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The focus is on:

deriving reliable variational models for thin films deposited on substrates;

studying the morphology and the geometry of film profiles.

Plan of the talk:

1. Description of the deposition process;

2. Variational formulation of the model;

3. Existence of minimizers;

4. Properties of minimizers.

STM image of Pt on Pt(111) by
PLD, Diebold’s lab, TU Wien.
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1. The Deposition Process

Thin films are grown by Molecular Beam Epitaxy (MBE) (or vapor deposition),
and Pulsed Laser Deposition (PLD).

We consider:

heteroepitaxy (different elasticity
properties of the 2 materials);

the presence of a mismatch
between the crystalline lattices;

the 3 interfaces: film/vapor (free),
substrate/vapor and substrate/film;

both wetting and dewetting regimes.
Epitaxy [Fried-Gurtin, 2004].
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Different modes of film growth:

(VW) Volmer–Weber;

(FM) Frank–van der Merwe;

(SK) Stranski–Krastanov.

(VW) (FM) (SK)

What determines these different growth modes?

Variables are:

the amount of material;

the lattice mismatch;

the different surface tensions.

How large is the island angle formed at the substrate?
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α

γfs

γf

γs

α is the contact angle formed by island
profiles with the substrates;

γs := substrate/vapor surface tension;

γf := film/vapor surface tension;

γfs := substrate/film surface tension,

The Young-Dupré law is the following:

cosα =
γs − γfs
γf

,

with α = 0 if γs − γfs ≥ γf (see [Young, 1805] and [A. Dupré-P. Dupré, 1869]).

å it was introduced in Fluid Mechanics for sessile liquid drops.

[Srolovitz-Davis, 2001]: Do stresses modify wetting angles?

In the experiments contact angles
are computing from the island
height and the radius of the top
facet obtained by STM.

Clusters on zirconia†. Courtesy of Diebold’s lab.

†
Study of contact angles of nanoclusters on zirconia through STM images, Courtesy of U. Diebold lab, TU Wien
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The Young-Dupré law is the following:

cosα =
γs − γfs
γf

,

with α = 0 if γs − γfs ≥ γf (see [Young, 1805] and [A. Dupré-P. Dupré, 1869]).
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2. Variational Model ([Grinfeld, 1991] & [Spencer, 1999])

Flms and substrates as continua in R2:

h : (0, `)→ [0,∞) profile function,

Γh := {(x , h(x)) : 0 < x < `},
Ωh := {(x , y) : 0 < x < `,−L < y < h(x)},
|Ωh ∩ {y > 0}| = V > 0 volume constraint.

Theory of small deformations:

u : Ωh → R2 being the planar displacement;

Eu := 1
2 (∇u + (∇u)T ) represents the strain;

Energy minimum occurs at the mismatch strain E0 defined by

E0(y) :=

{
e0e1 ⊗ e1 if y ≥ 0,

0 otherwise,

where e0 measures the lattice mismatch.

Regular configurations:

XLip := {(u, h) : u ∈ H1
loc(Ωh;R2), h ∈W 1,∞(0, `), |Ωh ∩ {y > 0}| = V }
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The Sharp-Interface Model
The total energy of a configuration (h, u) ∈ XLip is

F0(h, u) :=
∫
Ωh

W0(y ,Eu(x , y)−E0(y))dxdy︸ ︷︷ ︸
elastic bulk energy

+
∫
Γh

ϕ0(y)dH1

︸ ︷︷ ︸
surface energy

+ γfsH1(χ{h>0})︸ ︷︷ ︸
interface energy

where

the elastic energy density is defined by W0(y ,A) := 1
2C0(y)A : A for

C0(y) :=

{
Cf if y > 0,

Cs if y ≤ 0

with positive definite 4th-order tensors Cf and Cs;

the surface energy density is defined by

ϕ0(y) :=

{
γf if y > 0,

γs if y = 0;

the interface energy was neglected in [Spencer, 1999].
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The Transition-Layer Model

