The Optimal Design of Wall-Bounded Heat Transport

Ian Tobasco (Michigan)
Joint work with Charlie Doering (Michigan)

Banff COV Workshop

Funding from NSF gratefully acknowledged
May 21, 2018
I.T. \& C. Doering, Optimal wall-to-wall transport by incompressible flows, PRL '17 I.T. \& C. Doering, On the optimal design of wall-to-wall heat transport, submitted Andre Souza, I.T., \& C. Doering, Optimal 2D wall-to-wall transport - numerics, in prep

Heat transport in a fluid with velocity $\mathbf{u}(\mathbf{x}, t)$ occurs by two mechanisms:

advection at rate $\|\mathbf{u}\| / L$ diffusion at rate κ / L^{2}

Together, they determine $T(\mathbf{x}, t)=$ temperature through

$$
\partial_{t} T+\operatorname{div}(\mathbf{u} T-\kappa \nabla T)=0
$$

We recognize the heat flux

$$
\mathbf{J}=\mathbf{u} T-\kappa \nabla T
$$

Heat transport in a fluid with velocity $\mathbf{u}(\mathbf{x}, t)$ occurs by two mechanisms:

advection

diffusion

Together, they determine $T(\mathrm{x}, t)=$ temperature through

$$
\partial_{t} T+\operatorname{div}(\mathbf{u} T-\kappa \nabla T)=0
$$

The Péclet number

$$
P e=\frac{\text { rate of advection }}{\text { rate of diffusion }}=\frac{\|\mathbf{u}\| / L}{\kappa / L^{2}} \gg 1
$$

Heat transport in a fluid layer

$$
T=0, \quad \mathbf{u}=\mathbf{0}
$$

$$
\partial_{t} T+\mathbf{u} \cdot \nabla T=\Delta T
$$

$$
\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}=-\nabla p+\Delta \mathbf{u}+\mathbf{f}
$$

$$
\operatorname{div} \mathbf{u}=0
$$

$$
\begin{gathered}
\mathbf{u}=\hat{\mathbf{i}} u+\hat{\mathbf{j}} v+\hat{\mathbf{k}} w \\
\mathbf{J}=\mathbf{u} T-\nabla T
\end{gathered}
$$

$$
T=1, \quad \mathbf{u}=\mathbf{0}
$$

Question: Which forces f produce the largest transport of heat,

Notation for averaging:

Heat transport in a fluid layer

$$
T=0, \quad \mathbf{u}=\mathbf{0}
$$

$$
\begin{array}{rlrl}
\partial_{t} T+\mathbf{u} \cdot \nabla T & =\Delta T & \mathbf{u} & =\hat{\mathbf{i}} u+\hat{\mathbf{j}} v+\hat{\mathbf{k}} w \\
\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u} & =-\nabla p+\Delta \mathbf{u}+\mathbf{f} & \mathbf{J} & =\mathbf{u} T-\nabla T
\end{array}
$$

$$
T=1, \quad \mathbf{u}=\mathbf{0}
$$

Question: Which forces \mathbf{f} produce the largest transport of heat,

$$
\max _{\mathbf{f}}\langle\mathbf{J} \cdot \hat{\mathbf{k}}\rangle ?
$$

Notation for averaging:

$$
\langle\cdot\rangle=\limsup _{\tau \rightarrow \infty} \frac{1}{\tau \mid \text { fluid layer } \mid} \int_{0}^{\tau} \int_{\text {fluid layer }} \cdot d x d t
$$

$$
T=0, \quad \mathbf{u}=\mathbf{0}
$$

$$
\begin{array}{rlrl}
\partial_{t} T+\mathbf{u} \cdot \nabla T & =\Delta T & \mathbf{u}=\hat{\mathbf{i}} u+\hat{\mathbf{j}} v+\hat{\mathbf{k}} w \\
\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u} & =-\nabla p+\Delta \mathbf{u}+\mathbf{f} & \mathbf{J}=\mathbf{u} T-\nabla T
\end{array}
$$

$$
T=1, \quad \mathbf{u}=\mathbf{0}
$$

The Nusselt number is defined as enhancement of heat transport

$$
N u(\mathbf{u})=\frac{\text { total vertical heat flux }}{\text { conductive vertical heat flux }}=\frac{\langle\mathbf{J} \cdot \hat{\mathbf{k}}\rangle}{\langle-\nabla T \cdot \hat{\mathbf{k}}\rangle} \geq 1
$$

