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Introduction

The physical system

An old experiment

Twist a thin ribbon and hold it with moderate tension. It should
form wrinkles in the center.

Figure: Left: A.E. Green, Proc. R. Soc. 1937. Right: Chopin and
Kudrolli, PRL 2013 and Chopin et al, J. Elasticity 2015
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Introduction

The physical system

A family of solutions

1 Left: experiments;
low tension to
high tension.

2 In this paper we
treat small
wrinkles (third and
fourth from left).

3 Right:
experiments;
self-intersection

Figure: Chopin and Kudrolli, PRL 2013 and Chopin et al, J. Elasticity
2015
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The physical system

A phase transition diagram

Figure: Chopin and Kudrolli, PRL 2013
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Introduction

The physical system

Context: the twisted ribbon

Generally, tension along wrinkles sets the direction of the
wrinkling.

Without tension along the wrinkles systems tend to look more
ordered (and this helps mathematically).

Figure: Left: Cerda, Mahadevan [PRL 2003]. Right: Audoly,
Boudaoud [PRL 2003].

The twisted ribbon has no tension along the wrinkles, but it is
still predictable.
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Introduction

The physical system

Intuition

Why the ribbon wrinkles:

Twisting makes the outside edges get
longer.

If you allow the ribbon to compress, but
only a little, then the outside is under
tension and the inside under compression.

A one- or two-dimensional object can
wrinkle to avoid compression.
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Introduction

Our approach to the problem

Energy minima and scaling laws

We will have an elastic energy functional E (h) representating the
state of the ribbon. Of particular importance is the thickness h,
which is assumed small.

Goal: prove a scaling law E0 + Ch4/3 ≤ minE (h) ≤ E0 + Ch4/3.

The minimum E0: solve the relaxed problem: set h = 0, take the
quasiconvexification and minimize. Often there is no closed-form
solution, but we have one.

While proving a scaling law we find bounds on the size of the
wrinkles.
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Introduction

Our approach to the problem

The form of the energy

The form of the energy

E (h) =

∫
Ω
|M|2 + h2|B|2 dx

The membrane term M measures the amount of stretching.
Specifically, 〈a,M(x)a〉 is the amount of stretching in a
direction a at a point x .

B measures the amount of bending.
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Introduction

The mathematical model

Variables for a twisted ribbon

The domain Ω = (−1/2, 1/2)× (0, l) is a
rectangle. Points are parameterized by
(x1, x2) ∈ Ω.

The tangential displacement u : Ω→ R2

and normal displacement v : Ω→ R.

Twist per unit length ω.

Displacement of the top: − 1
2ω

2ξ2.
Assume: ξ < 1/2.

Wrinkled zone: for |x1| < ξ, the ribbon is

compressed in its reference state.

This energy is from Chopin et al, J. Elasticity 2015.



Wrinkling of a twisted ribbon

Introduction

The mathematical model

Variables for a twisted ribbon

The domain Ω = (−1/2, 1/2)× (0, l) is a
rectangle. Points are parameterized by
(x1, x2) ∈ Ω.

The tangential displacement u : Ω→ R2

and normal displacement v : Ω→ R.

Twist per unit length ω.

Displacement of the top: − 1
2ω

2ξ2.
Assume: ξ < 1/2.

Wrinkled zone: for |x1| < ξ, the ribbon is

compressed in its reference state.

This energy is from Chopin et al, J. Elasticity 2015.



Wrinkling of a twisted ribbon

Introduction

The mathematical model

Variables for a twisted ribbon

The domain Ω = (−1/2, 1/2)× (0, l) is a
rectangle. Points are parameterized by
(x1, x2) ∈ Ω.

The tangential displacement u : Ω→ R2

and normal displacement v : Ω→ R.

Twist per unit length ω.

Displacement of the top: − 1
2ω

2ξ2.
Assume: ξ < 1/2.

Wrinkled zone: for |x1| < ξ, the ribbon is

compressed in its reference state.

This energy is from Chopin et al, J. Elasticity 2015.



Wrinkling of a twisted ribbon

Introduction

The mathematical model

Variables for a twisted ribbon

The domain Ω = (−1/2, 1/2)× (0, l) is a
rectangle. Points are parameterized by
(x1, x2) ∈ Ω.

