Analytical validation of the Young-Dupré law for epitaxially-strained thin films

> Paolo Piovano University of Vienna

Joint work with E. Davoli, Vienna

BIRS Workshop on *Topics in the Calculus of Variations* Banff, Alberta May 21, 2018

Der Wissenschaftsfonds.

PAOLO PIOVANO

BANFF, MAY 21, 2018 1 / 22

The focus is on:

- deriving reliable variational models for thin films deposited on substrates;
- studying the morphology and the geometry of film profiles.

Plan of the talk:

- $1. \ \mbox{Description}$ of the deposition process;
- 2. Variational formulation of the model;
- 3. Existence of minimizers;
- 4. Properties of minimizers.

STM image of Pt on Pt(111) by PLD, Diebold's lab, TU Wien.

1. The Deposition Process

Thin films are grown by Molecular Beam Epitaxy (MBE) (or vapor deposition), and Pulsed Laser Deposition (PLD).

We consider:

1. The Deposition Process

Thin films are grown by Molecular Beam Epitaxy (MBE) (or vapor deposition), and Pulsed Laser Deposition (PLD).

We consider:

- heteroepitaxy (different elasticity properties of the 2 materials);
- the presence of a mismatch between the crystalline lattices;
- the 3 interfaces: film/vapor (free), substrate/vapor and substrate/film;
- both wetting and dewetting regimes.

Epitaxy [Fried-Gurtin, 2004].

- (VW) Volmer–Weber;
- (FM) Frank-van der Merwe;
- (SK) Stranski–Krastanov.

7//////////////////////////////////////		
		ļ
///////////////////////////////////////	///////////////////////////////////////	1

- (VW) Volmer–Weber;
- (FM) Frank-van der Merwe;
- (SK) Stranski–Krastanov.

(FM)

- (VW) Volmer–Weber;
- (FM) Frank-van der Merwe;
- (SK) Stranski–Krastanov.

What determines these different growth modes?

Variables are:

- the amount of material;
- the lattice mismatch;
- the different surface tensions.

- (VW) Volmer–Weber;
- (FM) Frank-van der Merwe;
- (SK) Stranski–Krastanov.

What determines these different growth modes?

Variables are:

- the amount of material;
- the lattice mismatch;
- the different surface tensions.

How large is the island angle formed at the substrate?

PAOLO PIOVANO

- α is the contact angle formed by island profiles with the substrates;
- $\gamma_s := substrate/vapor surface tension;$

 $[\]dagger$ Study of contact angles of nanoclusters on zirconia through STM images, Courtesy of U. Diebold lab, TU Wien

- α is the contact angle formed by island profiles with the substrates;
- γ_s := substrate/vapor surface tension;
- $\gamma_{\rm f} := {\rm film}/{\rm vapor}$ surface tension;
- $\gamma_{\rm fs} := {\rm substrate}/{\rm film}$ surface tension,

 $^{^\}dagger$ Study of contact angles of nanoclusters on zirconia through STM images, Courtesy of U. Diebold lab, TU Wien

The Young-Dupré law is the following:

$$\cos\alpha = \frac{\gamma_{\rm s} - \gamma_{\rm fs}}{\gamma_{\rm f}}, \label{eq:alpha_f}$$

with $\alpha = 0$ if $\gamma_s - \gamma_{fs} \ge \gamma_f$ (see [Young, 1805] and [A. Dupré-P. Dupré, 1869]).

- *α* is the contact angle formed by island profiles with the substrates;
 - $\gamma_s := substrate/vapor surface tension;$
- $\gamma_{\rm f} := {\rm film}/{\rm vapor}$ surface tension;
- $\gamma_{\rm fs} := {\rm substrate}/{\rm film}$ surface tension,

 $^{^\}dagger$ Study of contact angles of nanoclusters on zirconia through STM images, Courtesy of U. Diebold lab, TU Wien

The Young-Dupré law is the following:

$$\cos\alpha = \frac{\gamma_{\rm s} - \gamma_{\rm fs}}{\gamma_{\rm f}}, \label{eq:alpha}$$

with $\alpha = 0$ if $\gamma_s - \gamma_{fs} \ge \gamma_f$ (see [Young, 1805] and [A. Dupré-P. Dupré, 1869]).

➡ it was introduced in Fluid Mechanics for sessile liquid drops.

[Srolovitz-Davis, 2001]: Do stresses modify wetting angles?

- *α* is the contact angle formed by island profiles with the substrates;
 - $\gamma_s := substrate/vapor surface tension;$
- $\gamma_{\rm f} := {\rm film}/{\rm vapor}$ surface tension;
- $\gamma_{\rm fs} := {\rm substrate}/{\rm film}$ surface tension,

 $[\]dagger_{\mathsf{Study}}$ of contact angles of nanoclusters on zirconia through STM images, Courtesy of U. Diebold lab, TU Wien

The Young-Dupré law is the following:

$$\cos\alpha = \frac{\gamma_{\rm s} - \gamma_{\rm fs}}{\gamma_{\rm f}}, \label{eq:alpha_f}$$

with $\alpha = 0$ if $\gamma_s - \gamma_{fs} \ge \gamma_f$ (see [Young, 1805] and [A. Dupré-P. Dupré, 1869]).

➡ it was introduced in Fluid Mechanics for sessile liquid drops.

[†]Study of contact angles of nanoclusters on zirconia through STM images, Courtesy of U. Diebold lab, TU Wien

Young-Dupré law for thin films

- α is the contact angle formed by island profiles with the substrates;
- $\gamma_{\rm s} := {\sf substrate}/{\sf vapor} {\sf surface tension};$
- $\gamma_{\rm f} := {\rm film}/{\rm vapor}$ surface tension;

• $\gamma_{\rm fs} := {\rm substrate}/{\rm film}$ surface tension,

Flms and substrates as continua in \mathbb{R}^2 :

Flms and substrates as continua in \mathbb{R}^2 : $h: (0, \ell) \rightarrow [0, \infty)$ profile function, $\Gamma_h := \{(x, h(x)) : 0 < x < \ell\},$ $\Omega_h := \{(x, y) : 0 < x < \ell, -L < y < h(x)\},$ $|\Omega_h \cap \{y > 0\}| = V > 0$ volume constraint.

Flms and substrates as continua in \mathbb{R}^2 : $h: (0, \ell) \rightarrow [0, \infty)$ profile function, $\Gamma_h := \{(x, h(x)) : 0 < x < \ell\},$ $\Omega_h := \{(x, y) : 0 < x < \ell, -L < y < h(x)\},$ $|\Omega_h \cap \{y > 0\}| = V > 0$ volume constraint.

Theory of small deformations:

- $u: \Omega_h \to \mathbb{R}^2$ being the planar displacement;
- $Eu := \frac{1}{2}(\nabla u + (\nabla u)^T)$ represents the strain;
- Energy minimum occurs at the mismatch strain E₀ defined by

$$oldsymbol{E}_0(y) := egin{cases} e_0 \mathbf{e_1} \otimes \mathbf{e_1} & ext{if } y \geq 0, \ 0 & ext{otherwise}, \end{cases}$$

where e_0 measures the lattice mismatch.