We seek to maximize it...

$$
T=0, \quad \mathbf{u}=\mathbf{0}
$$

$$
\begin{array}{rlrl}
\partial_{t} T+\mathbf{u} \cdot \nabla T & =\Delta T & \mathbf{u} & =\hat{\mathbf{i}} u+\hat{\mathbf{j}} v+\hat{\mathbf{k}} w \\
\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u} & =-\nabla p+\Delta \mathbf{u}+\mathbf{f} & \mathbf{J} & =\mathbf{u} T-\nabla T
\end{array}
$$

$$
T=1, \quad \mathbf{u}=\mathbf{0}
$$

The Nusselt number is defined as enhancement of heat transport

$$
N u(\mathbf{u})=\frac{\text { total vertical heat flux }}{\text { conductive vertical heat flux }}=\frac{\langle\mathbf{J} \cdot \hat{\mathbf{k}}\rangle}{\langle-\nabla T \cdot \hat{\mathbf{k}}\rangle} \geq 1
$$

We seek to maximize it... the answer is $+\infty \mathrm{w} / \mathrm{o}$ constraints

Enstrophy budget

$$
T=0, \quad \mathbf{u}=\mathbf{0}
$$

$$
\begin{aligned}
\partial_{t} T+\mathbf{u} \cdot \nabla T & =\Delta T \\
\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u} & =-\nabla p+\Delta \mathbf{u}+\mathbf{f} \\
\operatorname{div} \mathbf{u} & =0
\end{aligned} \quad \mathbf{u}=\hat{\mathbf{i}} u+\hat{\mathbf{j}} v+\hat{\mathbf{k}} w
$$

$$
T=1, \quad \mathbf{u}=\mathbf{0}
$$

A natural constraint is on the power expended to sustain fluid flow
From the momentum eqn.,

$$
\left.\langle\mathbf{f} \cdot \mathbf{u}\rangle=\left.\langle | \nabla \mathbf{u}\right|^{2}\right\rangle
$$

average power expended = average "enstrophy"

The wall-to-wall optimal transport problem

$$
T=0, \quad \mathbf{u}=\mathbf{0}
$$

$$
\begin{aligned}
\partial_{t} T+\mathbf{u} \cdot \nabla T & =\Delta T \\
\operatorname{div} \mathbf{u} & =0
\end{aligned}
$$

$$
\begin{gathered}
\mathbf{u}=\hat{\mathbf{i}} u+\hat{\mathbf{j}} v+\hat{\mathbf{k}} w \\
N u=\langle\mathbf{J} \cdot \hat{\mathbf{k}}\rangle
\end{gathered}
$$

$$
T=1, \quad \mathbf{u}=\mathbf{0}
$$

Problem: Maximize the wall-to-wall heat transport $N u$ amongst all incompressible flows sat. a given enstrophy budget,

$$
\max _{\mathbf{u}(\mathbf{x}, t)}^{\max } \quad N u(\mathbf{u})
$$

What do optimizers look like?

$$
\begin{aligned}
T=0, \quad \mathbf{u} & =\mathbf{0} \\
\partial_{t} T+\mathbf{u} \cdot \nabla T & =\Delta T \\
\operatorname{div} \mathbf{u} & =0
\end{aligned}
$$

$$
T=1, \quad \mathbf{u}=\mathbf{0}
$$

$$
\max _{\substack{\left.\left.\mathbf{u}(\mathbf{x}, t) \\\langle | \nabla \mathbf{u}\right|^{2}\right\rangle^{1 / 2}=P e \\ \text { b.c.s }}} N u(\mathbf{u})
$$

1

What do optimizers look like?

K.E. budget

$$
\left.\left.\langle | \mathbf{u}\right|^{2}\right\rangle^{1 / 2}=P e
$$

stress-free b.c. $\partial_{z} u=w=0$

1
$\max N u \sim P e$ $I_{\text {bulk }} \sim P e^{-1 / 2}$
enstrophy budget $\left.\left.\langle | \nabla \mathbf{u}\right|^{2}\right\rangle^{1 / 2}=P e$ stress-free b.c.

$$
\partial_{z} u=w=0
$$

$N u \sim P e^{0.58}$
$I_{\text {bulk }} \sim P e^{-0.36}$
enstrophy budget
$\left.\left.\langle | \nabla \mathbf{u}\right|^{2}\right\rangle^{1 / 2}=P e$
no-slip b.c.
$u=w=0$

