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Heat transport in a fluid with velocity u(x, t) occurs by two
mechanisms:

advection at rate ||u||/L diffusion at rate κ/L2

Together, they determine T (x, t) = temperature through

∂tT +div(uT −κ∇T ) = 0

We recognize the heat flux

J = uT −κ∇T
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Heat transport in a fluid with velocity u(x, t) occurs by two
mechanisms:

advection diffusion

Together, they determine T (x, t) = temperature through

∂tT +div(uT −κ∇T ) = 0

The Péclet number

Pe =
rate of advection
rate of diffusion

=
||u||/L
κ/L2

� 1
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Heat transport in a fluid layer

T = 0, u = 0

∂tT +u ·∇T = ∆T

∂tu+u ·∇u =−∇p+ ∆u+ f
div u = 0

T = 1, u = 0

u = îu+ ĵv + k̂w

J = uT −∇T

Question: Which forces f produce the largest transport of heat,

max
f
〈J · k̂〉?

Notation for averaging:

〈·〉= limsup
τ→∞

1
τ|fluid layer|

ˆ
τ

0

ˆ
fluid layer

·dxdt
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To flow ≥ not to flow

T = 0, u = 0

∂tT +u ·∇T = ∆T

∂tu+u ·∇u =−∇p+ ∆u+ f
div u = 0

T = 1, u = 0

u = îu+ ĵv + k̂w

J = uT −∇T

The Nusselt number is defined as enhancement of heat transport

Nu(u) =
total vertical heat flux

conductive vertical heat flux
=

〈J · k̂〉
〈−∇T · k̂〉

≥ 1

We seek to maximize it... the answer is +∞ w/o constraints
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Enstrophy budget

T = 0, u = 0

∂tT +u ·∇T = ∆T

∂tu+u ·∇u =−∇p+ ∆u+ f
div u = 0

T = 1, u = 0

u = îu+ ĵv + k̂w

A natural constraint is on the power expended to sustain fluid flow

From the momentum eqn.,

〈f ·u〉=
〈
|∇u|2

〉

average power expended = average “enstrophy”
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The wall-to-wall optimal transport problem

T = 0, u = 0

∂tT +u ·∇T = ∆T

div u = 0

T = 1, u = 0

u = îu+ ĵv + k̂w

Nu = 〈J · k̂〉

Problem: Maximize the wall-to-wall heat transport Nu amongst all
incompressible flows sat. a given enstrophy budget,

max
u(x,t)

〈|∇u|2〉1/2=Pe
b.c.s

Nu(u)
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What do optimizers look like?

T = 0, u = 0

∂tT +u ·∇T = ∆T

div u = 0

T = 1, u = 0

max
u(x,t)

〈|∇u|2〉1/2=Pe
b.c.s

Nu(u)

Figure 4.2: Optimal no-slip solutions for different enstrophy budgets in the full domain.
The black contour lines are the streamlines and the colors represent the temperature field.
From left to right, top to bottom the Péclet numbers are 4.0⇥10�1, 4.0⇥102, 1.8⇥103, 5.0⇥
103, 8.0⇥103, 1.3⇥104. The best known optimizers consist of a multiplicity of convection
cells for a fixed domain size as the enstrophy budget increases.
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1A. Souza, PhD thesis 2016
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What do optimizers look like?
K.E. budget
〈|u|2〉1/2 = Pe

stress-free b.c.
∂zu = w = 0640 P. Hassanzadeh, G. P. Chini and C. R. Doering
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FIGURE 6. (Colour online) Flow field for � = 1, µ = 3.557 ⇥ 10�5, Pe = 1320.5 and
Numax = 90.7: (a)  ; (b)  along x = 0; (c) ✓ ; (d) �; (e) ⇠ ⌘ ✓ + �; (f ) ⌘⌘ ✓ � �. The
resolution is 612.

