Asymptotic stability of the gradient flow of nonlocal energies

Nicola Fusco

Topics in the Calculus of Variations:

Recent Advances and New Trends

Banff, May 21, 2018

P(E) + Volume term (nonlocal)

P(E) + Volume term (nonlocal)

The simplest example

 $V_t = \kappa \Delta_{\Gamma_t} H_t$ ($\kappa > 0$, surface diffusion)

P(E) + Volume term (nonlocal)

The simplest example

 $V_t = \kappa \Delta_{\Gamma_t} H_t$ ($\kappa > 0$, surface diffusion)

 V_t = normal velocity of the boundary Γ_t of the evolving set E_t H_t = sum of the principal curvatures of Γ_t Δ_{Γ_t} = Laplace-Beltrami operator on Γ_t

P(E) + Volume term (nonlocal)

The simplest example

 $V_t = \kappa \Delta_{\Gamma_t} H_t$ ($\kappa > 0$, surface diffusion)

 $V_t =$ normal velocity of the boundary Γ_t of the evolving set E_t $H_t =$ sum of the principal curvatures of Γ_t $\Delta_{\Gamma_t} =$ Laplace-Beltrami operator on Γ_t

Mullins (1957,1958,1960), Davi-Gurtin (1990)

Evolution of a two phase interface controlled by mass diffusion within the surface

 $V_t = \Delta_{\Gamma_t} H_t$ (surface diffusion, H^{-1} -gradient flow) $V_t = -H_t$ (mean curvature flow, L^2 -gradient flow)

Surface diffusion is volume preserving

$$\frac{d}{d_t}|F_t| = \int_{\partial F_t} V_t \, d\mathcal{H}^{n-1} = \int_{\partial F_t} \Delta_{\Gamma_t} H_t \, d\mathcal{H}^{n-1} = 0$$

 $V_t = \Delta_{\Gamma_t} H_t$ (surface diffusion, H^{-1} -gradient flow) $V_t = -H_t$ (mean curvature flow, L^2 -gradient flow)

Surface diffusion is volume preserving

$$\frac{d}{d_t}|F_t| = \int_{\partial F_t} V_t \, d\mathcal{H}^{n-1} = \int_{\partial F_t} \Delta_{\Gamma_t} H_t \, d\mathcal{H}^{n-1} = 0$$

Surface diffusion (and mean curvature flow) reduce the perimeter

$$\frac{d}{dt}\mathcal{H}^{n-1}(\partial F_t) = \int_{\partial F_t} H_t \, V_t \, d\mathcal{H}^{n-1} = \int_{\partial F_t} H_t \, \Delta_{\Gamma_t} H_t \, d\mathcal{H}^{n-1}$$
$$= -\int_{\partial F_t} |\nabla_{\Gamma_t} H_t|^2 \, d\mathcal{H}^{n-1} \le 0$$

 $V_t = \Delta_{\Gamma_t} H_t$ (surface diffusion, H^{-1} -gradient flow) $V_t = -H_t$ (mean curvature flow, L^2 -gradient flow)

Surface diffusion is volume preserving

$$\frac{d}{d_t}|F_t| = \int_{\partial F_t} V_t \, d\mathcal{H}^{n-1} = \int_{\partial F_t} \Delta_{\Gamma_t} H_t \, d\mathcal{H}^{n-1} = 0$$

Surface diffusion (and mean curvature flow) reduce the perimeter

$$\frac{d}{dt}\mathcal{H}^{n-1}(\partial F_t) = \int_{\partial F_t} H_t \, V_t \, d\mathcal{H}^{n-1} = \int_{\partial F_t} H_t \, \Delta_{\Gamma_t} H_t \, d\mathcal{H}^{n-1}$$
$$= -\int_{\partial F_t} |\nabla_{\Gamma_t} H_t|^2 \, d\mathcal{H}^{n-1} \le 0$$

Surface diffusion does not preserve convexity

Mean curvature flow preserves convexity and shrinks a convex set to a point in finite time, so that by rescaling the evolving sets to the original volume, they converge to a ball (Huisken, 1984)

Existence for small times (Escher-Mayer-Simonett, 1998)

 $F_o \in C^{2,\alpha} \Longrightarrow h \in C^0([0,T); C^{2,\alpha}(\Gamma_o)) \cap C^{\infty}((0,T); C^{\infty}(\Gamma_o))$