$N u \sim P e^{0.54}$
$I_{\text {bulk }} \sim P e^{-0.37}$
$1_{\text {P. Hassanzadeh, G. P. Chini, \& C. R. Doering, JFM } 2014}$
${ }^{2}$ A. Souza, PhD thesis 2016

What must optimizers obey?

$$
T=0, \quad \mathbf{u}=\mathbf{0}
$$

$$
\begin{aligned}
\partial_{t} T+\mathbf{u} \cdot \nabla T & =\Delta T \\
\operatorname{div} \mathbf{u} & =0
\end{aligned}
$$

$$
\begin{gathered}
\mathbf{u}=\hat{\mathbf{i}} u+\hat{\mathbf{j}} v+\hat{\mathbf{k}} w \\
N u=\langle\mathbf{J} \cdot \hat{\mathbf{k}}\rangle
\end{gathered}
$$

$$
T=1, \quad \mathbf{u}=\mathbf{0}
$$

Theorem (Souza \& Doering, '16)

$$
\max _{\substack{\left.\left.\mathbf{u}(\mathbf{x}, t) \\\langle | \nabla \mathbf{u}\right|^{2}\right\rangle^{1 / 2}=P e \\ \text { b.c.s }}} N u(\mathbf{u}) \leq C P e^{2 / 3}
$$

\exists multiple proofs:

- a modification of the "background method" (C. Doering \& P. Constantin, Phys Rev E '96)
- an elementary "conservation law" argument (C. Seis, JFM '15)

So what's the optimal rate?

$$
\begin{aligned}
& T=0, \quad \mathbf{u}=\mathbf{0} \\
& \begin{array}{c}
\partial_{t} T+\mathbf{u} \cdot \nabla T
\end{array}=\Delta T \\
& \operatorname{div} \mathbf{u}=0 \max _{\substack{\left.\left.\mathbf{u}(\mathbf{x}, t) \\
\langle | \nabla \mathbf{u}\right|^{2}\right\rangle / 2 \\
\text { b.c.s }}} N u(\mathbf{u})
\end{aligned}
$$

... ??
$N u \sim P e^{1 / 2}$

$$
P e=4 \times 10^{2}
$$

5×10^{3}
1.3×10^{4}
$N u \sim P e^{0.54}$
4×10^{4}

Main result

Theorem (T. \& Doering, '17)

Up to logarithmic corrections, the optimal rate of heat transport satisfies

$$
\max _{\substack{\left.\left.\mathbf{u}(\mathbf{x}, t) \\\langle | \nabla \mathbf{u}\right|^{2}\right\rangle^{1 / 2}=P e \\ \mathbf{u} \mid \partial \Omega=\mathbf{0}}} N u(\mathbf{u}) \sim P e^{2 / 3} \quad \text { as } P e \rightarrow \infty .
$$

More precisely, there exist constants C, C^{\prime} depending only on the domain such that

$$
C \frac{P e^{2 / 3}}{\log ^{4 / 3} P e} \leq \max _{\substack{\mathbf{u}(\mathbf{x}, t) \\\left\langle\mid \nabla \mathbf{u}^{2}\right\rangle^{\rangle^{\prime} / 2}=P e \\ \mathbf{u} \partial_{\Omega}=\mathbf{0}}} N u(\mathbf{u}) \leq C^{\prime} P e^{2 / 3}
$$

for $P e \gg 1$.

What do our flows look like?

Streamlines refine self-similarly from bulk to boundary layer In the k th stage of refinement,

$$
\psi(x, z)=f\left(\frac{z-z_{k}}{\delta_{k}}\right) \cdot l_{k} \Psi\left(\frac{x}{I_{k}}\right)+g\left(\frac{z-z_{k}}{\delta_{k}}\right) \cdot l_{k+1} \Psi\left(\frac{x}{I_{k+1}}\right)
$$

What do our flows look like?

$$
\mathbf{u}=\nabla^{\perp} \psi
$$

$$
\ell(z)
$$

Horizontal lengthscales satisfy

$$
I_{b} \sim \frac{\log ^{1 / 3} P e}{P e^{2 / 3}} \quad I_{b u l k} \sim \frac{\log ^{1 / 6} P e}{P e^{1 / 3}}
$$

and

$$
\ell(z) \sim \frac{\log ^{1 / 6} P e}{P e^{1 / 3}}(1-z)^{1 / 2}
$$

Brief sketch of the proof

Main challenges

As $\mathrm{Pe} \rightarrow \infty$, our designs feature

- increasingly fine lengthscales
- an increasing number of distinct
 lengthscales

Simplify by taking $\mathbf{u}(\mathbf{x})$ indpt. of time (and why should time-dependence help?)