The tangential displacement u : Ω→ R2

and normal displacement v : Ω→ R.

Twist per unit length ω.

Displacement of the top: − 1
2ω

2ξ2.
Assume: ξ < 1/2.

Wrinkled zone: for |x1| < ξ, the ribbon is

compressed in its reference state.

This energy is from Chopin et al, J. Elasticity 2015.



Wrinkling of a twisted ribbon

Introduction

The mathematical model

Variables for a twisted ribbon

The domain Ω = (−1/2, 1/2)× (0, l) is a
rectangle. Points are parameterized by
(x1, x2) ∈ Ω.

The tangential displacement u : Ω→ R2

and normal displacement v : Ω→ R.

Twist per unit length ω.

Displacement of the top: − 1
2ω

2ξ2.
Assume: ξ < 1/2.

Wrinkled zone: for |x1| < ξ, the ribbon is

compressed in its reference state.

This energy is from Chopin et al, J. Elasticity 2015.



Wrinkling of a twisted ribbon

Introduction

The mathematical model
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Introduction

The mathematical model

Nonlinear energy of an elastic sheet

Let y (h) : Ωh → R3 be the position of the sheet. We start with the
energy

E
(h)
NL (y (h)) =

∫
Ωh

∣∣∣∣√(∇y (h))T (∇y (h))− Id

∣∣∣∣2 + h2
∣∣∣Ay (h)

∣∣∣2 dx .

Interpret this as membrane plus bending energy∫
|M|2 + |B|2 dx , but

the resemblence to a Landau theory (lower order non-convex
energy regularized by small, higher-order term) is not so clear.

We follow [Chopin et al, J Elas 2015] and linearize around a
helicoid.
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Introduction

The mathematical model

Small-slope energy of a twisted ribbon

We want to find out how the minimum of the energy scales with h:

E (h)(u, v) =

∫
Ω
|M(u, v)|2 + h2|B(u, v)|2

M(u, v) = e(u) +
1

2

(
∂1v

∂2v + ωx1

)
⊗
(

∂1v
∂2v + ωx1

)
− 1

2

(
0 ωv
ωv ω2ξ2

)
B(u, v) = ∇∇v +

(
0 ω
ω 0

)
with boundary data:

u(x1, 0) = u(x1, l) = 0

v(x1, 0) = v(x1, l) = 0
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Introduction

The mathematical model

Heuristics

Vertical stretching:

m22 = ∂2u2 +
1

2
(∂2v + ωx1)2 − 1

2
ω2ξ2

= ∂2u2 + ωx1∂2v +
1

2

(
(∂2v)2 − ω2

(
ξ2 − x2

1

))
Red: Mean-0 in x2. Blue: Positive. Green: Sign depends on x1.

Vertical lines are stretched if |x1| > ξ and (in the reference
state) compressed if |x1| < ξ.

Wasting arc length: choose (∂2v)2 to cancel out (on average)
ω2
(
ξ2 − x2

1

)
in |x1| < ξ. Choose ∂2u2 to cancel out

oscillations around average.
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Upper and lower bounds

Energy scaling law

The main result

Theorem (Kohn, O.)

There exists constants E0, C , C ′ such that

E0 + Ch4/3 ≤ min
u,v

E (h)(u, v) ≤ E0 + C ′h4/3.

The minimum is over u ∈W 1,2(Ω,R2), v ∈W 2,2(Ω,R2) vanishing
on x2 = 0 and l .

Two parts of the proof:

The lower bound requires an argument for any u and v .

The upper bound is an ansatz (a choice of u and v).
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Upper and lower bounds

The lower bound

The leading-order energy E0

Main point: the zones under vertical tension always contribute
energy E0, and making u, v nonzero can only increase the energy.

E (h)(u, v) =

∫ 1/2

−1/2

∫ l

0
|M|2 + h2|B|2 dx2 dx1

≥
∫ 1/2

−1/2

(∫ l

0
m22 dx2

)2

+

dx1

≥ 1

2

∫ 1/2

ξ
ω4(x2

1 − ξ2)2 dx1 = E0

Remark: We are minimizing the relaxed problem.
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Upper and lower bounds

The lower bound

An outline of the lower bound

We assume that E (h)(u, v) < E0 + ε and find a contradiction if ε is
too small. This proof has two main steps:

1 The outer edges contain
rigid lines: displacements are
small.

2 Horizontal lines are
stretched if the wrinkles
have large amplitude, but
bending resistance keeps the
amplitude from being too
small.

