Approximation of functions with small jump sets and existence of strong minimizers of the Griffith's energy in dimension *n*

Flaviana Iurlano

Laboratoire Jacques-Louis Lions Sorbonne Université (Paris 6)

BIRS worshop: Topics in the Calculus of Variations: Recent Advances and New Trends

Banff - May 23, 2018

Setting of the problem

We aim to study the existence of minimizers to the following ("strong") problem

$$\min_{(\Gamma,u)}\int_{\Omega\setminus\Gamma}|\nabla^{sym}u|^2dx+\mathcal{H}^{n-1}(\Gamma),$$

where $\Gamma \subset \Omega$ closed, $u \in C^1(\Omega \setminus \Gamma, \mathbb{R}^n)$, and some boundary or volume conditions are assumed.

Mechanical interest:

minimizers \rightsquigarrow equilibria of the static Griffith's fracture energy $\Gamma \rightsquigarrow$ crack, $u \rightsquigarrow$ elastic displacement out of the crack

Crucial point

Proof

Setting of the problem

We aim to study the existence of minimizers to the following ("strong") problem

$$\min_{(\Gamma,u)}\int_{\Omega\setminus\Gamma}|\nabla^{sym}u|^2dx+\mathcal{H}^{n-1}(\Gamma),$$

where $\Gamma \subset \Omega$ closed, $u \in C^1(\Omega \setminus \Gamma, \mathbb{R}^n)$, and some boundary or volume conditions are assumed.

Mathematical interest: lack of semicontinuity of the term $\mathcal{H}^{n-1}(\Gamma)$ with respect to the Hausdorff distance (the direct method of the calculus of variations doesn't work)

Alternative strategy

Alternative strategy:

- proving existence of minimizers for a suitable weak problem
- showing that such weak minimizers are in fact more regular (→ then strong minimizers)

Weak problem:

$$\min_{u}\int_{\Omega}|\nabla^{sym}u|^{2}dx+\mathcal{H}^{n-1}(J_{u}),$$

where *u* belongs to a suitable space of "discontinuous" functions $(u \in SBD)$ and J_u is its jump set (+ boundary or volume conditions).

Crucial point

Proof

The space SBD

A function $u \in L^1(\Omega, \mathbb{R}^n)$ is a Special function of Bounded Deformation if

 $Eu := (Du + Du^{t})/2 \text{ is a bounded Radon measure and}$ $Eu = \underbrace{\nabla^{sym} u \ \mathcal{L}^{n} \lfloor (\Omega \setminus J_{u})}_{\text{absolutely cont.}} + \underbrace{[u] \odot \nu_{u} \ \mathcal{H}^{n-1} \lfloor J_{u}}_{\text{singular}}$

→ J_u jump set of u, it is \mathcal{H}^{n-1} -rectifiable (in general not closed) → $\nabla^{sym} u \in L^1(\Omega, \mathbb{R}^{n \times n})$ (in general $u \notin C^1(\Omega \setminus J_u, \mathbb{R}^n)$)

ightarrow [*u*] amplitude of the jump, u_u normal vector to J_u

Existence and regularity for the weak problem

$$\exists \min_{u \in (G)SBD} \int_{\Omega} |\nabla^{sym}u|^2 dx + \mathcal{H}^{n-1}(J_u)$$

under:

- a volume condition and a uniform bound [Bellettini-Coscia-Dal Maso '98]
- a volume condition [Dal Maso '13]
- Dirichlet conditions and n = 2 [Friedrich-Solombrino '18]
- Dirichlet conditions and n > 2 [Chambolle-Crismale '18]

Regularity issue: if J_u is closed and $u \in C^1(\Omega \setminus J_u, \mathbb{R}^n)$, then (J_u, u) is a competitor for the strong problem \rightsquigarrow then strong minimizer!

$$\exists \min_{(\Gamma,u)} \int_{\Omega\setminus\Gamma} |f(\nabla u)|^2 dx + \mathcal{H}^{n-1}(\Gamma)$$

(by proving that J_u is essentially closed)

- if u : Ω → ℝ and f(∇u) = |∇u|² (scalar case)
 [De Giorgi-Carriero-Leaci '89, Dal Maso-Morel-Solimini '92, Solimini '97, Maddalena-Solimini '01]
- if $u: \Omega \to \mathbb{R}^n$ and $f(\nabla u) \sim |\nabla u|^p$ (full gradient case) [Carriero-Leaci '91, Fonseca-Fusco '97]
- if $u : \Omega \to \mathbb{R}^n$ and $f(\nabla u) \sim |\nabla^{sym}u|^p$ and n = 2[Conti-Focardi-F.I. '15]
- if $u : \Omega \to \mathbb{R}^n$ and $f(\nabla u) \sim |\nabla^{sym}u|^2$ and n > 2 (or $p \neq 2, n = 3...$) [Chambolle-Conti-F.I. '17]

$$\exists \min_{(\Gamma,u)} \int_{\Omega\setminus\Gamma} |f(\nabla u)|^2 dx + \mathcal{H}^{n-1}(\Gamma)$$

(by proving that J_u is essentially closed)

- if $u : \Omega \to \mathbb{R}$ and $f(\nabla u) = |\nabla u|^2$ (scalar case) [De Giorgi–Carriero–Leaci '89, Dal Maso–Morel–Solimini '92, Solimini '97, Maddalena–Solimini '01]
- if $u: \Omega \to \mathbb{R}^n$ and $f(\nabla u) \sim |\nabla u|^p$ (full gradient case) [Carriero-Leaci '91, Fonseca-Fusco '97]
- if $u: \Omega \to \mathbb{R}^n$ and $f(\nabla u) \sim |\nabla^{sym}u|^p$ and n = 2[Conti-Focardi-F.I. '15]
- if $u : \Omega \to \mathbb{R}^n$ and $f(\nabla u) \sim |\nabla^{sym}u|^2$ and n > 2 (or $p \neq 2, n = 3...$) [Chambolle–Conti–F.I. '17]