Main goals: Motivate our "branched" flow designs, and estimate their heat transport $N u$ in the advection-dominated limit $P e \rightarrow \infty$.

Punchline: The analysis of optimal heat transport is analogous to pattern formation in micromagnetics, elasticity theory, etc.

Main challenges

As $\mathrm{Pe} \rightarrow \infty$, our designs feature

- increasingly fine lengthscales
- an increasing number of distinct
 lengthscales

Simplify by taking $\mathbf{u}(\mathbf{x})$ indpt. of time (and why should time-dependence help?)

Main goals: Motivate our "branched" flow designs, and estimate their heat transport $N u$ in the advection-dominated limit $P e \rightarrow \infty$.

Punchline: The analysis of optimal heat transport is analogous to pattern formation in micromagnetics, elasticity theory, etc.

Step 1: Obtain a general variational principle for heat transport

A non-local Dirichlet principle for heat transport

$$
T=0, \quad \mathbf{u}=\mathbf{0}
$$

$$
\begin{aligned}
\mathbf{u} \cdot \nabla T & =\Delta T \\
\operatorname{div} \mathbf{u} & =0
\end{aligned}
$$

$$
\begin{gathered}
\mathbf{u}=\hat{\mathbf{i}} u+\hat{\mathbf{j}} v+\hat{\mathbf{k}} w \\
N u=\langle\mathbf{J} \cdot \hat{\mathbf{k}}\rangle
\end{gathered}
$$

$$
T=1, \quad \mathbf{u}=\mathbf{0}
$$

Lemma
There exist dual variational principles for heat transport by a steady divergence-free flow.

A non-local Dirichlet principle for heat transport

$$
T=0, \quad \mathbf{u}=\mathbf{0}
$$

$$
\begin{aligned}
\mathbf{u} \cdot \nabla T & =\Delta T \\
\operatorname{div} \mathbf{u} & =0
\end{aligned}
$$

$$
\begin{gathered}
\mathbf{u}=\hat{\mathbf{i}} u+\hat{\mathbf{j}} v+\hat{\mathbf{k}} w \\
N u=\langle\mathbf{J} \cdot \hat{\mathbf{k}}\rangle
\end{gathered}
$$

$$
T=1, \quad \mathbf{u}=\mathbf{0}
$$

Lemma
There exist dual variational principles for heat transport by a steady divergence-free flow.

$$
\begin{aligned}
N u(\mathbf{u})-1 & =\min _{\eta:\left.\eta\right|_{\partial \Omega}=0} f|\nabla \eta|^{2}+\left|\nabla \Delta^{-1}(-w+\mathbf{u} \cdot \nabla \eta)\right|^{2} \\
& =\max _{\xi:\left.\xi\right|_{\partial \Omega=0}} f 2 w \xi-\left|\nabla \Delta^{-1} \mathbf{u} \cdot \nabla \xi\right|^{2}-|\nabla \xi|^{2}
\end{aligned}
$$

Step 2: Recognize optimal heat transport as "energy-driven pattern formation"

... what plays the role of "free energy"?

A useful change of variables

Consider the general class of steady wall-to-wall problems,

$$
\max _{\substack{\mathbf{u}(\mathbf{x}) \\\|\mathbf{u}\|=P e \\ \text { b.c.s }}} N u(\mathbf{u})
$$

where, e.g.,

$$
\begin{aligned}
& \|\mathbf{u}\|^{2}=f_{\Omega}|\mathbf{u}|^{2} \quad \text { in the energy-constrained case } \\
& \|\mathbf{u}\|^{2}=f_{\Omega}|\nabla \mathbf{u}|^{2} \quad \text { in the enstrophy-constrained case }
\end{aligned}
$$