Equations (3.33)–(3.35) imply that the equations for  , ⇠ and ⌘ are

�J(⇠ , ⌘) + 2µ1 + 2⇠x = 0, (3.44)
J( , ⇠) +1⌘= 0, (3.45)

J( , ⌘) +1⇠ � 2 x = 0. (3.46)

The computational results suggest the ansatzen

 =  ̄(x) A
✓

1/2 + z
�

◆
A
✓

1/2 � z
�

◆
, (3.47)

1

maxNu ∼ Pe

lbulk ∼ Pe−1/2

enstrophy budget
〈|∇u|2〉1/2 = Pe

stress-free b.c.
∂zu = w = 0Wall to wall optimal transport 653

–0.06 –0.02 0 0.02 0.06

–0.06 –0.02 0 0.02 0.06

–0.06 –0.02 0 0.02 0.06 –0.06 –0.02 0 0.02 0.06

–0.06 –0.02 0 0.02 0.06

0

0.10

0.20

0.30

0.40

0.50

0

0.10

0.20

0.30

0.40

0.50

0

0.10

0.20

0.30

0.40

0.50

0

0.10

0.20

0.30

0.40

0.50

0

0.10

0.20

0.30

0.40

0.50

0

0.10

0.20

0.30

0.40

0.50

z

–70

–60

–50

–40

–30

–20

–10
(a)

–80 –70 –60 –50 –40 –30 –20 –10 0

(b)

z

–0.1

0

0.1

0.2

0.3

0.4

0.5

0.6(c)

–0.6

–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1
(d)

x

z

–0.5
–0.4
–0.3
–0.2
–0.1
0
0.1
0.2
0.3
0.4
0.5

(e)

x

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0( f )

FIGURE 9. (Colour online) Flow field for � =

p

2/p2, µ = 4.83 ⇥ 10�8, Pe = 3.57 ⇥ 104

and Numax = 103.3.7; only the upper half of the domain is shown for better illustration of
the circulation zone. (a)  ; (b)  along x = 0; (c) ✓ ; (d) �; (e) ⇠ ⌘ ✓ + �; (f ) ⌘⌘ ✓ � �.
The resolution is 612.

which agrees with the numerical results. This solution is determined up to an unknown
constant ⇠̄o that should be determinable from the boundary layer solution, but owing
to the complexity of this flow we have not yet succeeded in solving the boundary
layer equations to complete the required matched asymptotic analysis.

In the absence of an analytical solution, we use the numerical results to find
Numax(Pe, � ) and NuMAX(Pe). Figure 10 is a plot of the numerically calculated
Numax(Pe, � ) for several values of � . Several conclusions drawn from the results
presented in figure 5 also hold for the fixed enstrophy problem: Numax agrees with
(4.24) in the limit of small Pe (benchmarking the code), and the absolute upper
bound (4.6) quantitatively overestimates transport, albeit in the Péclet-number scaling
in this case. For fixed � and large Pe, we observe that

Numax(Pe, � ) = 1 + K(� ) Pe1/2, (4.38)

1

Nu ∼ Pe0.58

lbulk ∼ Pe−0.36

enstrophy budget
〈|∇u|2〉1/2 = Pe

no-slip b.c.
u = w = 0

Figure 4.4: Optimal no-slip solutions for different enstrophy budgets in a single cell. The
black contour lines are the streamlines and the colors represent the temperature field. From
left to right, top to bottom the Péclet numbers are 4.0 ⇥ 10�1, 4.0 ⇥ 100, 4.0 ⇥ 101, 4.0 ⇥
102, 4.0⇥103, 4.0⇥104. The domain size in the horizontal x direction shrinks as the Péclet
number increases.

98

2

Nu ∼ Pe0.54

lbulk ∼ Pe−0.37

1P. Hassanzadeh, G. P. Chini, & C. R. Doering, JFM 2014
2A. Souza, PhD thesis 2016
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What must optimizers obey?

T = 0, u = 0

∂tT +u ·∇T = ∆T

div u = 0

T = 1, u = 0

u = îu+ ĵv + k̂w

Nu = 〈J · k̂〉

Theorem (Souza & Doering, ’16)

max
u(x,t)

〈|∇u|2〉1/2=Pe
b.c.s

Nu(u)≤ C Pe2/3

∃ multiple proofs:
I a modification of the “background method” (C. Doering & P.

Constantin, Phys Rev E ’96)
I an elementary “conservation law” argument (C. Seis, JFM ’15)
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So what’s the optimal rate?