Sources: Strauss, Proc. Sympos. Pure Math. 1973; Bella and Kohn, Comm.

Pure Applied Math 2014.
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Upper and lower bounds

The lower bound

Proof of the lower bound (1.1)

E (h) − E0 =

∫
Ω

∣∣∣M(ex)
∣∣∣2 + h2|B|2 +

1

2
ω2
(
x2

1 − ξ2
)

+
(∂2v)2 < ε

where M(ex) is the excess strain:

M(ex) = M− 1

2
ω2
(
x2

1 − ξ2
)

+
e

(2) ⊗ e
(2)

1 Tension in the vertical direction: for any R > ξ,
‖∂2v‖L2(|x1|>R) . ε1/2.

2 Small displacement: ‖v‖L2(|x1|>R)L∞(x2) . ε1/2.

3 There exist ξ′left < R and ξ′right > R such that

‖v(ξ′, x2)‖L∞(x2∈[0,l ]) . ε1/2

Next: Control ∇v in the outer zones.
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Upper and lower bounds

The lower bound

Proof of the lower bound (1.2)

M(ex) = e(u) +
1

2
∇v ⊗∇v + ω sym

(
∇(x1v)⊗ e

(2)
)

+ . . .

E (h) − E0 =

∫
Ω

∣∣∣M(ex)
∣∣∣2 + h2|B|2 +

1

2
ω2
(
x2

1 − ξ2
)

+
(∂2v)2 < ε

An observation: Tension in direction a (unit vector) gives
control on 〈a,M(ex)

a〉, which gives control on 〈a, e(u)a〉.
A Problem: We have vertical, but not horizontal, tension
(a = e

(2)). We have control on u2(ξ′, x2), but not u1(ξ′, x2).

The resolution: Use tension in two diagonal directions a
±.
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Upper and lower bounds

The lower bound
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Upper and lower bounds

The lower bound

Proof of the lower bound (1.3)

Take vectors a
±, sets Ω± as shown. Ω0 = Ω+ ∩ Ω−.

Goal: Show that u is small on the green lines.

Blue: Lines parallel to
a

+ shading region Ω+.

Red: Lines parallel to
a
− shading region Ω−.

Green: Lines x1 = ξ′.
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Upper and lower bounds

The lower bound

Proof of the lower bound (1.4)

1 Integrate along diagonal lines:

ε &
∫

Ω±

∣∣∣M(ex)
∣∣∣2 dx &

∫
Ω±
〈a±,M(ex)

a
±〉2 dx

&

(∫
Ω±

〈
a
±,

[
1

2
∇v ⊗∇v −

(
0 ωv
ωv 0

)]
a
±
〉

dx

)2

2 Conclude that ‖∇v‖L2(Ω0) . ε1/4.

3 Triangle Inequality: ‖e(u)‖L1(Ω0) . ε1/2.

4 Another diagonal line argument:
∣∣∣∫ l

0 u1(ξ′, x2) dx2

∣∣∣ . ε1/2.
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Upper and lower bounds

The lower bound

Lower bound part 2: picture

Goal: Show that v is small along the gold line (the wrinkles have
small amplitude).

Green: Lines x1 = ξ′.
Displacements are
small.

Gold: Line across
wrinkles. Cannot be
stretched much.
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Upper and lower bounds

The lower bound

Proof of the lower bound (2.1)

We control the horizontal stretching across the wrinkles to show
that v cannot be too large. First: Jensen’s Inequality on the (1, 1)
membrane term. Let Ω′ = {|x1| < ξ′}.