Now we know the variational principle

A useful change of variables

Consider the general class of steady wall-to-wall problems,

$$
\max _{\substack{\mathbf{u}(\mathbf{x}) \\\|\mathbf{u}\|=P e \\ \text { b.c.s }}} N u(\mathbf{u})
$$

where, e.g.,

$$
\begin{aligned}
& \|\mathbf{u}\|^{2}=f_{\Omega}|\mathbf{u}|^{2} \quad \text { in the energy-constrained case } \\
& \|\mathbf{u}\|^{2}=f_{\Omega}|\nabla \mathbf{u}|^{2} \quad \text { in the enstrophy-constrained case }
\end{aligned}
$$

Now we know the variational principle

$$
\max _{\substack{\mathbf{u}(\mathbf{x}) \\\|\mathbf{u}\|=P e \\ \text { b.c.s }}} N u(\mathbf{u})=1+\max _{\substack{\mathbf{u}(\mathbf{x}), \xi(\mathbf{x}) \\\|\mathbf{u}\|=P e \\ \text { b.c.s }}}\left\{f 2 w \xi-\left|\nabla \Delta^{-1} \operatorname{div} \mathbf{u} \xi\right|^{2}-|\nabla \xi|^{2}\right\}
$$

A useful change of variables
Application: The enstrophy-constrained wall-to-wall problem

$$
\begin{aligned}
& \max _{\mathbf{u}(\mathbf{x})} N u(\mathbf{u}) \\
& f_{\Omega}|\nabla \mathbf{u}|^{2}=P e^{2} \\
& \left.\mathbf{u}\right|_{\partial \Omega}=\mathbf{0}
\end{aligned}
$$

is equivalent to solving

$$
\min _{\substack{\mathbf{u}(\mathbf{x}), \xi(\mathbf{x}) \\ f_{\Omega} w \xi=1 \\ \mathbf{u}|\partial \Omega=0, \xi| \partial \Omega=0}} f_{\Omega}\left|\nabla \Delta^{-1} \operatorname{div} \mathbf{u} \xi\right|^{2}+\frac{1}{P e^{2}} f_{\Omega}|\nabla \mathbf{u}|^{2} \cdot f_{\Omega}|\nabla \xi|^{2}
$$

$N u \sim P e^{1 / 2}$
$N u \sim P e^{0.54}$
$N u \approx P e^{2 / 3}$

Step 3: The heat transport of branched flow designs

The branching construction

Recall: Our main result states that

$$
\begin{aligned}
& \max _{\substack{\mathbf{u}(\mathbf{x}, t) \\
f_{\Omega}|\nabla \mathbf{u}|^{2}=\left.P e^{2} \\
\mathbf{u}\right|_{\partial \Omega}=\mathbf{0}}} N u(\mathbf{u}) \sim P e^{2 / 3} \quad \text { up to logs }
\end{aligned}
$$

We just showed: It is equivalent to prove

$$
\min _{\substack{\mathbf{u}(\mathbf{x}), \xi(\mathbf{x}) \\ f_{\Omega} w \xi=\left.1 \\ \mathbf{u}\right|_{\partial \Omega}=\mathbf{0},\left.\xi\right|_{\partial \Omega}=0}} f_{\Omega}\left|\nabla \Delta^{-1} \operatorname{div} \mathbf{u} \xi\right|^{2}+\frac{1}{P e^{2}} f_{\Omega}|\nabla \mathbf{u}|^{2} \cdot f_{\Omega}|\nabla \xi|^{2} \sim \frac{1}{P e^{2 / 3}}
$$

The branching construction

$$
\begin{aligned}
& \mathbf{u}=\nabla^{\perp} \psi \\
& \xi=w \\
& I_{k} \lesssim \delta_{k} \\
& I_{b} \sim \delta_{b l}
\end{aligned}
$$

Claim: Constructions such as above can be made to satisfy

$$
\text { the "net flux" constraint } f_{\Omega} w \xi=1
$$

and to achieve

$$
f_{\Omega}\left|\nabla \Delta^{-1} \operatorname{div} \mathbf{u} \xi\right|^{2}+\frac{1}{P e^{2}} f_{\Omega}|\nabla \mathbf{u}|^{2} \cdot f_{\Omega}|\nabla \xi|^{2} \lesssim \frac{\log ^{4 / 3} P e}{P e^{2 / 3}}
$$