Existence for small times (Escher-Mayer-Simonett, 1998)

 $F_o \in C^{2,\alpha} \Longrightarrow h \in C^0([0,T); C^{2,\alpha}(\Gamma_o)) \cap C^{\infty}((0,T); C^{\infty}(\Gamma_o))$

• n = 2 If the flow exists for all times $\implies F_t$ converges to a circle (Elliott-Garcke, 1997)

Existence for small times (Escher-Mayer-Simonett, 1998)

 $F_o \in C^{2,\alpha} \Longrightarrow h \in C^0([0,T); C^{2,\alpha}(\Gamma_o)) \cap C^{\infty}((0,T); C^{\infty}(\Gamma_o))$

• n = 2 If the flow exists for all times $\implies F_t$ converges to a circle (Elliott-Garcke, 1997)

• $n \ge 2$ F_o is $C^{2,\alpha}$ close to $B_o \implies F_t \to \sigma + B_o$ in C^k as $t \to \infty$ for all k (Escher-Mayer-Simonett, 1998)

Existence for small times (Escher-Mayer-Simonett, 1998)

 $F_o \in C^{2,\alpha} \Longrightarrow h \in C^0([0,T); C^{2,\alpha}(\Gamma_o)) \cap C^{\infty}((0,T); C^{\infty}(\Gamma_o))$

• n = 2 If the flow exists for all times $\implies F_t$ converges to a circle (Elliott-Garcke, 1997)

• $n \ge 2$ F_o is $C^{2,\alpha}$ close to $B_o \implies F_t \to \sigma + B_o$ in C^k as $t \to \infty$ for all k (Escher-Mayer-Simonett, 1998)

• *n* = 3

F_o close to an infinite cylinder (LeCrone, Simonett, 2016)

n = 3 Periodic sets with constant mean curvature boundary

n = 3 Periodic sets with constant mean curvature boundary

For $F \subset \mathbb{T}^n$ we set

 $J(F) := P_{\mathbb{T}^n}(F)$

n = 3 Periodic sets with constant mean curvature boundary

For $F \subset \mathbb{T}^n$ we set

 $J(F) := P_{\mathbb{T}^n}(F)$

F is a critical point for the perimeter with the respect to variations with the same volume if

$$H_{\partial F} = const.$$

n = 3 Periodic sets with constant mean curvature boundary

For $F \subset \mathbb{T}^n$ we set

$$J(F) := P_{\mathbb{T}^n}(F)$$

F is a critical point for the perimeter with the respect to variations with the same volume if

$$H_{\partial F} = const.$$

Recall that for a critical point *F* and for $\varphi \in H^1(\partial F)$ we have

$$\partial^2 J(F)[\varphi] = \int_{\partial F} \left(|\nabla \varphi|^2 - |B_{\partial F}|^2 \varphi^2 \right) d\mathcal{H}^{n-1}$$

$$\widetilde{H}^{1}(\partial F) := \left\{ \varphi \in H^{1}(\partial F) : \underbrace{\int_{\partial F} \varphi = 0}_{\text{volume pres.}}, \underbrace{\int_{\partial F} \varphi \nu_{F} = 0}_{\text{translation inv.}} \right\}$$

$$\widetilde{H}^{1}(\partial F) := \left\{ \varphi \in H^{1}(\partial F) : \underbrace{\int_{\partial F} \varphi = \mathbf{0}}_{\text{volume pres.}}, \underbrace{\int_{\partial F} \varphi \nu_{F} = \mathbf{0}}_{\text{translation inv.}} \right\}$$

Then we say that a C^2 critical point F is strictly stable if

 $\partial^2 J(F)[\varphi] > 0$ for all $\varphi \in \widetilde{H}^1(\partial F) \setminus \{0\}$

$$\widetilde{H}^{1}(\partial F) := \left\{ \varphi \in H^{1}(\partial F) : \underbrace{\int_{\partial F} \varphi = \mathbf{0}}_{\text{volume pres.}}, \underbrace{\int_{\partial F} \varphi \nu_{F} = \mathbf{0}}_{\text{translation inv.}} \right\}$$

Then we say that a C^2 critical point *F* is strictly stable if

$$\partial^2 J(F)[arphi] > 0$$
 for all $arphi \in \widetilde{H}^1(\partial F) \setminus \{0\}$

Theorem (Acerbi-F.-Morini 2013)

Let F be a strictly stable C^2 critical configuration.

