Approximation of functions with small jump sets and existence of strong minimizers of the Griffith's energy in dimension n

Flaviana lurlano

Laboratoire Jacques-Louis Lions
Sorbonne Université (Paris 6)

BIRS worshop: Topics in the Calculus of Variations: Recent Advances and New Trends

Banff - May 23, 2018

Setting of the problem

We aim to study the existence of minimizers to the following ("strong") problem

$$
\min _{(\Gamma, u)} \int_{\Omega \backslash \Gamma}\left|\nabla^{\text {sym }} u\right|^{2} d x+\mathcal{H}^{n-1}(\Gamma),
$$

where $\Gamma \subset \Omega$ closed, $u \in C^{1}\left(\Omega \backslash\left\ulcorner, \mathbb{R}^{n}\right)\right.$, and some boundary or volume conditions are assumed.

Mechanical interest:

minimizers \leadsto equilibria of the static Griffith's fracture energy
$\Gamma ~$ crack,
$u \leadsto$ elastic displacement out of the crack

Setting of the problem

We aim to study the existence of minimizers to the following ("strong") problem

$$
\min _{(\Gamma, u)} \int_{\Omega \backslash \Gamma}\left|\nabla^{\text {sym }} u\right|^{2} d x+\mathcal{H}^{n-1}(\Gamma),
$$

where $\Gamma \subset \Omega$ closed, $u \in C^{1}\left(\Omega \backslash \Gamma, \mathbb{R}^{n}\right)$, and some boundary or volume conditions are assumed.

Mathematical interest: lack of semicontinuity of the term $\mathcal{H}^{n-1}(\Gamma)$ with respect to the Hausdorff distance (the direct method of the calculus of variations doesn't work)

Alternative strategy

Alternative strategy:

- proving existence of minimizers for a suitable weak problem
- showing that such weak minimizers are in fact more regular (\sim then strong minimizers)

Weak problem:

$$
\min _{u} \int_{\Omega}\left|\nabla^{\text {sym }} u\right|^{2} d x+\mathcal{H}^{n-1}\left(J_{u}\right)
$$

where u belongs to a suitable space of "discontinuous" functions ($u \in S B D$) and J_{u} is its jump set (+ boundary or volume conditions).

The space $S B D$

A function $u \in L^{1}\left(\Omega, \mathbb{R}^{n}\right)$ is a Special function of Bounded Deformation if

$$
\begin{aligned}
& E u:=\left(D u+D u^{t}\right) / 2 \text { is a bounded Radon measure and } \\
& E u=\underbrace{\nabla^{\text {sym }} u \mathcal{L}^{n}\left\lfloor\left(\Omega \backslash J_{u}\right)\right.}_{\text {absolutely cont. }}+\underbrace{[u] \odot \nu_{u} \mathcal{H}^{n-1}\left\lfloor J_{u}\right.}_{\text {singular }}
\end{aligned}
$$

$\rightarrow J_{u}$ jump set of u, it is \mathcal{H}^{n-1}-rectifiable (in general not closed)
$\rightarrow \nabla^{\text {sym }} u \in L^{1}\left(\Omega, \mathbb{R}^{n \times n}\right)$ (in general $u \notin C^{1}\left(\Omega \backslash J_{u}, \mathbb{R}^{n}\right)$)
$\rightarrow[u]$ amplitude of the jump, ν_{u} normal vector to J_{u}

Existence and regularity for the weak problem

$$
\exists \min _{u \in(G) S B D} \int_{\Omega}\left|\nabla^{s y m} u\right|^{2} d x+\mathcal{H}^{n-1}\left(J_{u}\right)
$$

under:

- a volume condition and a uniform bound [Bellettini-Coscia-Dal Maso '98]
- a volume condition [Dal Maso '13]
- Dirichlet conditions and $n=2$ [Friedrich-Solombrino '18]
- Dirichlet conditions and $n>2$ [Chambolle-Crismale '18]

Regularity issue: if J_{u} is closed and $u \in C^{1}\left(\Omega \backslash J_{u}, \mathbb{R}^{n}\right)$, then $\left(J_{u}, u\right)$ is a competitor for the strong problem \leadsto then strong minimizer!