The branching construction

$$
\begin{gathered}
\mathbf{u}=\nabla^{\perp} \psi \\
\xi=w \\
\ell(z)
\end{gathered}
$$

$$
\begin{aligned}
& f_{\Omega}\left|\nabla \Delta^{-1} \operatorname{div} \mathbf{u} \xi\right|^{2}+\frac{1}{P e^{2}} f_{\Omega}|\nabla \mathbf{u}|^{2} \cdot f_{\Omega}|\nabla \xi|^{2} \\
& \quad \lesssim I_{b l}+\int_{z_{b u l k}}^{z_{b l}}\left(\ell^{\prime}\right)^{2} d z+\frac{1}{P e^{2}}\left(\frac{1}{I_{b u l k}^{2}}+\int_{z_{b u l k}}^{z_{b l}} \frac{1}{\ell^{2}} d z+\frac{1}{I_{b l}}\right)^{2}
\end{aligned}
$$

where $\ell=\ell(z)=$ horizontal lengthscale

The branching construction

$$
\begin{gathered}
\mathbf{u}=\nabla^{\perp} \psi \\
\xi=w \\
\ell(z)
\end{gathered}
$$

$$
\min _{\substack{\left.\ell(z) \\ z_{\text {bulk }}\right)=l_{\text {bulk }} \\\left(z_{b l}\right)=l_{b l}}}\left\{I_{b l}+\int_{z_{b u l k}}^{z_{b l}}\left(\ell^{\prime}\right)^{2} d z+\frac{1}{P e^{2}}\left(\frac{1}{I_{b u l k}^{2}}+\int_{z_{b u l k}}^{z_{b l}} \frac{1}{\ell^{2}} d z+\frac{1}{I_{b l}}\right)^{2}\right\} \sim \frac{\log ^{4 / 3} P e}{P e^{2 / 3}}
$$

$$
\ell(z) \sim \frac{\log ^{1 / 6} P e}{P e^{1 / 3}}(1-z)^{1 / 2}
$$

$$
I_{\text {bulk }} \sim \frac{\log ^{1 / 6} P e}{P e^{1 / 3}} \quad I_{b} \sim \frac{\log ^{1 / 3} P e}{P e^{2 / 3}}
$$

Concluding remarks

- For enstrophy-constrained transport $\max N u \sim P e^{2 / 3}$ up to logs
- Extensive 2D numerics finds
$N u \sim P e^{0.54} \approx P e^{6 / 11}$
- Proof combines

1. The old a priori upper bound $\max N u \lesssim P e^{2 / 3}$
2. A new functional analytic framework for optimal heat transport
3. A new branching construction achieving $N u \gtrsim P e^{2 / 3-}$

- We were inspired by the analysis of branching in materials science, e.g.,
 micromagnetics

[^0]
Other examples of branching flows in fluid dynamics?

An old scientific question...
Does nature achieve optimal transport?

F. H. Busse, Bounds for turbulent shear flow, JFM '70

S. Motoki, G. Kawahara, \& M. Shimizu, Maximal heat transfer between two parallel plates, arxiv 1801.04588

Thanks for listening

A non-local Dirichlet principle for heat transport
Lemma
For divergence-free $\mathbf{u}(\mathbf{x})$,

$$
\begin{aligned}
N u(\mathbf{u})-1 & =\min _{\eta:\left.\eta\right|_{\partial \Omega}=0} f|\nabla \eta|^{2}+\left|\nabla \Delta^{-1}(-w+\mathbf{u} \cdot \nabla \eta)\right|^{2} \\
& =\max _{\xi:\left.\xi\right|_{\partial \Omega=0}} f 2 w \xi-\left|\nabla \Delta^{-1} \mathbf{u} \cdot \nabla \xi\right|^{2}-|\nabla \xi|^{2}
\end{aligned}
$$

Proof: Let $T=1-z+\theta$ and consider

$$
\pm \mathbf{u} \cdot \nabla \theta_{+}=\Delta \theta_{+}+w
$$

In the new variables

these become

A non-local Dirichlet principle for heat transport

Lemma
For divergence-free $\mathbf{u}(\mathbf{x})$,

$$
\begin{aligned}
N u(\mathbf{u})-1 & =\min _{\eta:\left.\eta\right|_{\partial \Omega}=0} f|\nabla \eta|^{2}+\left|\nabla \Delta^{-1}(-w+\mathbf{u} \cdot \nabla \eta)\right|^{2} \\
& =\max _{\xi:\left.\xi\right|_{\partial \Omega=0}} f 2 w \xi-\left|\nabla \Delta^{-1} \mathbf{u} \cdot \nabla \xi\right|^{2}-|\nabla \xi|^{2}
\end{aligned}
$$