Then, F is a strict local minimizer, i.e., there exists δ , $C_0 > 0$, s.t. if $\min_{\tau} |F\Delta(\tau + G)| < \delta$, then

 $J(G) \geq J(F) + C_0 \min_{\tau} |F\Delta(\tau + G)|^2$

$$\widetilde{H}^{1}(\partial F) := \left\{ \varphi \in H^{1}(\partial F) : \underbrace{\int_{\partial F} \varphi = \mathbf{0}}_{\text{volume pres.}}, \underbrace{\int_{\partial F} \varphi \nu_{F} = \mathbf{0}}_{\text{translation inv.}} \right\}$$

Then we say that a C^2 critical point *F* is strictly stable if

$$\partial^2 J(F)[arphi] > 0$$
 for all $arphi \in \widetilde{H}^1(\partial F) \setminus \{0\}$

Theorem (Acerbi-F.-Morini 2013)

Let F be a strictly stable C^2 critical configuration.

Then, F is a strict local minimizer, i.e., there exists δ , $C_0 > 0$, s.t. if $\min_{\tau} |F\Delta(\tau + G)| < \delta$, then

$$J(G) \geq J(F) + C_0 \min |F\Delta(\tau + G)|^2$$

The local minimality w.r.t. L^{∞} perturbations (B.White, 1994) or w.r.t. L^1 perturbations ($n \le 7$, Morgan-Ros, 2010) In both cases there was no quantitative estimate

Theorem (Acerbi, F., Julin, Morini, JDG to appear)

Let $G \subset \mathbb{T}^3$ be a smooth strictly stable critical set. For every M > 0 there exists $\delta > 0$ s.t.:

If
$$\partial F_o = \{x + h_o(x)\nu_{_G}: x \in \partial G, \|h_o\|_{_{H^3(\partial G)}} \leq M\},\$$

 $|F_o| = |G|, \qquad |F_o \Delta G| \le \delta, \qquad \text{and} \qquad \int_{\partial F_o} |\nabla H_{\partial F_o}|^2 \, d\mathcal{H}^2 \le \delta,$

then the unique classical solution $(F_t)_t$ to the surface diffusion flow with initial datum F_o exists for all t > 0.

Moreover, $F_t \rightarrow G + \sigma$ in H^3 as $t \rightarrow +\infty$, for some $\sigma \in \mathbb{R}^3$.

The convergence is exponentially fast, i.e., there exist η , $c_G > 0$ such that for all t > 0, writing

$$\partial F_t = \{ \mathbf{x} + \psi_{\sigma,t}(\mathbf{x})\nu_{G+\sigma}(\mathbf{x}) : \mathbf{x} \in \partial G + \sigma \},\$$

we have

$$\|\psi_{\sigma,t}\|_{H^3(\partial G+\sigma)} \leq \eta e^{-c_G t}$$

.

Both $|\sigma|$ and η vanish as $\delta \to 0^+$.

$$\frac{d}{dt}\left(\frac{1}{2}\int_{\partial F_t}|\nabla_{\tau}H_t|^2\,dx\right) = -\,\partial^2 J(F_t)\left[\Delta_{\tau}H_t\right] - \int_{\partial F_t}B_t\left[\nabla_{\tau}H_t\right]\Delta_{\tau}H_t\,d\mathcal{H}^2 + \frac{1}{2}\int_{\partial F_t}H_t|\nabla_{\tau}H_t|^2\Delta_{\tau}H_t\,d\mathcal{H}^2,$$

$$\frac{d}{dt}\left(\frac{1}{2}\int_{\partial F_t}|\nabla_{\tau}H_t|^2\,dx\right) = -\,\partial^2 J(F_t)\left[\Delta_{\tau}H_t\right] - \int_{\partial F_t}B_t\left[\nabla_{\tau}H_t\right]\Delta_{\tau}H_t\,d\mathcal{H}^2 + \frac{1}{2}\int_{\partial F_t}H_t|\nabla_{\tau}H_t|^2\Delta_{\tau}H_t\,d\mathcal{H}^2,$$