T = 0, u = 0

∂tT +u ·∇T = ∆T

div u = 0

T = 1, u = 0

max
u(x,t)

〈|∇u|2〉1/2=Pe
b.c.s

Nu(u)

Figure 4.2: Optimal no-slip solutions for different enstrophy budgets in the full domain.
The black contour lines are the streamlines and the colors represent the temperature field.
From left to right, top to bottom the Péclet numbers are 4.0⇥10�1, 4.0⇥102, 1.8⇥103, 5.0⇥
103, 8.0⇥103, 1.3⇥104. The best known optimizers consist of a multiplicity of convection
cells for a fixed domain size as the enstrophy budget increases.
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· · · ??

︸ ︷︷ ︸

Nu ∼ Pe1/2 Nu ∼ Pe0.54

Pe = 4×102 5×103 1.3×104 4×104
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Main result

Theorem (T. & Doering, ’17)
Up to logarithmic corrections, the optimal rate of heat transport
satisfies

max
u(x,t)

〈|∇u|2〉1/2=Pe
u|∂Ω=0

Nu(u)∼ Pe2/3 as Pe→ ∞.

More precisely, there exist constants C ,C ′ depending only on the
domain such that

C
Pe2/3

log4/3Pe
≤ max

u(x,t)

〈|∇u|2〉1/2=Pe
u|∂Ω=0

Nu(u)≤ C ′Pe2/3

for Pe� 1.
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What do our flows look like?

u= ∇
⊥

ψ

lk . δk

lbl ∼ δbl

Streamlines refine self-similarly from bulk to boundary layer

In the kth stage of refinement,

ψ(x ,z) = f (
z− zk

δk
) · lkΨ(

x

lk
) +g(

z− zk
δk

) · lk+1Ψ(
x

lk+1
)



14/28

What do our flows look like?

u= ∇
⊥

ψ

`(z)

Horizontal lengthscales satisfy

lbl ∼
log1/3 Pe
Pe2/3

lbulk ∼
log1/6 Pe
Pe1/3

and

`(z)∼ log1/6 Pe
Pe1/3

(1− z)1/2
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Brief sketch of the proof
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Main challenges

As Pe→ ∞, our designs feature

I increasingly fine lengthscales
I an increasing number of distinct

lengthscales

Simplify by taking u(x) indpt. of time
(and why should time-dependence help?)

Figure 4.2: Optimal no-slip solutions for different enstrophy budgets in the full domain.
The black contour lines are the streamlines and the colors represent the temperature field.
From left to right, top to bottom the Péclet numbers are 4.0⇥10�1, 4.0⇥102, 1.8⇥103, 5.0⇥
103, 8.0⇥103, 1.3⇥104. The best known optimizers consist of a multiplicity of convection
cells for a fixed domain size as the enstrophy budget increases.

96

Main goals: Motivate our “branched” flow designs, and estimate
their heat transport Nu in the advection-dominated limit Pe→ ∞.

Punchline: The analysis of optimal heat transport is analogous to
pattern formation in micromagnetics, elasticity theory, etc.
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Step 1: Obtain a general variational principle
for heat transport
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A non-local Dirichlet principle for heat transport

T = 0, u = 0

u ·∇T = ∆T

div u = 0

T = 1, u = 0

u = îu+ ĵv + k̂w

Nu = 〈J · k̂〉

Lemma
There exist dual variational principles for heat transport by a steady
divergence-free flow.

Nu(u)−1 = min
η:η |∂Ω=0

 
|∇η |2 + |∇∆−1(−w +u ·∇η)|2

= max
ξ :ξ |∂Ω=0

 
2wξ −|∇∆−1u ·∇ξ |2−|∇ξ |2
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Step 2: Recognize optimal heat transport
as “energy-driven pattern formation”

. . . what plays the role of “free energy”?
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A useful change of variables
Consider the general class of steady wall-to-wall problems,

max
u(x)
||u||=Pe
b.c.s

Nu(u)

where, e.g.,

||u||2 =

 
Ω
|u|2 in the energy-constrained case

||u||2 =

 
Ω
|∇u|2 in the enstrophy-constrained case

Now we know the variational principle

max
u(x)
||u||=Pe
b.c.s

Nu(u) = 1+ max
u(x),ξ (x)
||u||=Pe
b.c.s

{ 
2wξ −|∇∆−1divuξ |2−|∇ξ |2

}
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A useful change of variables
Application: The enstrophy-constrained wall-to-wall problem