Flms and substrates as continua in \mathbb{R}^2 : $h: (0, \ell) \rightarrow [0, \infty)$ profile function, $\Gamma_h := \{(x, h(x)) : 0 < x < \ell\},$ $\Omega_h := \{(x, y) : 0 < x < \ell, -L < y < h(x)\},$ $|\Omega_h \cap \{y > 0\}| = V > 0$ volume constraint.

Theory of small deformations:

- $u: \Omega_h \to \mathbb{R}^2$ being the planar displacement;
- $Eu := \frac{1}{2} (\nabla u + (\nabla u)^T)$ represents the strain;
- Energy minimum occurs at the mismatch strain E₀ defined by

$$oldsymbol{E}_0(y) := egin{cases} e_0 \mathbf{e_1} \otimes \mathbf{e_1} & ext{if } y \geq 0, \ 0 & ext{otherwise}, \end{cases}$$

where e_0 measures the lattice mismatch.

Regular configurations:

$$X_{\text{Lip}} := \{ (u, h) : u \in H^1_{\text{loc}}(\Omega_h; \mathbb{R}^2), h \in W^{1,\infty}(0, \ell), |\Omega_h \cap \{y > 0\} | = V \}$$

$$\mathcal{F}_{0}(h, u) := \underbrace{\int_{\Omega_{h}} W_{0}(y, Eu(x, y) - E_{0}(y)) \, \mathrm{d}x \mathrm{d}y}_{\text{elastic bulk energy}}$$

where

• the elastic energy density is defined by $W_0(y, A) := \frac{1}{2}\mathbb{C}_0(y)A : A$ for

$$\mathbb{C}_0(y) := egin{cases} \mathbb{C}_f & ext{if } y > 0, \\ \mathbb{C}_s & ext{if } y \leq 0 \end{cases}$$

with positive definite 4^{th} -order tensors \mathbb{C}_f and \mathbb{C}_s ;

$$\mathcal{F}_{0}(h, u) := \underbrace{\int_{\Omega_{h}} W_{0}(y, Eu(x, y) - E_{0}(y)) \, \mathrm{d}x \mathrm{d}y}_{\text{elastic bulk energy}} + \underbrace{\int_{\Gamma_{h}} \varphi_{0}(y) \, \mathrm{d}\mathcal{H}^{1}}_{\text{surface energy}}$$

where

• the elastic energy density is defined by $W_0(y, A) := \frac{1}{2}\mathbb{C}_0(y)A : A$ for

$$\mathbb{C}_0(y) := egin{cases} \mathbb{C}_f & ext{if } y > 0, \ \mathbb{C}_s & ext{if } y \leq 0 \end{cases}$$

with positive definite 4^{th} -order tensors \mathbb{C}_f and \mathbb{C}_s ;

the surface energy density is defined by

$$arphi_0(y) := egin{cases} \gamma_f & ext{if } y > 0, \ \gamma_s & ext{if } y = 0; \end{cases}$$

$$\mathcal{F}_{0}(h, u) := \underbrace{\int_{\Omega_{h}} W_{0}(y, \mathbf{E}u(x, y) - \mathbf{E}_{0}(y)) \, \mathrm{d}x \mathrm{d}y}_{\text{elastic bulk energy}} + \underbrace{\int_{\Gamma_{h}} \varphi_{0}(y) \, \mathrm{d}\mathcal{H}^{1}}_{\text{surface energy}} + \underbrace{\gamma_{\mathrm{fs}} \mathcal{H}^{1}(\chi_{\{h>0\}})}_{\text{interface energy}}$$

where

• the elastic energy density is defined by $W_0(y, A) := \frac{1}{2}\mathbb{C}_0(y)A : A$ for

$$\mathbb{C}_0(y) := egin{cases} \mathbb{C}_f & ext{if } y > 0, \ \mathbb{C}_s & ext{if } y \leq 0 \end{cases}$$

with positive definite 4^{th} -order tensors \mathbb{C}_f and \mathbb{C}_s ;

the surface energy density is defined by

$$arphi_0(y) := egin{cases} \gamma_f & ext{if } y > 0, \ \gamma_s & ext{if } y = 0; \end{cases}$$

• the interface energy was neglected in [Spencer, 1999].

THE TRANSITION-LAYER MODEL
$$\mathcal{F}_{\delta}(h, u) := \int_{\Omega_h} W_{\delta}(y, \boldsymbol{E}u(x, y) - \boldsymbol{E}_{\delta}(y)) \, \mathrm{d}x \, \mathrm{d}y \\ + \int_{\Gamma_h} \varphi_{\delta}(y) \, \mathrm{d}\mathcal{H}^1$$

for a (small) $\delta > 0$ and W_{δ} defined by

$$W_{\delta}(y, A) := \frac{1}{2}\mathbb{C}_{\delta}(y)A : A,$$

where \mathbb{C}_{δ} , E_{δ} , and φ_{δ} are the regularized versions of \mathbb{C}_0 , E_0 , and φ_0 for $y \in \mathbb{R}$:

THE TRANSITION-LAYER MODEL
$$\mathcal{F}_{\delta}(h, u) := \int_{\Omega_h} W_{\delta}(y, \boldsymbol{E}u(x, y) - \boldsymbol{E}_{\delta}(y)) \, \mathrm{d}x \, \mathrm{d}y \\ + \int_{\Gamma_h} \varphi_{\delta}(y) \, \mathrm{d}\mathcal{H}^1$$

for a (small) $\delta > 0$ and W_{δ} defined by

$$W_{\delta}(y, A) := \frac{1}{2}\mathbb{C}_{\delta}(y)A : A,$$

where \mathbb{C}_{δ} , E_{δ} , and φ_{δ} are the regularized versions of \mathbb{C}_0 , E_0 , and φ_0 for $y \in \mathbb{R}$:

$$\begin{split} \mathbb{C}_{\delta}(y) &:= \frac{1}{2} \left(1 + f\left(\frac{y}{\delta}\right) \right) \mathbb{C}_{\mathrm{f}} + \frac{1}{2} \left(1 - f\left(\frac{y}{\delta}\right) \right) \mathbb{C}_{\mathrm{s}} + \frac{1}{2} \left(1 + f\left(\frac{y}{\delta}\right) \right) \left(1 - f\left(\frac{y}{\delta}\right) \right) (\mathbb{C}_{\mathrm{f}} - \mathbb{C}_{\mathrm{s}}), \\ E_{\delta}(y) &:= \frac{1}{2} \mathbf{e}_{0} \left(1 + f\left(\frac{y}{\delta}\right) \right) \mathbf{e}_{1} \otimes \mathbf{e}_{1}, \\ \varphi_{\delta}(y) &:= \gamma_{f} f\left(\frac{y}{\delta}\right) + (\gamma_{s} - \gamma_{fs}) \left(1 - f\left(\frac{y}{\delta}\right) \right), \end{split}$$

with f some increasing function such that $\int_{-\infty}^{0} (1 + (f(y))^2) dy < +\infty$,

$$f(0) = 0$$
, and $\lim_{s \to \pm \infty} f(s) = \pm 1$.