Fδ(h, u) :=

∫

Ωh

Wδ(y ,Eu(x , y)−Eδ(y)) dx dy

+

∫

Γh

ϕδ(y) dH1

for a (small) δ > 0 and Wδ defined by

Wδ(y ,A) :=
1

2
Cδ(y)A : A,

Γgraph
h

δ

o

where Cδ, Eδ, and ϕδ are the regularized versions of C0, E0, and ϕ0 for y ∈ R:

Cδ(y) :=
1

2

(
1 + f

(y
δ

))
Cf +

1

2

(
1− f

(y
δ

))
Cs +

1

2

(
1 + f

(y
δ

))(
1− f

(y
δ

))
(Cf − Cs),

Eδ(y) :=
1

2
e0
(

1 + f
(y
δ

))
e1 ⊗ e1,

ϕδ(y) :=γf f
(y
δ

)
+ (γs − γfs)

(
1− f

(y
δ

))
,

with f some increasing function such that
∫ 0

−∞(1 + (f (y))2) dy < +∞,

f (0) = 0, and lim
s→±∞

f (s) = ±1.
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3. Existence of Minimizers
Problem: Minimizing sequences of Fδ for δ ≥ 0 are not compact in XLip.

sup
n
Fδ(hn, un) <∞ =⇒ sup

n

∫ `

0

√
1 + (h′n)2 <∞ and sup

n

∫

Ωhn

|Eun|2 <∞

å By also the volume constraint there exists h ∈ BV (0, `) such that (up to a
subsequence) hn → h in L1(0, `).

å By Blaschke Compactness Theorem (up to a subsequence)
R2 \Ωhn → R2 \Ωh in Hausdorff metric with h the l.s.c. function given by

h(x) := inf
{

lim inf
n→∞

hn(xn) : xn → x
}
.

å By Korn’s inequality and a diagonalization argument there exists
u ∈ H1

loc(Ωh;R2) such that (up to a subsequence)

un + vn ⇀ u

in H1(Ω′;R2) for some rigid motions vn and every Ω′ ⊂⊂ Ωh.

We say that (hn, un)→ (h, u) in X where

X := {(u, h) : u ∈ H1
loc(Ωh;R2), h ∈ BV (0, `), h is l.s.c., |Ωh ∩ {y > 0}| = V }.
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We say that (hn, un)→ (h, u) in X where

X := {(u, h) : u ∈ H1
loc(Ωh;R2), h ∈ BV (0, `), h is l.s.c., |Ωh ∩ {y > 0}| = V }.

Paolo Piovano Young-Dupré law for thin films Banff, May 21, 2018 9 / 22
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Since h is l.s.c. and BV for every x there exist h(x±) and
h(x) ≤ h−(x) := min{h(x+), h(x−)} ≤ h+(x) := max{h(x+), h(x−)}.

Γgraph
h

Γjump
h

Γcut
h

o

Therefore, Γh = Γ graph
h t Γ jump

h t Γ cut
h , where

Γ graph
h := {(x , h−(x)) : h−(x) = h+(x)} continuous parts of Γh,

Γ jump
h := {(x , y) : h−(x) ≤ y ≤ h+(x)} jump parts of Γh,

and Γ cut
h := {(x , y) : h(x) ≤ y < h−(x)} cut parts of Γh.
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Paolo Piovano Young-Dupré law for thin films Banff, May 21, 2018 10 / 22



We now consider a sharp-interface model F defined by

F(u, h) :=

∫

Ωh

W0(y ,Eu(x , y)−E0(y)) dx dy +

∫

Γ̃h

ϕ(y) dH1 + 2γfH1(Γ cut
h )

for every (u, h) ∈ X , where Γ̃h := Γh \ Γ cut
h and

ϕ(y) :=

{
γf if y > 0,

min{γf , γs − γfs} if y = 0.