But if F_t is sufficiently close to the stable critical point G then

$$\partial^2 J(\mathcal{F}_t) \left[\Delta_ au \mathcal{H}_t
ight] \geq c_0 \| \Delta_ au \mathcal{H}_t \|_{H^1(\mathcal{F}_t)}^2$$

$$\frac{d}{dt}\left(\frac{1}{2}\int_{\partial F_t} |\nabla_{\tau} H_t|^2 dx\right) = -\partial^2 J(F_t) \left[\Delta_{\tau} H_t\right] - \int_{\partial F_t} B_t \left[\nabla_{\tau} H_t\right] \Delta_{\tau} H_t d\mathcal{H}^2 + \frac{1}{2}\int_{\partial F_t} H_t |\nabla_{\tau} H_t|^2 \Delta_{\tau} H_t d\mathcal{H}^2,$$

But if F_t is sufficiently close to the stable critical point G then

 $\partial^2 J(\mathcal{F}_t) \left[\Delta_ au \mathcal{H}_t
ight] \geq c_0 \| \Delta_ au \mathcal{H}_t \|_{\mathcal{H}^1(\mathcal{F}_t)}^2$

$$\frac{d}{dt}\left(\frac{1}{2}\int_{\partial F_t}|\nabla_{\tau}H_t|^2\,d\mathcal{H}^2\right)\leq -\frac{c_0}{2}\|\Delta_{\tau}H_t\|_{H^1(\partial F_t)}^2\leq -c_1\|\nabla_{\tau}H_t\|_{L^2(\partial F_t)}^2,$$

.11

$$\frac{d}{dt}\left(\frac{1}{2}\int_{\partial F_t} |\nabla_{\tau} H_t|^2 dx\right) = -\partial^2 J(F_t) \left[\Delta_{\tau} H_t\right] - \int_{\partial F_t} B_t \left[\nabla_{\tau} H_t\right] \Delta_{\tau} H_t d\mathcal{H}^2 + \frac{1}{2}\int_{\partial F_t} H_t |\nabla_{\tau} H_t|^2 \Delta_{\tau} H_t d\mathcal{H}^2,$$

But if F_t is sufficiently close to the stable critical point G then

$$\partial^2 J(F_t) \left[\Delta_{\tau} H_t \right] \geq c_0 \| \Delta_{\tau} H_t \|_{H^1(F_t)}^2$$

Ш

Material void inside a stressed elastic material (Siegel-Miksis-Voorhees 2004)

Material void inside a stressed elastic material (Siegel-Miksis-Voorhees 2004)

 $\Omega =$ the container $\Omega \setminus F$ = the region occupied by the material Ω F = the void $u_{\scriptscriptstyle F}: \Omega \setminus F \mapsto \mathbb{R}^2 =$ the elastic equilibrium F $u_{\scriptscriptstyle F} = \operatorname{argmin}\left\{\int_{\Omega\setminus F} W(E(u)) \, dx : \ u = u_o \text{ on } \partial\Omega\right\}$ $E(u) = \frac{Du + D^T u}{2}$ the symmetric gradient of u

Material void inside a stressed elastic material (Siegel-Miksis-Voorhees 2004)

 $\Omega =$ the container $\Omega \setminus F$ = the region occupied by the material Ω F = the void $u_{\scriptscriptstyle F}: \Omega \setminus F \mapsto \mathbb{R}^2 =$ the elastic equilibrium F $u_{\scriptscriptstyle F} = \operatorname{argmin}\left\{\int_{\Omega\setminus F} W(E(u)) \, dx : u = u_o \text{ on } \partial\Omega\right\}$ $E(u) = \frac{Du + D^T u}{2}$ the symmetric gradient of u

$$J(F) = \int_{\Omega \setminus F} W(E(u_F)) + \int_{\partial F} \varphi(\nu_F)$$

Material void inside a stressed elastic material (Siegel-Miksis-Voorhees 2004)

 $\Omega =$ the container $\Omega \setminus F$ = the region occupied by the material Ω F = the void $u_{\varepsilon}: \Omega \setminus F \mapsto \mathbb{R}^2 =$ the elastic equilibrium F $u_{\scriptscriptstyle F} = \operatorname{argmin}\left\{\int_{\Omega\setminus F} W(E(u)) \, dx : \ u = u_o \text{ on } \partial\Omega\right\}$ $E(u) = \frac{Du + D^T u}{2}$ the symmetric gradient of u

$$J(F) = \int_{\Omega \setminus F} W(E(u_F)) + \int_{\partial F} \varphi(\nu_F)$$