max
u(x)ffl

Ω |∇u|2=Pe2

u|∂Ω=0

Nu(u)

is equivalent to solving

min
u(x),ξ (x)ffl

Ω wξ =1
u|∂Ω=0,ξ |∂Ω=0

 
Ω
|∇∆−1divuξ |2 +

1
Pe2

 
Ω
|∇u|2 ·

 
Ω
|∇ξ |2

Figure 4.2: Optimal no-slip solutions for different enstrophy budgets in the full domain.
The black contour lines are the streamlines and the colors represent the temperature field.
From left to right, top to bottom the Péclet numbers are 4.0⇥10�1, 4.0⇥102, 1.8⇥103, 5.0⇥
103, 8.0⇥103, 1.3⇥104. The best known optimizers consist of a multiplicity of convection
cells for a fixed domain size as the enstrophy budget increases.
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︸ ︷︷ ︸
Nu∼Pe1/2 Nu∼Pe0.54 Nu∼Pe2/3
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Step 3: The heat transport of
branched flow designs
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The branching construction

Recall: Our main result states that

max
u(x,t)ffl

Ω |∇u|2=Pe2

u|∂Ω=0

Nu(u)∼ Pe2/3 up to logs

Figure 4.2: Optimal no-slip solutions for different enstrophy budgets in the full domain.
The black contour lines are the streamlines and the colors represent the temperature field.
From left to right, top to bottom the Péclet numbers are 4.0⇥10�1, 4.0⇥102, 1.8⇥103, 5.0⇥
103, 8.0⇥103, 1.3⇥104. The best known optimizers consist of a multiplicity of convection
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We just showed: It is equivalent to prove

min
u(x),ξ (x)ffl

Ω wξ =1
u|∂Ω=0,ξ |∂Ω=0

 
Ω
|∇∆−1divuξ |2 +

1
Pe2

 
Ω
|∇u|2 ·

 
Ω
|∇ξ |2 ∼ 1

Pe2/3
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The branching construction

u = ∇
⊥

ψ

ξ = w

lk . δk

lbl ∼ δbl

Claim: Constructions such as above can be made to satisfy

the “net flux” constraint
 

Ω
wξ = 1

and to achieve
 

Ω
|∇∆−1divuξ |2 +

1
Pe2

 
Ω
|∇u|2 ·

 
Ω
|∇ξ |2 . log4/3Pe

Pe2/3
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The branching construction

u = ∇
⊥

ψ

ξ = w

`(z)

 
Ω
|∇∆−1divuξ |2 +

1
Pe2

 
Ω
|∇u|2 ·

 
Ω
|∇ξ |2

. lbl +

ˆ zbl

zbulk

(`′)2 dz +
1

Pe2

(
1

l2bulk
+

ˆ zbl

zbulk

1
`2

dz +
1
lbl

)2

where ` = `(z) = horizontal lengthscale
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The branching construction

u = ∇
⊥

ψ

ξ = w

`(z)

min
`(z)

`(zbulk )=lbulk
`(zbl )=lbl

{
lbl +

ˆ zbl

zbulk

(`′)2 dz +
1

Pe2

(
1

l2bulk
+

ˆ zbl

zbulk

1
`2

dz +
1
lbl

)2
}
∼ log4/3Pe

Pe2/3

`(z)∼ log1/6Pe
Pe1/3

(1− z)1/2

lbulk ∼
log1/6Pe
Pe1/3

lbl ∼
log1/3Pe
Pe2/3
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Concluding remarks

I For enstrophy-constrained transport
max Nu ∼ Pe2/3 up to logs

I Extensive 2D numerics finds
Nu ∼ Pe0.54 ≈ Pe6/11

I Proof combines
1. The old a priori upper bound

max Nu . Pe2/3

2. A new functional analytic framework for
optimal heat transport

3. A new branching construction achieving
Nu & Pe2/3−

I We were inspired by the analysis of
branching in materials science, e.g.,
micromagnetics

3805DomainObservationandInterpretation

branchingmodeinthebulkagreeswiththatofhigh-anisotropymaterials.The
surfacedomainwidthissmallerbecauseofthesmallerwallenergyaccordingto
(3.227).Butthefinesurfacepatternalsodisplaysamorejaggedappearance,
thatisevenmoreclearlyvisibleinitsdetailsindomainobservationwith
higherresolutionasshowninFig.2.7.Thiscontrastswiththeroundedshape
ofthebranchingprotrusionsinhigh-anisotropysamplessuchasinFig.5.5.