Notice that: F was introduced for the case Cf = Cs and γfs = 0 in
[Bonnetier-Chambolle, 2002] and [Fonseca-Fusco-Leoni-Morini, 2007];

Cuts are counted twice as they are approximated by shrinking
valleys;

If γf ≤ γs − γfs, then ϕ ≡ γf .
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Model Derivation [Davoli-P., 2017]

The energy F satisfies the following assertions:

1. Fδ Γ−→ F in X as δ → 0+;

2. F is the relaxation of F0 in X , i.e.,

F(u, h) := inf

{
lim inf
n→+∞

F0(un, hn) : (un, hn) ∈ XLip,

(un, hn)→ (u, h) in X , and |Ω+
hn
| = |Ω+

h |
}
.

Remark on the proof:

For the Γ -convergence we extend the argument in [Fonseca-Fusco-Leoni-Morini,

2007] based on the integral formula for the relaxation F̄δ of the Fδ in X, i.e.,

F̄δ(u, h) =

∫

Ωh

Wδ(y ,Eu(x , y)−E0(y)) dx dy

+

∫

Γ̃h

ϕδ(y) dH1 + 2
∑

x∈S

∫ h−(x)

h(x)

ϕδ(y) dy + γfs`;

Extra care is needed for the relaxation of the sharp-interface model for
γs − γfs < γf in the construction of a recovery sequence that matches the
volume constraint.
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Proposition ([Fonseca-Fusco-Leoni-Morini, 2007], [Davoli-P., 2017])

If (h, u) ∈ X is a minimum configuration for F , then

Cusps points and vertical cuts are at most finite;

Γ reg
h := Γh \ (Γ cut

h ∪ Γ cusp
h ), where

Γcusp :=
{

(x , y) ∈ Γh : (h−)′+(x) = −(h−)′−(x) = +∞
}

is locally the graph of a Lipschitz function.

Γgraph
h

Γjump
h

Γcut
h

o

The proof is based on:

1. Volume penalization:
(minimizers of F under volume constraint)⇔ (minimizers of F̃)

with F̃(u, h) := F(u, h) + Λ|V −Ω+
h | for Λ > 0 large enough.

2. Internal-Ball condition ([Chambolle, Larsen; 2003]): There exists ρ > 0 such
that for every z ∈ Γ h a ball Bρ with radius ρ can be chosen so that

Bρ ⊂ Ωh and ∂Bρ ∩ Γ h = {z}
(established by a comparison argument and the isoperimetric inequality).
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Work in progress on the derivation of the model:

without graph (or starshapedness) assumption and with anisotropy:
admissible film regions among those with boundary displaying at most a fixed
number of connected components (with S. Kholmatov, Vienna).

discrete-to-continuum passage (with L. Kreutz, Vienna).

Discrete atomistic models

Γ−convergence−−−−−−−−−→

Γgraph
h

Γjump
h

Γcut
h

o

Functional F

What about the contact angles of minimal profiles of F?
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4. Properties of Minimizers

F(u, h) :=

∫

Ωh

W0(y ,Eu(x , y)−E0(y)) dx dy +

∫

Γ̃h

ϕ(y) dH1 + 2γfH1(Γ cut
h )

Isotropic materials with Lamé coefficients: W0(y ,A) = µ(y)|A|2 + λ(y)
2 Tr2(A) for

µ(y) :=

{
µf if y > 0,

µs if y ≤ 0
and λ(y) :=

{
λf if y > 0,

λs if y ≤ 0.

Previous results are for µf = µs, λf = λs, and ϕ ≡ γf (γf < γs, and γfs = 0)

[Fonseca-Fusco-Leoni-Morini, 2007] Zero-angle condition;

[Fusco-Morini, 2012] Existence of thresholds for V (and e0) below which the flat
configuration is an absolute minimizer or only a local minimizer, and below which
minimizers are smooth;

Related results: scaling laws [Goldman-Zwicknagl, 2014] and [Bella-Goldman-Zwicknagl,
2015], faceted profiles and non-zero miscut angle [Fonseca-Pratelli-Zwicknagl, 2014], . . .