Bibliography

$$
\exists \min _{(\Gamma, u)} \int_{\Omega \backslash \Gamma}|f(\nabla u)|^{2} d x+\mathcal{H}^{n-1}(\Gamma)
$$

(by proving that J_{u} is essentially closed)

- if $u: \Omega \rightarrow \mathbb{R}$ and $f(\nabla u)=|\nabla u|^{2}$ (scalar case)
[De Giorgi-Carriero-Leaci '89, Dal Maso-Morel-Solimini '92, Solimini '97,
Maddalena-Solimini '01]
- if $u: \Omega \rightarrow \mathbb{R}^{n}$ and $f(\nabla u) \sim|\nabla u|^{p}$ (full gradient case) [Carriero-Leaci '91, Fonseca-Fusco '97]
- if $u: \Omega \rightarrow \mathbb{R}^{n}$ and $f(\nabla u) \sim\left|\nabla^{\text {sym }} u\right|^{p}$ and $n=2$
[Conti-Focardi-F.I. '15]
- if $u: \Omega \rightarrow \mathbb{R}^{n}$ and $f(\nabla u) \sim\left|\nabla^{\text {sym }} u\right|^{2}$ and $n>2$ (or $p \neq 2, n=3 \ldots$) [Chambolle-Conti-F.I. '17]

Bibliography

$$
\exists \min _{(\Gamma, u)} \int_{\Omega \backslash \Gamma}|f(\nabla u)|^{2} d x+\mathcal{H}^{n-1}(\Gamma)
$$

(by proving that J_{u} is essentially closed)

- if $u: \Omega \rightarrow \mathbb{R}$ and $f(\nabla u)=|\nabla u|^{2}$ (scalar case) [De Giorgi-Carriero-Leaci '89, Dal Maso-Morel-Solimini '92, Solinini ' 97 Maddalena-Solimini '01]
- if $u: \Omega \rightarrow \mathbb{R}^{n}$ and $f(\nabla u) \sim|\nabla u|^{p}$ (full gradient case) [Carriero-Leaci '91, Fonseca-Fusco '97]
- if $u: \Omega \rightarrow \mathbb{R}^{n}$ and $f(\nabla u) \sim\left|\nabla^{s y m} u\right|^{2}$ and $n>2($ or $p \neq 2, n=3 \ldots)$ [Chambolle-Conti-F.I. '17]

Crucial point

Given a sequence $u_{k} \in S B D$, we would like to say

$$
\begin{aligned}
& \left\|\nabla^{\text {sym }} u_{k}\right\|_{2} \leq c, \quad \mathcal{H}^{n-1}\left(J_{u_{k}}\right) \rightarrow 0 \quad \text { (small jumps) } \\
& \Downarrow ? \\
& u_{k_{j}}-a_{k_{j}} \rightarrow u \in H^{1} \quad \text { (without jump) }
\end{aligned}
$$

for some $a_{k_{j}}$ skew-symmetric affine functions.

Note: true if $u_{k} \in H^{1}$ by Korn's inequality

Crucial point: idea

Idea: replace u_{k} by a suitable Sobolev regularization \tilde{u}_{k} and take the limit of \tilde{u}_{k} (up to an affine skew-symmetric function)

Difficulties: differently from the gradient case, in the symmetric gradient case we have no chain rule, roughly

$$
\nabla^{\text {sym }}(f(u)) \neq \nabla^{\text {sym }} f \nabla^{\text {sym }} u,
$$

hence

- no truncations
- no coarea formula

The regularization result

Theorem [Chambolle-Conti-F.I. '17]

$\exists \eta, c>0$ such that if $u \in S B D(Q)$ with

- $\left\|\nabla^{\text {sym }} u\right\|_{2} \leq c \quad$ (bounded)
- $\mathcal{H}^{n-1}\left(J_{u}\right)<\eta^{n} \quad$ (small)
then, set $\delta:=\mathcal{H}^{n-1}\left(J_{u}\right)^{1 / n}$, there exist

$$
\tilde{u} \in C^{\infty}\left(Q_{1-\sqrt{\delta}}\right) \cap S B D(Q) \quad(\text { "regular" })
$$

and an exceptional set $\tilde{\omega} \subset Q,|\tilde{\omega}|<c \sqrt{\delta}$, such that (close to u)