ε ≥
∫

Ω

1

2
(m

(ex)
11 )2 ≥ 1

2

(∫
Ω′
∂1u1 +

1

2
∂1v

2

)2

&

(∫
Ω′
∂1v

2

)2

−
∣∣∣∣∫

Ω′
∂1u1

∣∣∣∣2
so ‖∂1v‖L2(Ω′) . ε1/4, and therefore ‖v‖L2(Ω′) . ε1/4.
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Upper and lower bounds

The lower bound

Proof of the lower bound (2.2)

The membrane term prefers that v be small. The bending term
prefers to have ∂22v small:

h2

∫
Ω

(∂22v)2 ≤ ε

By interpolation, the slopes must be small:

‖∂2v‖L2(Ω′) ≤ ‖v‖
1/2
L2(Ω′)

‖∂22v‖1/2
L2(Ω′)

.
(
ε3/4h−1

)1/2
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Upper and lower bounds

The lower bound

Proof of the lower bound (2.3)

m22 = ∂2u2 + ωx1∂2v +
1

2

(
(∂2v)2 − ω2

(
ξ2 − x2

1

))
We now have a contradiction: the wrinkles must waste an O(1)
amount of arclength.

ε1/2 &
∫

Ω′

∣∣∂2v
2 − ω2(ξ2 − x2

1 )+

∣∣
≥

∫
Ω′

∣∣ω2(ξ2 − x2
1 )+

∣∣− ∫
Ω′

∣∣∂2v
2
∣∣

This gives a contradiction if ε < Ch4/3 for some C .

The main point: this proves a lower bound for the energy. Along
the way we showed inequalities about any low energy state.
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Upper and lower bounds

The ansatz

Ansatz sketch: first attempt

m22 = ∂2u2 + ωx1∂2v +
1

2

(
(∂2v)2 − ω2

(
ξ2 − x2

1

))
The basic idea: Wrinkling can waste
arclength to avoid compression. The lower
bound suggests the wavelength.

A natural first attempt:
v(x1, x2) = λf (x1) sin

(
x2

λ

)
where is λ the

wavelength and f (x1) controls the amplitude.

Choosing u: pick u to cancel out the two
highest-order membrane terms m11 and m12.

The problem: The optimal

f (x1) = ω
√

2(ξ2 − x2
1 )+ is not W 2,2, which

gives infinite energy.
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Upper and lower bounds

The ansatz

Ansatz sketch: refinement

Idea: We have two parameters to play with: the wavelength and the
amplitude. Varying both with x1 allows us to make f less singular.
The old ansatz (reminder): v(x1, x2) = λf (x1) sin

(
x2

λ

)
Idea: v(x1, x2) = λ(x1)f (x1) sin

(
x2

λ(x1)

)
The new ansatz: v(x1, x2) =

∑N
k=0 λk fk(x1) sin

(
x2

λk

)
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Upper and lower bounds

The ansatz

Do we expect refinement?

There is no physical evidence for
refinement of wrinkles. However, they do
change shape.

This is a small-h theory. In regimes
studied, h ≈ 0.05. The difference
between O(h) energy (no refinement)
and O(h4/3) energy (refinement) is
not too large. Prefactors might be
more significant.

The ansatz should not be taken too
seriously. We needed to change the
frequency from place to place. We
took only two non-zero frequencies at
each x1 for convenience.

Source: Chopin
Kudrolli PRL 2013.
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Conclusions

Other morphologies for the twisted ribbon

1 The creased ribbon
resembles crumpling due to
confinement. The triangular
facets are highly regular.

2 The stretched ribbon
resembles the
Cerda-Mahadevan
experiment [PRL 2003].
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Conclusions

Some open questions about twisted ribbons

Ground state: are wrinkles horizontal with
refinement (as in ansatz), diagonal
(suggested by experiments) or something
else?

Creases are probably found if tension is
low ( 1

2 − ξ � 1). Similar results with two
small parameters (thickness and tension)?
Phase transitions?

Nonlinear version: solving the relaxed
problem (finding E0 and identifying the
wrinkled zone) seems hard.
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Conclusions

Summary (twisted ribbons)

We proved a lower bound for our energy and found a
matching ansatz.

The energy scales as E0 + Ch4/3, which indicates that some
zone is stretched (E0) and that there is microstructure (h4/3).

The lower bound does not identify the shape of the wrinkles,
or tell us if there are multiple length scales.

In proving the lower bound, we showed that low energy states
are rigid near the edges and wrinkle in the center.

The ansatz uses a cascade of wrinkles.

Thanks for your attention!


	Introduction
	The physical system
	Our approach to the problem
	The mathematical model

	Upper and lower bounds
	Energy scaling law
	The lower bound
	The ansatz