Problem: Minimizing sequences of \mathcal{F}_{δ} for $\delta \geq 0$ are not compact in X_{Lip} .

Problem: Minimizing sequences of \mathcal{F}_{δ} for $\delta \geq 0$ are not compact in X_{Lip} .

 $\sup_n \mathcal{F}_{\delta}(h_n, u_n) < \infty \implies$

Problem: Minimizing sequences of \mathcal{F}_{δ} for $\delta \geq 0$ are not compact in X_{Lip} .

$$\sup_{n} \mathcal{F}_{\delta}(h_{n}, u_{n}) < \infty \implies \sup_{n} \int_{0}^{\ell} \sqrt{1 + (h_{n}')^{2}} < \infty \text{ and } \sup_{n} \int_{\Omega_{h_{n}}} |Eu_{n}|^{2} < \infty$$

Problem: Minimizing sequences of \mathcal{F}_{δ} for $\delta \geq 0$ are not compact in X_{Lip} .

$$\sup_n \mathcal{F}_{\delta}(h_n, u_n) < \infty \implies \sup_n \int_0^\ell \sqrt{1 + (h'_n)^2} < \infty \text{ and } \sup_n \int_{\Omega_{h_n}} |Eu_n|^2 < \infty$$

⇒ By also the volume constraint there exists $h \in BV(0, \ell)$ such that (up to a subsequence) $h_n \to h$ in $L^1(0, \ell)$.

Problem: Minimizing sequences of \mathcal{F}_{δ} for $\delta \geq 0$ are not compact in X_{Lip} .

$$\sup_{n} \mathcal{F}_{\delta}(h_{n}, u_{n}) < \infty \implies \sup_{n} \int_{0}^{\ell} \sqrt{1 + (h_{n}')^{2}} < \infty \text{ and } \sup_{n} \int_{\Omega_{h_{n}}} |Eu_{n}|^{2} < \infty$$

- ⇒ By also the volume constraint there exists $h \in BV(0, \ell)$ such that (up to a subsequence) $h_n \to h$ in $L^1(0, \ell)$.
- ► By Blaschke Compactness Theorem (up to a subsequence) $\mathbb{R}^2 \setminus \Omega_{h_n} \to \mathbb{R}^2 \setminus \Omega_h$ in Hausdorff metric with *h* the l.s.c. function given by $h(x) := \inf \left\{ \liminf_{n \to \infty} h_n(x_n) : x_n \to x \right\}.$

Problem: Minimizing sequences of \mathcal{F}_{δ} for $\delta \geq 0$ are not compact in X_{Lip} .

$$\sup_{n} \mathcal{F}_{\delta}(h_{n}, u_{n}) < \infty \implies \sup_{n} \int_{0}^{\ell} \sqrt{1 + (h_{n}')^{2}} < \infty \text{ and } \sup_{n} \int_{\Omega_{h_{n}}} |Eu_{n}|^{2} < \infty$$

- ⇒ By also the volume constraint there exists $h \in BV(0, \ell)$ such that (up to a subsequence) $h_n \to h$ in $L^1(0, \ell)$.
- ► By Blaschke Compactness Theorem (up to a subsequence) $\mathbb{R}^2 \setminus \Omega_{h_n} \to \mathbb{R}^2 \setminus \Omega_h$ in Hausdorff metric with *h* the l.s.c. function given by $h(x) := \inf \left\{ \liminf_{n \to \infty} h_n(x_n) : x_n \to x \right\}.$
- By Korn's inequality and a diagonalization argument there exists u ∈ H¹_{loc}(Ω_h; ℝ²) such that (up to a subsequence)

$$u_n + v_n \rightharpoonup u$$

in $H^1(\Omega'; \mathbb{R}^2)$ for some rigid motions v_n and every $\Omega' \subset \subset \Omega_h$.

Problem: Minimizing sequences of \mathcal{F}_{δ} for $\delta \geq 0$ are not compact in X_{Lip} .

$$\sup_{n} \mathcal{F}_{\delta}(h_{n}, u_{n}) < \infty \implies \sup_{n} \int_{0}^{\ell} \sqrt{1 + (h_{n}')^{2}} < \infty \text{ and } \sup_{n} \int_{\Omega_{h_{n}}} |Eu_{n}|^{2} < \infty$$

- ⇒ By also the volume constraint there exists $h \in BV(0, \ell)$ such that (up to a subsequence) $h_n \to h$ in $L^1(0, \ell)$.
- ► By Blaschke Compactness Theorem (up to a subsequence) $\mathbb{R}^2 \setminus \Omega_{h_n} \to \mathbb{R}^2 \setminus \Omega_h$ in Hausdorff metric with *h* the l.s.c. function given by $h(x) := \inf \left\{ \liminf_{n \to \infty} h_n(x_n) : x_n \to x \right\}.$
- By Korn's inequality and a diagonalization argument there exists u ∈ H¹_{loc}(Ω_h; ℝ²) such that (up to a subsequence)

$$u_n + v_n \rightharpoonup u$$

in $H^1(\Omega'; \mathbb{R}^2)$ for some rigid motions v_n and every $\Omega' \subset \subset \Omega_h$.

We say that $(h_n, u_n) \rightarrow (h, u)$ in X where $X := \{(u, h) : u \in H^1_{loc}(\Omega_h; \mathbb{R}^2), h \in BV(0, \ell), h \text{ is } l.s.c., |\Omega_h \cap \{y > 0\}| = V\}.$ Since *h* is l.s.c. and *BV* for every *x* there exist $h(x\pm)$ and $h(x) \le h^-(x) := \min\{h(x+), h(x-)\} \le h^+(x) := \max\{h(x+), h(x-)\}.$

Since *h* is l.s.c. and *BV* for every *x* there exist $h(x\pm)$ and $h(x) \le h^-(x) := \min\{h(x+), h(x-)\} \le h^+(x) := \max\{h(x+), h(x-)\}.$

Since *h* is l.s.c. and *BV* for every *x* there exist $h(x\pm)$ and $h(x) \le h^{-}(x) := \min\{h(x+), h(x-)\} \le h^{+}(x) := \max\{h(x+), h(x-)\}.$

Therefore, $\Gamma_h = \Gamma_h^{graph} \sqcup \Gamma_h^{jump} \sqcup \Gamma_h^{cut}$, where