Crucial point

Proof

Crucial point

Given a sequence $u_k \in SBD$, we would like to say

$$egin{aligned} \|
abla^{sym} u_k \|_2 &\leq c, & \mathcal{H}^{n-1}(J_{u_k}) o 0 & (ext{small jumps}) \ & & & & & & \ & & & & \ & & & & \ & & & & \ & & & & \ & & & & \ & & & & \ & & & & \ & & & & \ & & & & \ & & & & \ & & & & \ & & & & \ & & & & \ & & & & \ & & & & \ & & & \ & & & & \ & & & \ & & & & \ & & & \ & & & \ & & & \ & & & \ & & & \ & & & \ & & & \ & & & \ & & & \ & & & \ & & \ & & & \ & \ & \ & & \$$

for some a_{k_i} skew-symmetric affine functions.

Note: true if $u_k \in H^1$ by Korn's inequality

Crucial point: idea

Idea: replace u_k by a suitable Sobolev regularization \tilde{u}_k and take the limit of \tilde{u}_k (up to an affine skew-symmetric function)

Difficulties: differently from the gradient case, in the symmetric gradient case we have no chain rule, roughly

$$\nabla^{sym}(f(u)) \neq \nabla^{sym}f\nabla^{sym}u,$$

hence

- no truncations
- no coarea formula

The regularization result

Theorem [Chambolle–Conti–F.I. '17]

 $\exists \ \eta, c > 0$ such that if $u \in SBD(Q)$ with

- $\|\nabla^{sym}u\|_2 \leq c$ (bounded)
- $\mathcal{H}^{n-1}(J_u) < \eta^n$ (small)

then, set $\delta := \mathcal{H}^{n-1}(J_u)^{1/n}$, there exist $\tilde{u} \in C^{\infty}(Q_{1-\sqrt{\delta}}) \cap SBD(Q)$ ("regular")

and an exceptional set $ilde{\omega} \subset Q$, $| ilde{\omega}| < c\sqrt{\delta}$, such that (close to u)

•
$$\|
abla^{sym}\widetilde{u}\|_{L^2} \leq \|
abla^{sym}u\|_{L^2} + c\sqrt{\delta}$$

•
$$\mathcal{H}^{n-1}(J_{ ilde{u}} \setminus J_u) < c\sqrt{\delta}$$

•
$$\int_{Q\setminus\tilde{\omega}}|u-\tilde{u}|^2dx\leq c\sqrt{\delta}.$$

Proof

Idea of the proof

1. Covering most of Q with cubes of side $\delta := (\mathcal{H}^{n-1}(J_u))^{1/n} < \eta$, then with dyadic cubes

2. Identifying the cubes of the covering that still contain a small amount of jump

By assumption u has a small jump in the whole Q

 $\delta^n := \mathcal{H}^{n-1}(J_u) < \eta^n.$

A cube q of the covering is said to be good if

 $\mathcal{H}^{n-1}(J_u \cap q) < \eta \delta_q^{n-1}$

where δ_q denotes the side of q.

Note: The cubes of side δ (the biggest cubes) are all good.

3. Performing two different constructions in good and bad cubes

Bad cubes: *u* is left as it is

Good cubes: we will construct a C^{∞} regularization in each cube and then we will take a partition of unity on the union of the good cubes

Note: since the cubes of side δ are all good, \tilde{u} will be C^{∞} on a big compact set of $Q! \ (\sim Q_{1-\sqrt{\delta}})$

How to construct such regularization in each good q?

Crucial point

Proof

4. Construction in a good cube

If $J_u \cap q$ is small, that is

$$\mathcal{H}^{n-1}(J_u \cap q) < \eta \delta_q^{n-1},$$

a Korn-Poincaré-type inequality holds [Chambolle-Conti-Francfort '15]:

$$\exists \; a_q \; ext{affine skew, } \omega_q \; ext{with} \; \; |\omega_q| < \delta_q \mathcal{H}^{n-1}(J_u \cap q),$$

such that

$$\int_{q\setminus\omega_q} |u-a_q|^2 dx \leq c \delta_q^2 \underbrace{\int_q |\nabla^{sym} u|^2 dx}_{\text{abs. cont. part only}}.$$

Note: ω_q has not finite perimeter \rightsquigarrow no similar controls of $\nabla u - \nabla a_q$ by means of $\nabla^{sym} u$ (but if n = 2...)

Crucial point

Proof

4. Construction in a good cube

But, if one defines

$$ilde{u} := (1_{q \setminus \omega_q} u + 1_{\omega_q} a_q) * \rho_q \in C^\infty(q, \mathbb{R}^n),$$

one can prove that

$$\int_{q} |\nabla^{sym} \tilde{u} - \nabla^{sym} u * \rho_{q}|^{2} \le c \delta^{r},$$

with r = r(n), then recovering the control of $\nabla^{sym}\tilde{u}$ with $\nabla^{sym}u$.

Crucial point

Proof

4. Construction in a good cube

But, if one defines

$$\tilde{u} := (1_{q \setminus \omega_q} u + 1_{\omega_q} a_q) * \rho_q \in C^{\infty}(q, \mathbb{R}^n),$$

one can prove that

$$\int_{q} |\nabla^{sym} \tilde{u} - \nabla^{sym} u * \rho_{q}|^{2} \le c \delta^{r},$$

with r = r(n), then recovering the control of $\nabla^{sym}\tilde{u}$ with $\nabla^{sym}u$.

Thank you for your attention!