- $\left\|\nabla^{\text {sym }} \tilde{u}\right\|_{L^{2}} \leq\left\|\nabla^{\text {sym }} u\right\|_{L^{2}}+c \sqrt{\delta}$
- $\mathcal{H}^{n-1}\left(J_{\tilde{u}} \backslash J_{u}\right)<c \sqrt{\delta}$
- $\int_{Q \backslash \tilde{\omega}}|u-\tilde{u}|^{2} d x \leq c \sqrt{\delta}$.

Idea of the proof

1. Covering most of Q with cubes of side $\delta:=\left(\mathcal{H}^{n-1}\left(J_{u}\right)\right)^{1 / n}<\eta$, then with dyadic cubes

Q^{1}
2. Identifying the cubes of the covering that still contain a small amount of jump

By assumption u has a small jump in the whole Q

$$
\delta^{n}:=\mathcal{H}^{n-1}\left(J_{u}\right)<\eta^{n} .
$$

A cube q of the covering is said to be good if

$$
\mathcal{H}^{n-1}\left(J_{u} \cap q\right)<\eta \delta_{q}^{n-1}
$$

where δ_{q} denotes the side of q.

Note: The cubes of side δ (the biggest cubes) are all good.
3. Performing two different constructions in good and bad cubes

Bad cubes: u is left as it is

Good cubes: we will construct a C^{∞} regularization in each cube and then we will take a partition of unity on the union of the good cubes

Note: since the cubes of side δ are all good, \tilde{u} will be C^{∞} on a big compact set of $Q!\left(\sim Q_{1-\sqrt{\delta}}\right)$

How to construct such regularization in each good q ?
4. Construction in a good cube

If $J_{u} \cap q$ is small, that is

$$
\mathcal{H}^{n-1}\left(J_{u} \cap q\right)<\eta \delta_{q}^{n-1}
$$

a Korn-Poincaré-type inequality holds [Chambolle-Conti-Francfort '15]:

$$
\exists a_{q} \text { affine skew, } \omega_{q} \text { with }\left|\omega_{q}\right|<\delta_{q} \mathcal{H}^{n-1}\left(J_{u} \cap q\right) \text {, }
$$

such that

$$
\int_{q \backslash \omega_{q}}\left|u-a_{q}\right|^{2} d x \leq c \delta_{q}^{2} \underbrace{\int_{q}\left|\nabla^{s y m} u\right|^{2} d x}_{\text {abs. cont. part only }}
$$

Note: ω_{q} has not finite perimeter \leadsto no similar controls of $\nabla u-\nabla a_{q}$ by means of $\nabla^{\text {sym }} u$ (but if $n=2 \ldots$)
4. Construction in a good cube

But, if one defines

$$
\tilde{u}:=\left(1_{q \backslash \omega_{q}} u+1_{\omega_{q}} a_{q}\right) * \rho_{q} \in C^{\infty}\left(q, \mathbb{R}^{n}\right),
$$

one can prove that

$$
\int_{q}\left|\nabla^{s y m} \tilde{u}-\nabla^{s y m} u * \rho_{q}\right|^{2} \leq c \delta^{r}
$$

with $r=r(n)$, then recovering the control of $\nabla^{\text {sym }} \tilde{u}$ with $\nabla^{\text {sym }} u$.
4. Construction in a good cube

But, if one defines

$$
\tilde{u}:=\left(1_{q \backslash \omega_{q}} u+1_{\omega_{q}} a_{q}\right) * \rho_{q} \in C^{\infty}\left(q, \mathbb{R}^{n}\right),
$$

one can prove that

$$
\int_{q}\left|\nabla^{\text {sym }} \tilde{u}-\nabla^{\text {sym }} u * \rho_{q}\right|^{2} \leq c \delta^{r}
$$

with $r=r(n)$, then recovering the control of $\nabla^{\text {sym }} \tilde{u}$ with $\nabla^{\text {sym }} u$.

Thank you for your attention!