Since *h* is l.s.c. and *BV* for every *x* there exist $h(x\pm)$ and $h(x) \le h^-(x) := \min\{h(x+), h(x-)\} \le h^+(x) := \max\{h(x+), h(x-)\}.$

Therefore, $\Gamma_h = \Gamma_h^{graph} \sqcup \Gamma_h^{jump} \sqcup \Gamma_h^{cut}$, where

$$\Gamma_{h}^{graph} := \{(x, h^{-}(x)) : h^{-}(x) = h^{+}(x)\}$$

$$\Gamma_{h}^{jump} := \{(x, y) : h^{-}(x) \le y \le h^{+}(x)\}$$
and
$$\Gamma_{h}^{cut} := \{(x, y) : h(x) \le y < h^{-}(x)\}$$

continuous parts of Γ_h , jump parts of Γ_h , cut parts of Γ_h . We now consider a sharp-interface model \mathcal{F} defined by

$$\mathcal{F}(u,h) := \int_{\Omega_h} W_0(y, \boldsymbol{E}u(x,y) - \boldsymbol{E}_0(y)) \, dx \, dy + \int_{\widetilde{\Gamma}_h} \varphi(y) \, d\mathcal{H}^1 + 2\gamma_f \mathcal{H}^1(\Gamma_h^{cut})$$

for every $(u,h)\in X$, where $\widetilde{\varGamma}_h:=\varGamma_h\setminus \varGamma_h^{cut}$ and

$$arphi(y) := egin{cases} \gamma_f & ext{if } y > 0, \ \min\{\gamma_{\mathrm{f}}, \ \gamma_{\mathrm{s}} - \gamma_{\mathrm{fs}}\} & ext{if } y = 0. \end{cases}$$

We now consider a sharp-interface model \mathcal{F} defined by

$$\mathcal{F}(u,h) := \int_{\Omega_h} W_0(y, Eu(x,y) - E_0(y)) \, dx \, dy + \int_{\widetilde{\Gamma}_h} \varphi(y) \, d\mathcal{H}^1 + 2\gamma_f \mathcal{H}^1(\Gamma_h^{cut})$$

for every $(u,h) \in X$, where $\widetilde{\Gamma}_h := \Gamma_h \setminus \Gamma_h^{cut}$ and

$$arphi(y) := egin{cases} \gamma_f & ext{if } y > 0, \ \min\{\gamma_{\mathrm{f}},\,\gamma_{\mathrm{s}}-\gamma_{\mathrm{fs}}\} & ext{if } y = 0. \end{cases}$$

Notice that:

- \mathcal{F} was introduced for the case $\mathbb{C}_{f} = \mathbb{C}_{s}$ and $\gamma_{fs} = 0$ in [Bonnetier-Chambolle, 2002] and [Fonseca-Fusco-Leoni-Morini, 2007];
- Cuts are counted twice as they are approximated by shrinking valleys;

• If
$$\gamma_{\rm f} \leq \gamma_{\rm s} - \gamma_{\rm fs}$$
, then $arphi \equiv \gamma_{f}$.
MODEL DERIVATION [DAVOLI-P., 2017]

The energy $\mathcal F$ satisfies the following assertions:

1.
$$\mathcal{F}_{\delta} \xrightarrow{\Gamma} \mathcal{F} \text{ in } X \text{ as } \delta \to 0^+;$$

2. \mathcal{F} is the relaxation of \mathcal{F}_0 in X , i.e.,
 $\mathcal{F}(u, h) := \inf \left\{ \liminf_{n \to +\infty} \mathcal{F}_0(u_n, h_n) : (u_n, h_n) \in X_{\text{Lip}}, (u_n, h_n) \to (u, h) \text{ in } X, \text{ and } |\Omega_{h_n}^+| = |\Omega_h^+| \right\}.$

Remark on the proof:

• For the Γ -convergence we extend the argument in [Fonseca-Fusco-Leoni-Morini, 2007] based on the integral formula for the relaxation $\overline{\mathcal{F}}_{\delta}$ of the \mathcal{F}_{δ} in X, i.e.,

$$ar{\mathcal{F}}_{\delta}(u,h) = \int_{\Omega_h} W_{\delta}(y, \boldsymbol{E}u(x,y) - \boldsymbol{E}_0(y)) \, dx \, dy \ + \int_{\widetilde{\Gamma}_h} \varphi_{\delta}(y) \, d\mathcal{H}^1 \, + \, 2 \sum_{x \in \mathcal{S}} \int_{h(x)}^{h^-(x)} \varphi_{\delta}(y) \, dy + \gamma_{fs}\ell;$$

MODEL DERIVATION [DAVOLI-P., 2017]

The energy $\mathcal F$ satisfies the following assertions:

1.
$$\mathcal{F}_{\delta} \xrightarrow{\Gamma} \mathcal{F} \text{ in } X \text{ as } \delta \to 0^+;$$

2. \mathcal{F} is the relaxation of \mathcal{F}_0 in X , i.e.,
 $\mathcal{F}(u,h) := \inf \left\{ \liminf_{n \to +\infty} \mathcal{F}_0(u_n,h_n) : (u_n,h_n) \in X_{\text{Lip}}, (u_n,h_n) \to (u,h) \text{ in } X, \text{ and } |\Omega_{h_n}^+| = |\Omega_h^+| \right\}.$

Remark on the proof:

• For the Γ -convergence we extend the argument in [Fonseca-Fusco-Leoni-Morini, 2007] based on the integral formula for the relaxation $\overline{\mathcal{F}}_{\delta}$ of the \mathcal{F}_{δ} in X, i.e.,

$$\begin{split} \bar{\mathcal{F}}_{\delta}(u,h) &= \int_{\Omega_{h}} W_{\delta}(y, \boldsymbol{E}u(x,y) - \boldsymbol{E}_{0}(y)) \, dx \, dy \\ &+ \int_{\widetilde{\Gamma}_{h}} \varphi_{\delta}(y) \, d\mathcal{H}^{1} \, + \, 2 \sum_{x \in \mathcal{S}} \int_{h(x)}^{h^{-}(x)} \varphi_{\delta}(y) \, dy + \gamma_{\mathsf{fs}} \ell; \end{split}$$

• Extra care is needed for the relaxation of the sharp-interface model for $\gamma_{\rm s} - \gamma_{\rm fs} < \gamma_{\rm f}$ in the construction of a recovery sequence that matches the volume constraint.

PROPOSITION ([FONSECA-FUSCO-LEONI-MORINI, 2007], [DAVOLI-P., 2017]) If $(h, u) \in X$ is a minimum configuration for \mathcal{F} , then • Cusps points and vertical cuts are at most finite; • $\Gamma_h^{\text{reg}} := \Gamma_h \setminus (\Gamma_h^{\text{cut}} \cup \Gamma_h^{\text{cusp}})$, where $\Gamma_{\text{cusp}} := \{(x, y) \in \Gamma_h : (h^-)'_+(x) = -(h^-)'_-(x) = +\infty\}$

is locally the graph of a Lipschitz function.

