists a unique classical solution classical solution $\left(F_{t}\right)_{t}$, $t \in(0, T)$. More precisely

$$
\partial F_{t}=\left\{x+h(x, t) \nu_{G}(x): x \in \partial G\right\}
$$

where for every $\alpha \in(0,1 / 2)$

$$
h \in C\left([0, T] ; C^{2, \alpha}(\partial G)\right) \cap C^{\infty}\left((0, T) ; C^{\infty}(\partial G)\right)
$$

Long time existence

Theorem (F-Julin-Morini, 2017)

Let $G \subset \subset \Omega$ be a smooth strictly stable critical point and let $M>0$.
There exists $\delta>0$ with the following property:
Let F_{o} be s.t. $\partial F_{o}=\left\{x+h_{o}(x) \nu_{G}: x \in \partial G,\left\|h_{o}\right\|_{H^{3}(\partial G)} \leq M\right\}$,

$$
\left|F_{0} \Delta G\right|<\delta, \quad \int_{\partial F_{0}}\left|\partial_{\sigma}\left(g\left(\nu_{F_{0}}\right) k_{F_{0}}-W\left(E\left(u_{F_{0}}\right)\right)\right)\right|^{2} d \mathcal{H}^{1}<\delta,
$$

Then the unique solution $\left(F_{t}\right)_{t>0}$ of the flow with initial datum F_{0} is defined for all times $t>0$.

Moreover $F_{t} \rightarrow G H^{3}$-exponentially fast.

Long time existence

Theorem (F-Julin-Morini, 2017)

Let $G \subset \subset \Omega$ be a smooth strictly stable critical point and let $M>0$.
There exists $\delta>0$ with the following property:
Let F_{0} be s.t. $\partial F_{o}=\left\{x+h_{o}(x) \nu_{G}: x \in \partial G,\left\|h_{O}\right\|_{H^{3}(\partial G)} \leq M\right\}$,

$$
\left|F_{0} \Delta G\right|<\delta, \quad \int_{\partial F_{0}}\left|\partial_{\sigma}\left(g\left(\nu_{F_{0}}\right) k_{F_{0}}-W\left(E\left(u_{F_{0}}\right)\right)\right)\right|^{2} d \mathcal{H}^{1}<\delta,
$$

Then the unique solution $\left(F_{t}\right)_{t>0}$ of the flow with initial datum F_{0} is defined for all times $t>0$.

Moreover $F_{t} \rightarrow G H^{3}$-exponentially fast.
But we can say more.

Denote by $\Gamma_{1}, \ldots, \Gamma_{m}$ the connected components of ∂F and by $\mathcal{O}_{1}, \ldots \mathcal{O}_{m}$ the open sets enclosed by the Γ_{i}

Denote by $\Gamma_{1}, \ldots, \Gamma_{m}$ the connected components of ∂F and by $\mathcal{O}_{1}, \ldots \mathcal{O}_{m}$ the open sets enclosed by the Γ_{i}
F is stationary if

$$
g\left(\nu_{F}\right) k_{F}-W\left(E\left(u_{F}\right)\right)=\kappa_{i} \quad \text { on } \Gamma_{i}, i=1, \ldots, m
$$

Denote by $\Gamma_{1}, \ldots, \Gamma_{m}$ the connected components of ∂F and by $\mathcal{O}_{1}, \ldots \mathcal{O}_{m}$ the open sets enclosed by the Γ_{i}
F is stationary if

$$
g\left(\nu_{F}\right) k_{F}-W\left(E\left(u_{F}\right)\right)=\kappa_{i} \quad \text { on } \Gamma_{i}, i=1, \ldots, m
$$

∂G has m connected components, G strictly stable stationary

Denote by $\Gamma_{1}, \ldots, \Gamma_{m}$ the connected components of ∂F and by $\mathcal{O}_{1}, \ldots \mathcal{O}_{m}$ the open sets enclosed by the Γ_{i}
F is stationary if

$$
g\left(\nu_{F}\right) k_{F}-W\left(E\left(u_{F}\right)\right)=\kappa_{i} \quad \text { on } \Gamma_{i}, i=1, \ldots, m
$$

∂G has m connected components, G strictly stable stationary
$\Longrightarrow \quad \partial F_{o}, \partial F_{t}$ have m connected components

Denote by $\Gamma_{1}, \ldots, \Gamma_{m}$ the connected components of ∂F and by $\mathcal{O}_{1}, \ldots \mathcal{O}_{m}$ the open sets enclosed by the Γ_{i}
F is stationary if

$$
g\left(\nu_{F}\right) k_{F}-W\left(E\left(u_{F}\right)\right)=\kappa_{i} \quad \text { on } \Gamma_{i}, i=1, \ldots, m
$$

∂G has m connected components, G strictly stable stationary

$$
\Longrightarrow \quad \partial F_{o}, \partial F_{t} \text { have } m \text { connected components }
$$

Moreover

$$
\left|\mathcal{O}_{i, t}\right|=\left|\mathcal{O}_{i, o}\right| \quad \forall i=1, \ldots, m \quad \text { and } \quad \forall t>0
$$

Denote by $\Gamma_{1}, \ldots, \Gamma_{m}$ the connected components of ∂F and by $\mathcal{O}_{1}, \ldots \mathcal{O}_{m}$ the open sets enclosed by the Γ_{i}
F is stationary if

$$
g\left(\nu_{F}\right) k_{F}-W\left(E\left(u_{F}\right)\right)=\kappa_{i} \quad \text { on } \Gamma_{i}, i=1, \ldots, m
$$

∂G has m connected components, G strictly stable stationary

$$
\Longrightarrow \quad \partial F_{o}, \partial F_{t} \text { have } m \text { connected components }
$$

Moreover

$$
\left|\mathcal{O}_{i, t}\right|=\left|\mathcal{O}_{i, 0}\right| \quad \forall i=1, \ldots, m \quad \text { and } \quad \forall t>0
$$

$$
\text { then } \quad F_{t} \rightarrow F_{\infty} \quad \text { in } H^{3}
$$

where F_{∞} is the only stationary point H^{3}-close to G s.t.

$$
\left|\mathcal{O}_{i, \infty}\right|=\left|\mathcal{O}_{i, o}\right| \quad \forall i=1, \ldots, m
$$

THANK YOU FOR YOUR ATTENTION!