Note

$$u_o = 0 \implies J(F) = \int_{\partial F} \varphi(\nu_F)$$

 $J(F) = \int_{\Omega \setminus F} W(E(u_F)) + \int_{\partial F} \varphi(\nu_F)$

$$J(F) = \int_{\Omega \setminus F} W(E(u_F)) + \int_{\partial F} \varphi(v_F)$$

We shall assume that if $A \in \mathcal{M}^{n \times n}$ (n = 2, 3)

$$W(A) = \frac{1}{2} \mathbb{C}A : A$$

where \mathbb{C} is a tensor such that $\mathbb{C}A : A > 0$ for all $A \neq 0$

$$J(F) = \int_{\Omega \setminus F} W(E(u_F)) + \int_{\partial F} \varphi(\nu_F)$$

We shall assume that if $A \in \mathcal{M}^{n \times n}$ (n = 2, 3)

$$W(A) = \frac{1}{2}\mathbb{C}A:A$$

where \mathbb{C} is a tensor such that $\mathbb{C}A : A > 0$ for all $A \neq 0$ Thus

$$\begin{cases} \operatorname{div} \, \mathbb{C}E(u_{\scriptscriptstyle F}) = 0 & \text{ in } \Omega \setminus F \\ u_{\scriptscriptstyle F} = u_o & \text{ on } \partial\Omega \\ CE(u_{\scriptscriptstyle F})[\nu_{\scriptscriptstyle F}] = 0 & \text{ on } \partialF \end{cases}$$

$$J(F) = \int_{\Omega \setminus F} W(E(u_F)) + \int_{\partial F} \varphi(\nu_F)$$

We shall assume that if $A \in \mathcal{M}^{n \times n}$ (n = 2, 3)

$$W(A) = \frac{1}{2} \mathbb{C}A : A$$

where \mathbb{C} is a tensor such that $\mathbb{C}A : A > 0$ for all $A \neq 0$ Thus

$$\begin{cases} \operatorname{div} \mathbb{C}E(u_{\scriptscriptstyle F}) = 0 & \text{ in } \Omega \setminus F \\ u_{\scriptscriptstyle F} = u_o & \text{ on } \partial\Omega \\ CE(u_{\scriptscriptstyle F})[\nu_{\scriptscriptstyle F}] = 0 & \text{ on } \partialF \end{cases}$$

$$\min\left\{\int_{\Omega\setminus F} W(E(u_{_F})) + \int_{\partial F} \varphi(\nu_{_F}): \ F\subset \Omega, \ |F| = m < |\Omega|\right\}$$

$$J(F) = \int_{\Omega \setminus F} W(E(u_F)) + \int_{\partial F} \varphi(\nu_F)$$

We shall assume that if $A \in \mathcal{M}^{n \times n}$ (n = 2, 3)

$$W(A) = \frac{1}{2} \mathbb{C}A : A$$

where \mathbb{C} is a tensor such that $\mathbb{C}A : A > 0$ for all $A \neq 0$ Thus

$$\begin{cases} \operatorname{div} \mathbb{C}E(u_{\scriptscriptstyle F}) = 0 & \text{ in } \Omega \setminus F \\ u_{\scriptscriptstyle F} = u_o & \text{ on } \partial\Omega \\ CE(u_{\scriptscriptstyle F})[\nu_{\scriptscriptstyle F}] = 0 & \text{ on } \partialF \end{cases}$$

$$\min\left\{\int_{\Omega\setminus F} W(E(u_F)) + \int_{\partial F} \varphi(\nu_F) : F \subset \Omega, \ |F| = m < |\Omega|\right\}$$

Existence and regularity in 2D (Fonseca-F-Leoni-Millot, 2011)