PROPOSITION ([FONSECA-FUSCO-LEONI-MORINI, 2007], [DAVOLI-P., 2017]) If $(h, u) \in X$ is a minimum configuration for \mathcal{F} , then • Cusps points and vertical cuts are at most finite; • $\Gamma_h^{reg} := \Gamma_h \setminus (\Gamma_h^{cut} \cup \Gamma_h^{cusp})$, where $\Gamma_{cusp} := \{(x, y) \in \Gamma_h : (h^-)'_+(x) = -(h^-)'_-(x) = +\infty\}$ is locally the graph of a Lipschitz function.

The proof is based on:

1. Volume penalization:

(minimizers of \mathcal{F} under volume constraint) \Leftrightarrow (minimizers of $\widetilde{\mathcal{F}}$) with $\widetilde{\mathcal{F}}(u,h) := \mathcal{F}(u,h) + \Lambda |V - \Omega_h^+|$ for $\Lambda > 0$ large enough.

PROPOSITION ([FONSECA-FUSCO-LEONI-MORINI, 2007], [DAVOLI-P., 2017]) If $(h, u) \in X$ is a minimum configuration for \mathcal{F} , then • Cusps points and vertical cuts are at most finite; • $\Gamma_{h}^{reg} := \Gamma_{h} \setminus (\Gamma_{h}^{cut} \cup \Gamma_{h}^{cusp})$, where

 $\Gamma_{\mathrm{cusp}} := \{(x,y) \in \Gamma_h : (h^-)'_+(x) = -(h^-)'_-(x) = +\infty\}$

is locally the graph of a Lipschitz function.

The proof is based on:

1. Volume penalization:

(minimizers of \mathcal{F} under volume constraint) \Leftrightarrow (minimizers of $\widetilde{\mathcal{F}}$) with $\widetilde{\mathcal{F}}(u,h) := \mathcal{F}(u,h) + \Lambda |V - \Omega_h^+|$ for $\Lambda > 0$ large enough.

2. Internal-Ball condition ([Chambolle, Larsen; 2003]): There exists $\rho > 0$ such that for every $z \in \overline{\Gamma}_h$ a ball B_ρ with radius ρ can be chosen so that

$$B_{\rho} \subset \Omega_h$$
 and $\partial B_{\rho} \cap \overline{\Gamma}_h = \{z\}$

(established by a comparison argument and the isoperimetric inequality).

 without graph (or starshapedness) assumption and with anisotropy: admissible film regions among those with boundary displaying at most a fixed number of connected components (with S. Kholmatov, Vienna).

- without graph (or starshapedness) assumption and with anisotropy: admissible film regions among those with boundary displaying at most a fixed number of connected components (with S. Kholmatov, Vienna).
- discrete-to-continuum passage (with L. Kreutz, Vienna).

- without graph (or starshapedness) assumption and with anisotropy: admissible film regions among those with boundary displaying at most a fixed number of connected components (with S. Kholmatov, Vienna).
- discrete-to-continuum passage (with L. Kreutz, Vienna).

What about the contact angles of minimal profiles of \mathcal{F} ?

$$\mathcal{F}(u,h) := \int_{\Omega_h} W_0(y, \boldsymbol{E}u(x,y) - \boldsymbol{E}_0(y)) \, dx \, dy + \int_{\widetilde{\Gamma}_h} \varphi(y) \, d\mathcal{H}^1 + 2\gamma_f \mathcal{H}^1(\Gamma_h^{cut})$$

$$\mathcal{F}(u,h) := \int_{\Omega_h} W_0(y, \boldsymbol{E}u(x,y) - \boldsymbol{E}_0(y)) \, dx \, dy + \int_{\widetilde{\Gamma}_h} \varphi(y) \, d\mathcal{H}^1 + 2\gamma_f \mathcal{H}^1(\Gamma_h^{cut})$$

Isotropic materials with Lamé coefficients: $W_0(y, A) = \mu(y)|A|^2 + \frac{\lambda(y)}{2}Tr^2(A)$ for

$$\mathcal{F}(u,h) := \int_{\Omega_h} W_0(y, \boldsymbol{E}u(x,y) - \boldsymbol{E}_0(y)) \, dx \, dy + \int_{\widetilde{\Gamma}_h} \varphi(y) \, d\mathcal{H}^1 + 2\gamma_f \mathcal{H}^1(\Gamma_h^{cut})$$

Isotropic materials with Lamé coefficients: $W_0(y, A) = \mu(y)|A|^2 + \frac{\lambda(y)}{2}Tr^2(A)$ for

$$\mu(y) := \begin{cases} \mu_f & \text{if } y > 0, \\ \mu_s & \text{if } y \leq 0 \end{cases} \quad \text{and} \quad \lambda(y) := \begin{cases} \lambda_f & \text{if } y > 0, \\ \lambda_s & \text{if } y \leq 0. \end{cases}$$

Previous results are for $\mu_{\rm f} = \mu_{\rm s}$, $\lambda_{\rm f} = \lambda_{\rm s}$, and $\varphi \equiv \gamma_{\rm f} \ (\gamma_{\rm f} < \gamma_{\rm s}$, and $\gamma_{\rm fs} = 0)$

$$\mathcal{F}(u,h) := \int_{\Omega_h} W_0(y, \boldsymbol{E}u(x,y) - \boldsymbol{E}_0(y)) \, dx \, dy + \int_{\widetilde{\Gamma}_h} \varphi(y) \, d\mathcal{H}^1 + 2\gamma_f \mathcal{H}^1(\Gamma_h^{cut})$$

Isotropic materials with Lamé coefficients: $W_0(y, A) = \mu(y)|A|^2 + \frac{\lambda(y)}{2}Tr^2(A)$ for

$$\mu(y) := \begin{cases} \mu_f & \text{if } y > 0, \\ \mu_s & \text{if } y \leq 0 \end{cases} \quad \text{and} \quad \lambda(y) := \begin{cases} \lambda_f & \text{if } y > 0, \\ \lambda_s & \text{if } y \leq 0. \end{cases}$$

Previous results are for $\mu_f = \mu_s$, $\lambda_f = \lambda_s$, and $\varphi \equiv \gamma_f \ (\gamma_f < \gamma_s$, and $\gamma_{fs} = 0)$

[Fonseca-Fusco-Leoni-Morini, 2007] Zero-angle condition;

$$\mathcal{F}(u,h) := \int_{\Omega_h} W_0(y, \boldsymbol{E}u(x,y) - \boldsymbol{E}_0(y)) \, dx \, dy + \int_{\widetilde{\Gamma}_h} \varphi(y) \, d\mathcal{H}^1 + 2\gamma_f \mathcal{H}^1(\Gamma_h^{cut})$$