Evolution: surface diffusion [Fonseca-Fusco-Leoni-Morini, 2011, 2014],
evaporation-condensation [P., 2012], vicinal surfaces [Dal Maso-Fonseca-Leoni, 2014]
and [Fonseca-Leoni-Lu, 2015], [Lu, 2018],. . .
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Quasi-monotonicity & ellipticity condition:

µs ≥ µf > 0 and µs + λs ≥ µf + λf > 0.

å Note that:

It is a classical condition in transmission problems for elliptic systems;

From [Knees, 2002]: “‘it seems that it [. . . ] describes a class of composites
which can sustain higher loads before breaking”;

It implies that the shear and P-wave moduli are higher in the substrate, i.e.,
the substrate is stiffer than the film.

Two types of h-zeros in Zh have nontrivial contact angles:
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Paolo Piovano Young-Dupré law for thin films Banff, May 21, 2018 16 / 22



Quasi-monotonicity & ellipticity condition:

µs ≥ µf > 0 and µs + λs ≥ µf + λf > 0.

å Note that:

It is a classical condition in transmission problems for elliptic systems;

From [Knees, 2002]: “‘it seems that it [. . . ] describes a class of composites
which can sustain higher loads before breaking”;

It implies that the shear and P-wave moduli are higher in the substrate, i.e.,
the substrate is stiffer than the film.

Two types of h-zeros in Zh have nontrivial contact angles:

Γgraph
h

v ∈ Vh

v is a valley.

Γgraph
h

b1 b2

b1 and b2 are island borders.
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Contact-angle conditions [Davoli-P., 2017]

The following assertions hold for every µ-local minimizer (u, h) ∈ X of F :

1. Any nontrivial contact angle α(z) at valleys and island borders z in
Zh \ (Γ cusp

h ∪ Γ cut
h ) satisfies

α(z) = arccos(σ) (YD)

with

σ :=
min{γf , γs − γfs}

γf
.

2. If σ < 1, then Vh \ (Γ cusp
h ∪ Γ cut

h ) = ∅.
3. If σ 6= 0, then Γ jump

h ∩ Zh = ∅.

å Note that:

(YD) reduces to the zero-angle condition of
[Fonseca-Fusco-Leoni-Morini, 2007] for the
case Cf = Cs, γfs = 0 and γf ≤ γs;
(YD) is the Young-Dupré law;

α

γfs

γf

γs

Paolo Piovano Young-Dupré law for thin films Banff, May 21, 2018 17 / 22



Contact-angle conditions [Davoli-P., 2017]

The following assertions hold for every µ-local minimizer (u, h) ∈ X of F :

1. Any nontrivial contact angle α(z) at valleys and island borders z in
Zh \ (Γ cusp

h ∪ Γ cut
h ) satisfies

α(z) = arccos(σ) (YD)

with

σ :=
min{γf , γs − γfs}

γf
.

2. If σ < 1, then Vh \ (Γ cusp
h ∪ Γ cut

h ) = ∅.

3. If σ 6= 0, then Γ jump
h ∩ Zh = ∅.

å Note that:

(YD) reduces to the zero-angle condition of
[Fonseca-Fusco-Leoni-Morini, 2007] for the
case Cf = Cs, γfs = 0 and γf ≤ γs;
(YD) is the Young-Dupré law;
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α

γfs

γf

γs
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Valleys have always zero contact angles;

�graph
h

v 2 Vh

Jumps at island borders are allowed only if
min{γf , γs − γfs}/γf = 0, i.e., the YD angle is 90◦;

Cusps (left) and cuts (right) may represents dislocations
at the film/substrate interface observed by experiments.

Courtesy of [Elder et al., 2007].
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Idea of the proof: to pass to the Euler equation w.r.t h and to do a blow-up at
z0 = (x0, y0) ∈ Γreg ∩ Zh.