Morphology evolution: surface diffusion

$$J(F) = \int_{\Omega \setminus F} W(E(u_F)) \, dx + \int_{\partial F} \varphi(F) \, d\mathcal{H}^{n-1}$$

$$\Gamma_t = \partial F_t$$

Einstein-Nernst law: surface flux of atoms $\propto \nabla_{\Gamma_t} \mu$

 μ = chemical potential \rightsquigarrow $V_t = \kappa \Delta_{\Gamma_t} \mu$

Morphology evolution: surface diffusion

$$J(F) = \int_{\Omega \setminus F} W(E(u_F)) \, dx + \int_{\partial F} \varphi(F) \, d\mathcal{H}^{n-1}$$

$$\Gamma_t = \partial F_t$$

Einstein-Nernst law: surface flux of atoms $\propto \nabla_{\Gamma_t} \mu$

 μ = chemical potential \rightsquigarrow $V_t = \kappa \Delta_{\Gamma_t} \mu$

 μ = first variation of energy = div_r $\nabla \varphi(\nu_t) - W(E(u_t)) + \lambda$

Morphology evolution: surface diffusion

$$J(F) = \int_{\Omega \setminus F} W(E(u_F)) \, dx + \int_{\partial F} \varphi(F) \, d\mathcal{H}^{n-1}$$

$$\Gamma_t = \partial F_t$$

Einstein-Nernst law: surface flux of atoms $\propto \nabla_{\Gamma_t} \mu$

 μ = chemical potential \rightsquigarrow $V_t = \kappa \Delta_{\Gamma_t} \mu$

 μ = first variation of energy = div_r $\nabla \varphi(\nu_t) - W(E(u_t)) + \lambda$

 $\operatorname{div}_{r_t} \nabla \varphi(\nu_t) := H_{\varphi,t} = \operatorname{anisotropic} \operatorname{curvature}$

$$V_t = \kappa \, \Delta_{\Gamma_t} \big(H_{\varphi,t} - W(E(u_t)) \big)$$

$V_t = \Delta_{\Gamma_t} (H_{\varphi,t} - W(E(u_t)))$

$V_t = \Delta_{\Gamma_t} \big(H_{\varphi,t} - W(E(u_t)) \big)$

- This is the H^{-1} flow of J(F)
- The flow is volume preserving (no information on the perimeter)
- No existence results available!

$V_t = \Delta_{\Gamma_t} (H_{\varphi,t} - W(E(u_t)))$

- This is the H^{-1} flow of J(F)
- The flow is volume preserving (no information on the perimeter)
- No existence results available!

If n = 2, then

 $H_{\varphi,t} = g(\nu_t) k_t$

where

 $k_t = ext{ curvature of } \partial F_t, \qquad g(
u) = \langle D^2 arphi(
u) au, au
angle ext{ for all }
u, au \in \mathbb{S}^1, \
u \perp au$

$V_t = \Delta_{\Gamma_t} \big(H_{\varphi,t} - W(E(u_t)) \big)$

- This is the H^{-1} flow of J(F)
- The flow is volume preserving (no information on the perimeter)
- No existence results available!

If n = 2, then

 $H_{\varphi,t} = g(\nu_t)k_t$

where

$$k_t = ext{ curvature of } \partial F_t, \qquad g(
u) = \langle D^2 arphi(
u) au, au
angle ext{ for all }
u, au \in \mathbb{S}^1, \
u \perp au$$

The equation becomes

$$V_t = \partial_{\sigma\sigma} (g(
u_t) \kappa_t - W(E(u_t)))$$

Theorem (F.-Julin-Morini, 2017)

Let $G \subset \Omega \subset \mathbb{R}^2$ smooth. For every M > 0 there exist $\delta > 0, T > 0$ s.t. if

$$\partial F_o = \{ x + h_o(x)
u_G : \ x \in \partial G, \ \|h_o\|_{H^{\beta}(\partial G)} \leq M \}, \qquad |G \Delta F_o| \leq \delta,$$

then there exists a unique classical solution classical solution $(F_t)_t$, $t \in (0, T)$. More precisely

$$\partial F_t = \{x + h(x,t)\nu_G(x) : x \in \partial G\}$$

where for every $\alpha \in (0, 1/2)$

 $h \in C([0,T]; C^{2,lpha}(\partial G)) \cap C^{\infty}((0,T); C^{\infty}(\partial G))$

Long time existence

Theorem (F-Julin-Morini, 2017)

Let $G \subset \Omega$ be a smooth strictly stable critical point and let M > 0. There exists $\delta > 0$ with the following property:

 $\textit{Let } F_o \textit{ be s.t. } \partial F_o = \{x + h_o(x)\nu_{_G}: x \in \partial G, \ \|h_o\|_{_{H^3(\partial G)}} \leq M\},$

 $|F_{o}\Delta G| < \delta, \qquad \int_{\partial F_{o}} \left| \partial_{\sigma} \left(g(\nu_{F_{o}}) k_{F_{o}} - W(E(u_{F_{o}})) \right) \right|^{2} d\mathcal{H}^{1} < \delta,$

Then the unique solution $(F_t)_{t>0}$ of the flow with initial datum F_o is defined for all times t > 0.