Isotropic materials with Lamé coefficients: $W_0(y, A) = \mu(y)|A|^2 + \frac{\lambda(y)}{2}Tr^2(A)$ for

$$\mu(y) := \begin{cases} \mu_f & \text{if } y > 0, \\ \mu_s & \text{if } y \leq 0 \end{cases} \quad \text{and} \quad \lambda(y) := \begin{cases} \lambda_f & \text{if } y > 0, \\ \lambda_s & \text{if } y \leq 0. \end{cases}$$

Previous results are for $\mu_{\rm f} = \mu_{\rm s}$, $\lambda_{\rm f} = \lambda_{\rm s}$, and $\varphi \equiv \gamma_{\rm f} \ (\gamma_{\rm f} < \gamma_{\rm s}$, and $\gamma_{\rm fs} = 0)$

[Fonseca-Fusco-Leoni-Morini, 2007] Zero-angle condition;

[Fusco-Morini, 2012] Existence of thresholds for V (and e_0) below which the flat configuration is an absolute minimizer or only a local minimizer, and below which minimizers are smooth;

$$\mathcal{F}(u,h) := \int_{\Omega_h} W_0(y, \boldsymbol{E}u(x,y) - \boldsymbol{E}_0(y)) \, dx \, dy + \int_{\widetilde{\Gamma}_h} \varphi(y) \, d\mathcal{H}^1 + 2\gamma_f \mathcal{H}^1(\Gamma_h^{cut})$$

Isotropic materials with Lamé coefficients: $W_0(y, A) = \mu(y)|A|^2 + \frac{\lambda(y)}{2}Tr^2(A)$ for

$$\mu(y) := \begin{cases} \mu_f & \text{if } y > 0, \\ \mu_s & \text{if } y \leq 0 \end{cases} \quad \text{and} \quad \lambda(y) := \begin{cases} \lambda_f & \text{if } y > 0, \\ \lambda_s & \text{if } y \leq 0. \end{cases}$$

Previous results are for $\mu_{\rm f} = \mu_{\rm s}$, $\lambda_{\rm f} = \lambda_{\rm s}$, and $\varphi \equiv \gamma_{\rm f} \ (\gamma_{\rm f} < \gamma_{\rm s}$, and $\gamma_{\rm fs} = 0)$

[Fonseca-Fusco-Leoni-Morini, 2007] Zero-angle condition;

[Fusco-Morini, 2012] Existence of thresholds for V (and e_0) below which the flat configuration is an absolute minimizer or only a local minimizer, and below which minimizers are smooth;

Related results: scaling laws [Goldman-Zwicknagl, 2014] **and** [Bella-Goldman-Zwicknagl, 2015], **faceted profiles and non-zero miscut angle** [Fonseca-Pratelli-Zwicknagl, 2014], ...

$$\mathcal{F}(u,h) := \int_{\Omega_h} W_0(y, \boldsymbol{E}u(x,y) - \boldsymbol{E}_0(y)) \, dx \, dy + \int_{\widetilde{\Gamma}_h} \varphi(y) \, d\mathcal{H}^1 + 2\gamma_f \mathcal{H}^1(\Gamma_h^{cut})$$

Isotropic materials with Lamé coefficients: $W_0(y, A) = \mu(y)|A|^2 + \frac{\lambda(y)}{2}Tr^2(A)$ for

$$\mu(y) := \begin{cases} \mu_f & \text{if } y > 0, \\ \mu_s & \text{if } y \leq 0 \end{cases} \quad \text{and} \quad \lambda(y) := \begin{cases} \lambda_f & \text{if } y > 0, \\ \lambda_s & \text{if } y \leq 0. \end{cases}$$

Previous results are for $\mu_{\rm f} = \mu_{\rm s}$, $\lambda_{\rm f} = \lambda_{\rm s}$, and $\varphi \equiv \gamma_{\rm f} \ (\gamma_{\rm f} < \gamma_{\rm s}$, and $\gamma_{\rm fs} = 0)$

[Fonseca-Fusco-Leoni-Morini, 2007] Zero-angle condition;

[Fusco-Morini, 2012] Existence of thresholds for V (and e_0) below which the flat configuration is an absolute minimizer or only a local minimizer, and below which minimizers are smooth;

Related results: scaling laws [Goldman-Zwicknagl, 2014] and [Bella-Goldman-Zwicknagl, 2015], faceted profiles and non-zero miscut angle [Fonseca-Pratelli-Zwicknagl, 2014], ...

Evolution: surface diffusion [Fonseca-Fusco-Leoni-Morini, 2011, 2014], evaporation-condensation [P., 2012], vicinal surfaces [Dal Maso-Fonseca-Leoni, 2014] and [Fonseca-Leoni-Lu, 2015], [Lu, 2018],...

$$\mu_s \ge \mu_f > 0$$
 and $\mu_s + \lambda_s \ge \mu_f + \lambda_f > 0$.

$$\mu_s \ge \mu_f > 0$$
 and $\mu_s + \lambda_s \ge \mu_f + \lambda_f > 0$.

➡ Note that:

• It is a classical condition in transmission problems for elliptic systems;

$$\mu_s \ge \mu_f > 0$$
 and $\mu_s + \lambda_s \ge \mu_f + \lambda_f > 0$.

- ➡ Note that:
 - It is a classical condition in transmission problems for elliptic systems;
 - From [Knees, 2002]: "it seems that it [...] describes a class of composites which can sustain higher loads before breaking";

$$\mu_s \ge \mu_f > 0$$
 and $\mu_s + \lambda_s \ge \mu_f + \lambda_f > 0$.

- ➡ Note that:
 - It is a classical condition in transmission problems for elliptic systems;
 - From [Knees, 2002]: "it seems that it [...] describes a class of composites which can sustain higher loads before breaking";
 - It implies that the shear and P-wave moduli are higher in the substrate, i.e., the substrate is stiffer than the film.

$$\mu_s \geq \mu_f > 0 \quad \text{and} \quad \mu_s + \lambda_s \geq \mu_f + \lambda_f > 0.$$

- Note that:
 - It is a classical condition in transmission problems for elliptic systems;
 - From [Knees, 2002]: "it seems that it [...] describes a class of composites which can sustain higher loads before breaking";
 - It implies that the shear and P-wave moduli are higher in the substrate, i.e., the substrate is stiffer than the film.

Two types of *h*-zeros in Z_h have nontrivial contact angles:

 b_1 and b_2 are island borders.