By the minimality of (u, h) there holds

0 ≤ F̃(u, h + µψn)− F̃(u, h)

µrn
:= An︸︷︷︸

area term

+ Sn︸︷︷︸
surface term

for µ > 0, rn ↘ 0+, ψn := rnψµ
(

x−x0
rn

)
for a suitable ψµ ∈W 1,∞;

We prove that An → 0.

H3/2+ε-regularity for a ε > 0 is necessary!! It follows from the decay estimate:

There exist C > 0, r0 > 0, and 1/2 < β < 1 such that
∫

B(z0,r)∪Ωh

|∇u|2 dz ≤ Cr2β for all 0 < r < r0.

Decay obtained by contradiction and a
blow-up argument in order to reduce to a
transmission-problem on cones (see
[Nicaise-Sändig, 1999]).

Γ1Γ2

Γ3

Γ1,2

Γ2,3

Γ3,0

Γ1,0

θ1θ2

θ3

C1C2

C3
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By a suitable choice of ψµ depending on the point z0 we compare with the
optimal angle (red profile):

δ
g′−(0)

0 δ
(

1
g′−(0)

+ 1
tan θ∗

)

g∞ + δψδ

Island borders, red profile with YD angle.

δ
g′−(0)

0 δ
g′
+
(0)

g∞ + δψδ

Valleys, flat red profile.

Therefore, Sn := Sn(h + µψn)− Sn(h)→ S(arccosσ, α) and

0 ≤ S(arccosσ, α)

yealds the contact-angle condition.

Remark

(i) Equilibrium contact angles are not impacted by elastic field and depend only
on surface tensions;

(ii) If γf ≤ γs − γfs, then there is a wetting layer (FM and SK modes are
preferable to VW);

(iii) VW occurs if and only if γf > γs − γfs.
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Further regularity [Davoli-P., 2017]

Every µ-local minimizer (u, h) ∈ X of F is such that

1. Γ reg
h \Yh is C 1,γ for all γ ∈ (0, 1/2), where Yh := Zh ∩{contact angles 6= 0};

2. No component of Γ jump
h is contained in {y > 0}. Thus,

σ 6= 0 =⇒ Γ jump
h = ∅;

3. The set

Ah :=

{
Γ reg
h \ Yh if Cf = Cs

Γ reg
h \ Zh if Cf 6= Cs

is analytic.

Finally, we also have that the Euler-Lagrange equation

kϕ,Ah
= τAh

(W0(·,Eu(·)−E0)) + λ0 on Ah,

holds for µ-local minimizer (u, h) ∈ X , where:
kϕ,Ah

is the anisotropic curvature of Ah;
τAh

(·) is the trace operator on Ah;
λ0 is a suitable Lagrange multiplier.

Paolo Piovano Young-Dupré law for thin films Banff, May 21, 2018 21 / 22



Further regularity [Davoli-P., 2017]

Every µ-local minimizer (u, h) ∈ X of F is such that

1. Γ reg
h \Yh is C 1,γ for all γ ∈ (0, 1/2), where Yh := Zh ∩{contact angles 6= 0};

2. No component of Γ jump
h is contained in {y > 0}. Thus,

σ 6= 0 =⇒ Γ jump
h = ∅;

3. The set

Ah :=

{
Γ reg
h \ Yh if Cf = Cs

Γ reg
h \ Zh if Cf 6= Cs

is analytic.

Finally, we also have that the Euler-Lagrange equation

kϕ,Ah
= τAh

(W0(·,Eu(·)−E0)) + λ0 on Ah,

holds for µ-local minimizer (u, h) ∈ X , where:
kϕ,Ah

is the anisotropic curvature of Ah;
τAh

(·) is the trace operator on Ah;
λ0 is a suitable Lagrange multiplier.
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Conclusions

We studied free-boundary problems that model the deposition of thin films in
heteroepitaxy.

A variational model is derived by relaxation from the Sharp-Interface model
and by Γ -convergence from the Transition-Layer model;

Regularity results for minimizers, such as that cusps points and vertical cuts
are at most finite, are established;

The Young-Dupré law is validated for this model in the presence of elasticity.
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