Proof: Let $T=1-z+\theta$ and consider

$$
\pm \mathbf{u} \cdot \nabla \theta_{ \pm}=\Delta \theta_{ \pm}+w
$$

In the new variables

$$
\xi=\frac{1}{2}\left(\theta_{+}+\theta_{-}\right) \quad \text { and } \quad \eta=\frac{1}{2}\left(\theta_{+}-\theta_{-}\right)
$$

these become

$$
\begin{aligned}
& \mathbf{u} \cdot \nabla \eta=\Delta \xi+w \\
& \mathbf{u} \cdot \nabla \xi=\Delta \eta
\end{aligned}
$$

A non-local Dirichlet principle for heat transport

Equivalently,

$$
\begin{aligned}
& \mathbf{u} \cdot \nabla \Delta^{-1} \mathbf{u} \cdot \nabla \eta=\Delta \eta+\mathbf{u} \cdot \nabla \Delta^{-1} w \\
& \mathbf{u} \cdot \nabla \Delta^{-1} \mathbf{u} \cdot \nabla \xi=\Delta \xi+w
\end{aligned}
$$

and these are symmetric!
They express optimality for the dual variational principles

$$
\begin{aligned}
& \min _{\eta:\left.\eta\right|_{\partial \Omega=0}} f|\nabla \eta|^{2}+\left|\nabla \Delta^{-1}(-w+\mathbf{u} \cdot \nabla \eta)\right|^{2} \\
& \max _{\xi:\left.\xi\right|_{\partial \Omega}=0} f 2 w \xi-\left|\nabla \Delta^{-1} \mathbf{u} \cdot \nabla \xi\right|^{2}-|\nabla \xi|^{2}
\end{aligned}
$$

After i.b.p., one finds that the optimal values $=N u(\mathbf{u})-1$.

Turbulent heat transport Rayleigh-Bénard Convection

Rayleigh-Bénard Convection

$$
T=0
$$

$$
\begin{aligned}
\partial_{t} T+\mathbf{u} \cdot \nabla T & =\Delta T \\
\frac{1}{P r}\left(\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}\right) & =-\nabla p+\Delta u+\hat{\mathbf{k}} R a T \\
\operatorname{div} \mathbf{u} & =0
\end{aligned}
$$

$$
\begin{gathered}
\mathbf{u}=\hat{\mathbf{i}} u+\hat{\mathbf{j}} v+\hat{\mathbf{k}} w \\
N u=1+\langle T w\rangle
\end{gathered}
$$

Question: What is the dependence of

$$
N u=N u(P r, R a)
$$

in the turbulent regime, $R a \gg 1$?

Scaling laws vs. bounds

$$
T=0
$$

$$
\begin{aligned}
\partial_{t} T+\mathbf{u} \cdot \nabla T & =\Delta T \\
\frac{1}{\operatorname{Pr}\left(\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}\right)} & =-\nabla p+\Delta u+\hat{\mathrm{k}} R a T \\
\operatorname{div} \mathbf{u} & =0
\end{aligned}
$$

$$
\begin{gathered}
\mathbf{u}=\hat{\mathbf{i}} u+\hat{\mathbf{j}} v+\hat{\mathbf{k}} w \\
N u=1+\langle T w\rangle
\end{gathered}
$$

$$
T=1
$$

Scaling law predictions:

$$
\text { Malkus, '54 } \quad N u \sim R a^{1 / 3}
$$

Kraichnan '62, Spiegel '71 $N u \sim \operatorname{Pr}^{1 / 2} R a^{1 / 2} \quad$ "ultimate scaling"
Rigorous bounds:

Howard, '63 $N u \lesssim R a^{1 / 2}$
Doering \& Constantin, ' 96
Whitehead \& Doering, '11
$N u \lesssim R a^{1 / 2} \quad$ fully rigorous, 3D
$N u \lesssim R a^{5 / 12} \quad 2 \mathrm{D}+$ stress-free b.c.