The following assertions hold for every μ -local minimizer $(u, h) \in X$ of \mathcal{F} :

1. Any nontrivial contact angle $\alpha(z)$ at valleys and island borders z in $Z_h \setminus (\Gamma_h^{cusp} \cup \Gamma_h^{cut})$ satisfies

$$\alpha(z) = \arccos(\sigma) \tag{YD}$$

with

$$\sigma := \frac{\min\{\gamma_f, \gamma_s - \gamma_{fs}\}}{\gamma_f}$$

The following assertions hold for every μ -local minimizer $(u, h) \in X$ of \mathcal{F} :

1. Any nontrivial contact angle $\alpha(z)$ at valleys and island borders z in $Z_h \setminus (\Gamma_h^{cusp} \cup \Gamma_h^{cut})$ satisfies

$$\alpha(z) = \arccos(\sigma) \tag{YD}$$

with

$$\sigma := \frac{\min\{\gamma_f, \gamma_s - \gamma_{fs}\}}{\gamma_f}$$

2. If
$$\sigma < 1$$
, then $V_h \setminus (\Gamma_h^{cusp} \cup \Gamma_h^{cut}) = \emptyset$.

The following assertions hold for every μ -local minimizer $(u, h) \in X$ of \mathcal{F} :

1. Any nontrivial contact angle $\alpha(z)$ at valleys and island borders z in $Z_h \setminus (\Gamma_h^{cusp} \cup \Gamma_h^{cut})$ satisfies

$$\alpha(z) = \arccos(\sigma) \tag{YD}$$

with

$$\sigma := \frac{\min\{\gamma_f, \gamma_s - \gamma_{fs}\}}{\gamma_f}$$

2. If
$$\sigma < 1$$
, then $V_h \setminus (\Gamma_h^{cusp} \cup \Gamma_h^{cut}) = \emptyset$.
3. If $\sigma \neq 0$, then $\Gamma_h^{jump} \cap Z_h = \emptyset$.

The following assertions hold for every μ -local minimizer $(u, h) \in X$ of \mathcal{F} :

1. Any nontrivial contact angle $\alpha(z)$ at valleys and island borders z in $Z_h \setminus (\Gamma_h^{cusp} \cup \Gamma_h^{cut})$ satisfies

$$\alpha(z) = \arccos(\sigma) \tag{YD}$$

with

$$\sigma := \frac{\min\{\gamma_f, \gamma_s - \gamma_{fs}\}}{\gamma_f}$$

2. If
$$\sigma < 1$$
, then $V_h \setminus (\Gamma_h^{cusp} \cup \Gamma_h^{cut}) = \emptyset$.
3. If $\sigma \neq 0$, then $\Gamma_h^{jump} \cap Z_h = \emptyset$.

Note that:

• (YD) reduces to the zero-angle condition of [Fonseca-Fusco-Leoni-Morini, 2007] for the case $\mathbb{C}_{f} = \mathbb{C}_{s}$, $\gamma_{fs} = 0$ and $\gamma_{f} \leq \gamma_{s}$;

The following assertions hold for every μ -local minimizer $(u, h) \in X$ of \mathcal{F} :

1. Any nontrivial contact angle $\alpha(z)$ at valleys and island borders z in $Z_h \setminus (\Gamma_h^{cusp} \cup \Gamma_h^{cut})$ satisfies

$$\alpha(z) = \arccos(\sigma) \tag{YD}$$

with

$$\sigma := \frac{\min\{\gamma_f, \gamma_s - \gamma_{fs}\}}{\gamma_f}$$

2. If
$$\sigma < 1$$
, then $V_h \setminus (\Gamma_h^{cusp} \cup \Gamma_h^{cut}) = \emptyset$.
3. If $\sigma \neq 0$, then $\Gamma_h^{jump} \cap Z_h = \emptyset$.

Note that:

• (YD) reduces to the zero-angle condition of [Fonseca-Fusco-Leoni-Morini, 2007] for the case $\mathbb{C}_{f} = \mathbb{C}_{s}$, $\gamma_{fs} = 0$ and $\gamma_{f} \leq \gamma_{s}$;

• (YD) is the Young-Dupré law;

Valleys have always zero contact angles;

Valleys have always zero contact angles;

 Jumps at island borders are allowed only if min{γ_f, γ_s − γ_{fs}}/γ_f = 0, i.e., the YD angle is 90°;

Valleys have always zero contact angles;

 Jumps at island borders are allowed only if min{γ_f, γ_s − γ_{fs}}/γ_f = 0, i.e., the YD angle is 90°;

 Cusps (left) and cuts (right) may represents dislocations at the film/substrate interface observed by experiments.

 $v \in V$

Courtesy of [Elder et al., 2007].

PAOLO PIOVANO

Young-Dupré law for thin film

By the minimality of
$$(u, h)$$
 there holds

$$0 \leq \frac{\widetilde{\mathcal{F}}(u, h + \mu\psi_n) - \widetilde{\mathcal{F}}(u, h)}{\mu r_n} := \underbrace{\mathcal{A}_n}_{\text{area term}} + \underbrace{\mathcal{S}_n}_{\text{surface term}}$$

for $\mu > 0$, $r_n \searrow 0^+$, $\psi_n := r_n \psi_\mu \left(\frac{x-x_0}{r_n}\right)$ for a suitable $\psi_\mu \in W^{1,\infty}$;

• By the minimality of
$$(u, h)$$
 there holds

$$0 \leq \frac{\widetilde{\mathcal{F}}(u, h + \mu\psi_n) - \widetilde{\mathcal{F}}(u, h)}{\mu r_n} := \underbrace{\mathcal{A}_n}_{\text{area term}} + \underbrace{\mathcal{S}_n}_{\text{surface term}}$$

for $\mu > 0$, $r_n \searrow 0^+$, $\psi_n := r_n \psi_\mu \left(\frac{x-x_0}{r_n}\right)$ for a suitable $\psi_\mu \in W^{1,\infty}$;

• We prove that $A_n \rightarrow 0$.

• By the minimality of
$$(u, h)$$
 there holds

$$0 \leq \frac{\widetilde{\mathcal{F}}(u, h + \mu\psi_n) - \widetilde{\mathcal{F}}(u, h)}{\mu r_n} := \underbrace{\mathcal{A}_n}_{\text{area term}} + \underbrace{\mathcal{S}_n}_{\text{surface term}}$$

for
$$\mu > 0$$
, $r_n \searrow 0^+$, $\psi_n := r_n \psi_\mu \left(\frac{x - x_0}{r_n} \right)$ for a suitable $\psi_\mu \in W^{1,\infty}$;

• We prove that $A_n \rightarrow 0$.

 $H^{3/2+\varepsilon}$ -regularity for a $\varepsilon > 0$ is necessary!!

• By the minimality of
$$(u, h)$$
 there holds

$$0 \leq \frac{\widetilde{\mathcal{F}}(u, h + \mu\psi_n) - \widetilde{\mathcal{F}}(u, h)}{\mu r_n} := \underbrace{\mathcal{A}_n}_{\text{area term}} + \underbrace{\mathcal{S}_n}_{\text{surface term}}$$

for
$$\mu > 0$$
, $r_n \searrow 0^+$, $\psi_n := r_n \psi_\mu \left(\frac{x - x_0}{r_n} \right)$ for a suitable $\psi_\mu \in W^{1,\infty}$;

• We prove that $A_n \rightarrow 0$.