Thereasonforthisdifferencewasnotunderstoodbeforehigh-resolution
imagingwithelectronpolarizationmethods[890]concentratedonthein-
planecomponentsofthesurfacemagnetizationratherthanontheconven-
tionalpolarcomponents(Fig.2.39b).Similarresultswerethenalsoobtained
bymagneto-opticalmeans[180].Thebasicreasonforthedifferentpatternof
cobaltappearstobethepresenceofclosuredomainsintheuppermostlevel
ofbranching(seeFig.3.121b).Obviouslytheseclosuredomainsaremodulated
inadensestripedomainpattern,inanalogytothestresspatternsinmetal-
licglasses,shownandinterpretedinFig.3.142.Accordingtothesefindings,
cobaltwithitsintermediateanisotropyformsakindofhybrid,followingthe
high-anisotropytwo-phasebranchingschemeinthebulk,andalow-anisotropy
multiaxialbranchingschemeatthesurface.

Onthesideplaneofauniaxialcrystalthebranchingmechanismcan
beimmediatelyobserved(Fig.5.6).Althoughsuchpicturesseemtobeintu-
itivelyconvincing,oneshouldnotconsiderthemasundisturbedcross-sections
throughabranchingpattern.Thepresenceofthefreesidesurfacechangesthe
energeticsoftheinternalstrayfield,whichwillcausesomerelaxationofthe

Fig.5.6.Domainsonthesideplaneofacobaltcrystal(a)andofaslightlymisori-
entedNdFeBcrystal(b)demonstratingtheprocessofdomainbranchingtowards
thesampleedge.ANdFeBtwincrystaldisplaysthebranchingprocess(c),wherethe
twinboundaryactslikeamirrorforthedomainpattern(asinFig.2.7).Themisori-
entationsofthetwinsare13◦and52◦,respectively.(Sample:courtesyA.Handstein,
IFWDresden)

1

1A. Hubert & R. R. Schäfer, Magnetic Domains 1998
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Other examples of branching flows in fluid dynamics?

An old scientific question...

Does nature achieve optimal transport?230 F .  H .  Busse 

The fact that the minimizing vector field is y-independent corresponds to the 
observation (Townsend 1956) that the turbulent momentum transport is 
carried predominantly by wall-attached eddies with a streamwise axis. The 

I 

FIGURE 3. Qualitative sketch of the boundary-layer region of the vector field yielding 
maximum transport of momentum. 

structure of the minimizing vector field has been sketched in figure 3. The thick- 
nesses of subsequent boundary layers differ always by a factor of about 4, 
which becomes the exact factor in the asymptotic case of p tending to infinity. 
Tn this case, the minimum among the functions B@)(p) is determined by 

4N = (h,& ((r/p)g h,/4+/3. (33) F. H. Busse, Bounds for
turbulent shear flow, JFM ’70

8 S. Motoki, G. Kawahara and M. Shimizu

(a)
 0  1.0

(b)

(c) (d)

Figure 4. Optimal states at Péclet number (a) Pe = 508, (b) Pe = 1006, (c) Pe = 5041 and
(d) Pe = 10009. The orange objects show the isosurfaces of T = 0.75. The white tube-like
structures are the isosurfaces of (a) Q = 8.0 × 104, (b) Q = 4.8 × 104, (c) Q = 1.6 × 107 and (d)
Q = 1.6 × 108 (note that only those in the lower half of the domain are shown for visualisation
of the near-wall structures). The contours represent temperature field in the planes x = π/2 and
y = 0.
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Figure 5. Energy spectra of the wall-normal velocity w, kxEw, as a function of the distance to
the wall, z and the wavelength in the x-direction, λx. The dashed diagonal indicates λx = Lxz.