Moreover $F_t \rightarrow G H^3$ -exponentially fast.

Long time existence

Theorem (F-Julin-Morini, 2017)

Let $G \subset \Omega$ be a smooth strictly stable critical point and let M > 0. There exists $\delta > 0$ with the following property:

 $\textit{Let } F_o \textit{ be s.t. } \partial F_o = \{x + h_o(x)\nu_{_G}: x \in \partial G, \ \|h_o\|_{_{H^3(\partial G)}} \leq M\},$

 $|F_{o}\Delta G| < \delta, \qquad \int_{\partial F_{o}} \left| \partial_{\sigma} \left(g(\nu_{F_{o}}) k_{F_{o}} - W(E(u_{F_{o}})) \right) \right|^{2} d\mathcal{H}^{1} < \delta,$

Then the unique solution $(F_t)_{t>0}$ of the flow with initial datum F_o is defined for all times t > 0.

Moreover $F_t \rightarrow G H^3$ -exponentially fast.

But we can say more.....

and by $\mathcal{O}_1, \ldots \mathcal{O}_m$ the open sets enclosed by the Γ_i

and by $\mathcal{O}_1, \ldots \mathcal{O}_m$ the open sets enclosed by the Γ_i

F is stationary if

 $g(\nu_{\scriptscriptstyle F})k_{\scriptscriptstyle F} - W(E(u_{\scriptscriptstyle F})) = \kappa_i$ on $\Gamma_i, i = 1, ..., m$

.

and by $\mathcal{O}_1, \ldots \mathcal{O}_m$ the open sets enclosed by the Γ_i

F is stationary if

 $g(\nu_F)k_F - W(E(u_F)) = \kappa_i$ on $\Gamma_i, i = 1, ..., m$

 ∂G has *m* connected components, *G* strictly stable stationary

and by $\mathcal{O}_1, \ldots \mathcal{O}_m$ the open sets enclosed by the Γ_i

F is stationary if

 $g(\nu_F)k_F - W(E(u_F)) = \kappa_i$ on $\Gamma_i, i = 1, \dots, m$

 ∂G has *m* connected components, *G* strictly stable stationary

 $\Rightarrow \partial F_o, \partial F_t$ have *m* connected components

and by $\mathcal{O}_1, \ldots \mathcal{O}_m$ the open sets enclosed by the Γ_i

F is stationary if

 $g(\nu_{\scriptscriptstyle F})k_{\scriptscriptstyle F} - W(E(u_{\scriptscriptstyle F})) = \kappa_i$ on $\Gamma_i, i = 1, ..., m$

 ∂G has *m* connected components, *G* strictly stable stationary

 $\Rightarrow \partial F_o, \partial F_t$ have *m* connected components

Moreover

 $|\mathcal{O}_{i,t}| = |\mathcal{O}_{i,o}| \quad \forall i = 1, \dots, m \text{ and } \forall t > 0$

and by $\mathcal{O}_1, \ldots \mathcal{O}_m$ the open sets enclosed by the Γ_i

F is stationary if

 $g(\nu_{\scriptscriptstyle F})k_{\scriptscriptstyle F} - W(E(u_{\scriptscriptstyle F})) = \kappa_i$ on $\Gamma_i, i = 1, ..., m$

 ∂G has *m* connected components, *G* strictly stable stationary

 $\Rightarrow \quad \partial F_o, \ \partial F_t \quad \text{have } m \text{ connected components}$

Moreover

 $|\mathcal{O}_{i,t}| = |\mathcal{O}_{i,o}| \quad \forall i = 1, \dots, m \text{ and } \forall t > 0$

then $F_t \to F_{\infty}$ in H^3 where F_{∞} is the only stationary point H^3 -close to G s.t. $|\mathcal{O}_{i,\infty}| = |\mathcal{O}_{i,o}| \quad \forall i = 1, \dots, m$

THANK YOU FOR YOUR ATTENTION!