A new bounding method

$$
T=0
$$

$$
\begin{aligned}
\partial_{t} T+\mathbf{u} \cdot \nabla T & =\Delta T & & \mathbf{u}=\hat{\mathbf{i}} u+\hat{\mathbf{j}} v+\hat{\mathbf{k}} w \\
\frac{1}{\operatorname{Pr}\left(\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}\right)} & =-\nabla p+\Delta u+\hat{\mathbf{k}} R a T & & N u=1+\langle T w\rangle \\
\operatorname{div} \mathbf{u} & =0 & &
\end{aligned}
$$

$$
T=1
$$

Wall-to-wall transport gives new bounds on $\mathrm{RBC}:^{1}$
The momentum eqn. implies

$$
\left.\left.\langle | \nabla \mathbf{u}\right|^{2}\right\rangle=R a \cdot\langle T w\rangle=R a \cdot(N u-1)
$$

${ }^{1}$ P. Hassanzadeh, G. Chini, C. Doering JFM 2014

A new bounding method

$$
T=0
$$

$$
\partial_{t} T+\mathbf{u} \cdot \nabla T=\Delta T
$$

$$
F(P e)=\max _{\mathbf{u}(\mathbf{x}, t)} \quad N u(\mathbf{u})
$$

$$
\begin{aligned}
& \left.\left.\left.\langle | \mathbf{v u}\right|^{2}\right\rangle^{2}\right\rangle^{1 / 2}=P e \\
& \left.\mathbf{u}\right|_{\Omega}=\mathbf{0}
\end{aligned}
$$

$$
T=1
$$

Choosing Pe by

$$
P e^{2}=R a \cdot(N u-1),
$$

one concludes for RBC

$$
N u \leq F(R a \cdot(N u-1))
$$

A new bounding method

$$
\begin{array}{cc}
T=0 \\
\partial_{t} T+\mathbf{u} \cdot \nabla T=\Delta T \\
\operatorname{div} \mathbf{u}=0
\end{array} \quad F(P e)=\max _{\substack{\left.\left.\mathbf{u}(\mathbf{x}, t) \\
\langle | \nabla \mathbf{u}\right|^{2}\right\rangle^{1 / 2}=\left.P e \\
\mathbf{u}\right|_{\partial \Omega}=\mathbf{0}}} N u(\mathbf{u})
$$

Choosing Pe by

$$
P e^{2}=R a \cdot(N u-1),
$$

one concludes for RBC

$$
N u \leq F(R a \cdot(N u-1))
$$

E.g.,
$N u \lesssim \frac{P e^{2 / 3}}{\log ^{\alpha} P e}$ for wall-to-wall $\Longrightarrow N u \lesssim \frac{R a^{1 / 2}}{\log ^{3 \alpha / 2} R a}$ for RBC

A new bounding method

$$
T=0
$$

$$
\partial_{t} T+\mathbf{u} \cdot \nabla T=\Delta T
$$

$$
\operatorname{div} \mathbf{u}=0
$$

$$
F(P e)=\max _{\substack{\left.\left.\mathbf{u}(\mathbf{x}, t) \\\langle | \nabla \mathbf{u}\right|^{2}\right\rangle^{1 / 2}=P e \\ \mathbf{u} \mid \partial \Omega=\mathbf{0}}} N u(\mathbf{u})
$$

Our result

$$
F(P e) \gtrsim \frac{P e^{2 / 3}}{\log ^{4 / 3} P e}
$$

limits improvements to

$$
N u \lesssim R a^{1 / 2}
$$

by this method to logarithmic corrections

Regarding 2D RBC

$$
T=0
$$

$$
\begin{aligned}
\partial_{t} T+\mathbf{u} \cdot \nabla T & =\Delta T \\
\frac{1}{P r}\left(\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}\right) & =-\nabla p+\Delta u+\hat{\mathbf{k}} R a T \\
\operatorname{div} \mathbf{u} & =0
\end{aligned}
$$

$$
\begin{gathered}
\mathbf{u}=\hat{\mathbf{i}} u+\hat{\mathbf{j}} v+\hat{\mathbf{k}} w \\
N u=1+\langle T w\rangle
\end{gathered}
$$

$$
T=1
$$

The Whitehead-Doering bound states

$$
N u \lesssim R a^{5 / 12} \ll R a^{1 / 2} \text { in 2D w/ stress-free b.c. }
$$

Our result is that

$$
\max N u \sim R a^{1 / 2} \quad \text { up to logs }
$$

Thus: 2D RBC achieves strongly sub-optimal heat transport

[^0]: ${ }^{1}$ A. Hubert \& R. R. Schäfer, Magnetic Domains 1998