 $H^{3/2+\varepsilon}$ -regularity for a $\varepsilon > 0$ is necessary!! It follows from the decay estimate: There exist C > 0, $r_0 > 0$, and $1/2 < \beta < 1$ such that

$$\int_{\mathcal{B}(z_0,r) \cup \Omega_h} |\nabla u|^2 \, \mathrm{d} z \leq C r^{2\beta} \qquad \text{for all } 0 < r < r_0$$

• By the minimality of
$$(u, h)$$
 there holds

$$0 \leq \frac{\widetilde{\mathcal{F}}(u, h + \mu\psi_n) - \widetilde{\mathcal{F}}(u, h)}{\mu r_n} := \underbrace{\mathcal{A}_n}_{\text{area term}} + \underbrace{\mathcal{S}_n}_{\text{surface term}}$$

for
$$\mu > 0$$
, $r_n \searrow 0^+$, $\psi_n := r_n \psi_\mu \left(\frac{x - x_0}{r_n} \right)$ for a suitable $\psi_\mu \in W^{1,\infty}$;

• We prove that
$$A_n \rightarrow 0$$
.

 $H^{3/2+\varepsilon}$ -regularity for a $\varepsilon > 0$ is necessary!! It follows from the decay estimate: There exist C > 0, $r_0 > 0$, and $1/2 < \beta < 1$ such that

$$\int_{B(z_0,r)\cup\Omega_h} |\nabla u|^2 \,\mathrm{d} z \leq Cr^{2\beta}$$

for all $0 < r < r_0$.

Decay obtained by contradiction and a blow-up argument in order to reduce to a transmission-problem on cones (see [Nicaise-Sändig, 1999]).

By a suitable choice of ψ_μ depending on the point z₀ we compare with the optimal angle (red profile):

 $0 \leq S(\arccos \sigma, \alpha)$

yealds the contact-angle condition.
By a suitable choice of ψ_μ depending on the point z₀ we compare with the optimal angle (red profile):

yealds the contact-angle condition.

Remark

(*i*) Equilibrium contact angles are not impacted by elastic field and depend only on surface tensions;

By a suitable choice of ψ_{μ} depending on the point z_0 we compare with the optimal angle (red profile):

yealds the contact-angle condition.

Remark

- (*i*) Equilibrium contact angles are not impacted by elastic field and depend only on surface tensions;
- (ii) If $\gamma_{\rm f} \leq \gamma_{\rm s} \gamma_{\rm fs}$, then there is a wetting layer (FM and SK modes are preferable to VW);

(iii) VW occurs if and only if
$$\gamma_{\rm f} > \gamma_{\rm s} - \gamma_{\rm fs}.$$

Every μ -local minimizer $(u, h) \in X$ of \mathcal{F} is such that

1. $\Gamma_h^{\text{reg}} \setminus Y_h$ is $C^{1,\gamma}$ for all $\gamma \in (0, 1/2)$, where $Y_h := Z_h \cap \{\text{contact angles} \neq 0\};$

Every μ -local minimizer $(u, h) \in X$ of \mathcal{F} is such that

1. $\Gamma_h^{reg} \setminus Y_h$ is $C^{1,\gamma}$ for all $\gamma \in (0, 1/2)$, where $Y_h := Z_h \cap \{\text{contact angles} \neq 0\};$

2. No component of Γ_h^{jump} is contained in $\{y > 0\}$. Thus,

 $\sigma \neq 0 \implies \Gamma_h^{jump} = \emptyset;$

Every μ -local minimizer $(u, h) \in X$ of \mathcal{F} is such that

1. $\Gamma_h^{reg} \setminus Y_h$ is $C^{1,\gamma}$ for all $\gamma \in (0, 1/2)$, where $Y_h := Z_h \cap \{ \text{contact angles} \neq 0 \};$

2. No component of Γ_h^{jump} is contained in $\{y > 0\}$. Thus,

 $\sigma \neq 0 \implies \Gamma_h^{jump} = \emptyset;$

3. The set

$$A_h := \begin{cases} \Gamma_h^{reg} \setminus Y_h & \text{if } \mathbb{C}_f = \mathbb{C}_s \\ \Gamma_h^{reg} \setminus Z_h & \text{if } \mathbb{C}_f \neq \mathbb{C}_s \end{cases}$$

is analytic.

Every μ -local minimizer $(u, h) \in X$ of \mathcal{F} is such that

1. $\Gamma_h^{reg} \setminus Y_h$ is $C^{1,\gamma}$ for all $\gamma \in (0, 1/2)$, where $Y_h := Z_h \cap \{ \text{contact angles} \neq 0 \};$

2. No component of Γ_h^{jump} is contained in $\{y > 0\}$. Thus,

 $\sigma \neq 0 \implies \Gamma_h^{jump} = \emptyset;$

3. The set

$$A_h := \begin{cases} \Gamma_h^{reg} \setminus Y_h & \text{if } \mathbb{C}_f = \mathbb{C}_s \\ \Gamma_h^{reg} \setminus Z_h & \text{if } \mathbb{C}_f \neq \mathbb{C}_s \end{cases}$$

is analytic.

Finally, we also have that the Euler-Lagrange equation

$$k_{arphi,A_h} = au_{A_h} \left(W_0(\cdot, \boldsymbol{E}\boldsymbol{u}(\cdot) - \boldsymbol{E}_0) \right) + \lambda_0 \quad ext{on } A_h,$$

holds for μ -local minimizer $(u, h) \in X$, where:

- k_{φ,A_h} is the anisotropic curvature of A_h ;
- $\tau_{A_h}(\cdot)$ is the trace operator on A_h ;
- λ_0 is a suitable Lagrange multiplier.

We studied free-boundary problems that model the deposition of thin films in heteroepitaxy.

We studied free-boundary problems that model the deposition of thin films in heteroepitaxy.

 A variational model is derived by relaxation from the Sharp-Interface model and by Γ-convergence from the Transition-Layer model;

We studied free-boundary problems that model the deposition of thin films in heteroepitaxy.

- A variational model is derived by relaxation from the Sharp-Interface model and by *Γ*-convergence from the Transition-Layer model;
- Regularity results for minimizers, such as that cusps points and vertical cuts are at most finite, are established;

We studied free-boundary problems that model the deposition of thin films in heteroepitaxy.

- A variational model is derived by relaxation from the Sharp-Interface model and by *Γ*-convergence from the Transition-Layer model;
- Regularity results for minimizers, such as that cusps points and vertical cuts are at most finite, are established;
- The Young-Dupré law is validated for this model in the presence of elasticity.

We studied free boundary problems that model the deposition of thin films in heteroepitaxy.

- A variational model is derived by relaxation from the Sharp-Interface model and by *Γ*-convergence from the Transition-Layer model;
- Regularity results for minimizers, such as that cusps points and vertical cuts are at most finite, are established;
- The Young-Dupré law is validated for this model in the presence of elasticity.

THANK YOU FOR YOUR ATTENTION!