S. Motoki, G. Kawahara, &
M. Shimizu, Maximal heat
transfer between two parallel
plates, arxiv 1801.04588
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Thanks for listening
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A non-local Dirichlet principle for heat transport
Lemma
For divergence-free u(x),

Nu(u)−1 = min
η:η |∂Ω=0

 
|∇η |2 + |∇∆−1(−w +u ·∇η)|2

= max
ξ :ξ |∂Ω=0

 
2wξ −|∇∆−1u ·∇ξ |2−|∇ξ |2

Proof: Let T = 1− z + θ and consider

±u ·∇θ± = ∆θ±+w

In the new variables

ξ =
1
2

(θ+ + θ−) and η =
1
2

(θ+−θ−)

these become

u ·∇η = ∆ξ +w

u ·∇ξ = ∆η
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A non-local Dirichlet principle for heat transport

Equivalently,

u ·∇∆−1u ·∇η = ∆η +u ·∇∆−1w

u ·∇∆−1u ·∇ξ = ∆ξ +w

and these are symmetric!

They express optimality for the dual variational principles

min
η:η |∂Ω=0

 
|∇η |2 + |∇∆−1(−w +u ·∇η)|2

max
ξ :ξ |∂Ω=0

 
2wξ −|∇∆−1u ·∇ξ |2−|∇ξ |2

After i.b.p., one finds that the optimal values = Nu(u)−1.
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Turbulent heat transport
Rayleigh-Bénard Convection
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Rayleigh-Bénard Convection

T = 0

∂tT +u ·∇T = ∆T

1
Pr

(∂tu+u ·∇u) =−∇p+ ∆u+ k̂RaT

div u = 0

T = 1

u = îu+ ĵv + k̂w

Nu = 1+ 〈Tw〉

Question: What is the dependence of

Nu = Nu(Pr ,Ra)

in the turbulent regime, Ra� 1?
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Scaling laws vs. bounds
T = 0

∂tT +u ·∇T = ∆T

1
Pr

(∂tu+u ·∇u) =−∇p+ ∆u+ k̂RaT

div u = 0

T = 1

u = îu+ ĵv + k̂w

Nu = 1+ 〈Tw〉

Scaling law predictions:

Malkus, ’54 Nu ∼ Ra1/3

Kraichnan ’62, Spiegel ’71 Nu ∼ Pr1/2Ra1/2 “ultimate scaling”

Rigorous bounds:

Howard, ’63 Nu . Ra1/2 with stat. hypotheses

Doering & Constantin, ’96 Nu . Ra1/2 fully rigorous, 3D

Whitehead & Doering, ’11 Nu . Ra5/12 2D + stress-free b.c.
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A new bounding method

T = 0

∂tT +u ·∇T = ∆T

1
Pr

(∂tu+u ·∇u) =−∇p+ ∆u+ k̂RaT

div u = 0

T = 1

u = îu+ ĵv + k̂w

Nu = 1+ 〈Tw〉

Wall-to-wall transport gives new bounds on RBC:1

The momentum eqn. implies
〈
|∇u|2

〉
= Ra · 〈Tw〉= Ra · (Nu−1)

1P. Hassanzadeh, G. Chini, C. Doering JFM 2014
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A new bounding method
T = 0

∂tT +u ·∇T = ∆T

div u = 0

T = 1

F (Pe) = max
u(x,t)

〈|∇u|2〉1/2=Pe
u|∂Ω=0

Nu(u)

Choosing Pe by
Pe2 = Ra · (Nu−1),

one concludes for RBC

Nu ≤ F (Ra · (Nu−1))

E.g.,

Nu .
Pe2/3

logα Pe
for wall-to-wall =⇒ Nu .

Ra1/2

log3α/2Ra
for RBC
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A new bounding method

T = 0

∂tT +u ·∇T = ∆T

div u = 0

T = 1

F (Pe) = max
u(x,t)

〈|∇u|2〉1/2=Pe
u|∂Ω=0

Nu(u)

Our result

F (Pe) &
Pe2/3

log4/3Pe

limits improvements to

Nu . Ra1/2

by this method to logarithmic corrections
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Regarding 2D RBC

T = 0

∂tT +u ·∇T = ∆T

1
Pr

(∂tu+u ·∇u) =−∇p+ ∆u+ k̂RaT

div u = 0

T = 1

u = îu+ ĵv + k̂w

Nu = 1+ 〈Tw〉

The Whitehead-Doering bound states

Nu . Ra5/12� Ra1/2 in 2D w/ stress-free b.c.

Our result is that

max Nu ∼ Ra1/2 up to logs

Thus: 2D RBC achieves strongly sub-optimal heat transport
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