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Introduction

Dislocations are crystallographic defects.

b

Figure: Sketch of an edge dislocation in a cubic lattice.

● The defect is concentrated on lines.

● The vector b ∈ B which characterizes the defect is called Burgers vector.
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The Continuous Theory
In the continuous theory, one models dislocations as singularities of the elastic strain
β ∶ Ω→ R3×3:

curlβ = b ⊗ τ dH1
∣γ ,

where the γ is the dislocation curve, τ its tangent and b is the Burgers vector.

b
b

Figure: Sketch of an edge dislocation (left) and a screw dislocation (right) in a deformed cylinder. The
dislocation line is the dashed, red line oriented downwards. The Burgers vector is drawn in blue.
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Roadmap

● Understand the dynamics of curved dislocation lines.

● As a first step, study the asymptotic behavior of the induced elastic energy.

● Obtain the force as the variation of the effective energy.

● In a third step, we would like to solve the corresponding PDE (future work).

τ

b
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The Energy

For Ω ⊆ R3, a fixed Burgers vector b ∈ R3 and a regular, closed curve γ ∶ [0,L] → Ω, we define
the corresponding dislocation density as

µ = b ⊗ τ H1
∣γ ,

where τ is the tangent of γ.
Moreover, we define the set of corresponding admissible strains to be

Aµ = {β ∈ L1 (Ω;R3×3) ∶ curlβ = µ in D′(Ω)}.

The elastic energy is then

Eε(µ) = inf
β∈A(µ)

ˆ
Ω∖Bε(γ)

1

2
Cβ ∶ β dx .

Here, C ∈ R3×3×3×3 is an isotropic elastic tensor i.e., CA = 2µAsym + λ trace(A) Id where µ,λ are
such that C is positive definite on symmetric matrices.
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The Energy II

Conti, Garroni, Ortiz ‘15: There exists a unique K ∈ L 3
2 (R3) ∩ L∞loc(R3 ∖ γ) such that

⎧⎪⎪⎨⎪⎪⎩

div CK = 0,

curlK = µγ .

We use this solution to rewrite

Eε(µγ) =
ˆ

Ω∖Bε(γ)

1

2
CK ∶ K dx + inf

u∈H1(Ω;R3)
Iε(u),

where

Iε(u) =
1

2

ˆ
Ω∖Bε(γ)

C∇u ∶ ∇u dx +
ˆ
∂Ω

u ⋅ (CKν)dH2 −
ˆ
∂Bε(γ)

u ⋅ (CKνε)dH2.
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Results for Straight Parallel Dislocations

Ω̃ × {0}

● cylindrical symmetry,
● straight, parallel dislocation edge/screw dislocations,
● reduction to an orthogonal slice,
● in-plane/out-of-plane components of the elastic strain satisfy β satisfy

curlβ = ∑
k

bkδxk

where bk is an admissible Burger’s vector.
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Results for Straight Parallel Dislocations

Iε(u) =
ˆ

Ω̃∖⋃k Bε(xk)

1

2
C∇u ∶ ∇u dx +

ˆ
∂Ω̃

u ⋅ (CKν)dH1 −∑
k

ˆ
∂Bε(xk)

u ⋅ (CKνε)dH1

Cermelli, Leoni ‘05 in the edge case and Blass, Morandotti ‘14 in the screw case:

● Existence of minimizers uε for Iε for fixed ε.

● Strong Convergence of uε in H1
loc(Ω ∖ γ) to a minimizer of

I0(u) =
ˆ

Ω

1

2
C∇u ∶ ∇u dx +

ˆ
∂Ω

u ⋅ (CKν)dH1.

● This leads to

Eε(µ)=
ˆ

Ω∖⋃k Bε(xk)

1

2
CK ∶ K dx + I0(u) + c +O(ε)

= ∣ log ε∣∑
k

ψ(bk) + F(x1, . . . , xN) + c +O(ε).

● The force on the k-th dislocation is then given by (edge case)

∇xkF(x1, . . . , xN) = −
ˆ
∂Br (xk)

[(1

2
Cβ0 ∶ β0) Id − βT

0 Cβ0] ν dH1,

where β0 = K +∇u0 and 0 < r < 1
4

mink≠j ∣xk − xj ∣.
● In the screw case it simplifies even more.
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Results for Curved Dislocation Lines in Three Dimensions

First we consider the toy case C = Id .

Iε(u) =
ˆ

Ω∖Bε(γ)

1

2
∣∇u∣2 dx +

ˆ
∂Ω

u ⋅Kν dH2 −
ˆ
∂Bε(γ)

u ⋅Kνε dH2,

where K solves ⎧⎪⎪⎨⎪⎪⎩

divK = 0 in R3,

curlK = µγ in R3.

Existence of a minimizer uε for fixed ε > 0 is simple.

Theorem
Let uε be the minimizers for Iε. Then there exists a a function u0 ∈ H1(Ω;R3) such that
uε → u0 in H1

loc(Ω ∖ γ) and
lim
ε→0

Iε(uε) → I0(u0),

where I0(u0) =
´

Ω
1
2
∣∇u0∣2 dx +

´
∂Ω u0 ⋅Kν dH2. Moreover, u0 minimizes I0.
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Results for Curved Dislocation Lines in Three Dimensions

Sketch of proof:

● Standard estimates
ˆ

Ω∖Bε(γ)
∣∇uε∣2 −

ˆ
∂Bε(γ)

uε ⋅Kνε dH2 −
ˆ
∂Ω

uε ⋅Kν dH2

≥
ˆ

Ω∖Bε(γ)
∣∇uε∣2 − Cε∥Kνε∥L2(∂Bε(γ))

∥uε∥H1(Ω∖Bε(γ))
− C∥uε∥H1(Ω∖Bε(γ))

∥Kν∥L2(∂Ω).

● By regularity of γ we can choose Cε independent from ε.

● Typically K ∼ 1
dist(x,γ)

but we can show ∥Kνε∥L2(∂Bε(γ))
→ 0.

● Extend uε to Ω. Again constant does not depend on ε. ⇒ Boundedness of extended uε.

● Hence, there exists u0 ∈ H1(Ω) and a subsequence such that uε ⇀ u0 in H1.

● Lower semi-continuity: lim infε Iε(uε) ≥ I0(u0).

● Also, I0(u0) ← Iε(u0) ≥ Iε(uε).

● This shows also
´

Ω∖Bε(γ)
∣∇uε∣2 dx →

´
Ω ∣∇u0∣2 dx which implies the strong convergence in

H1
loc(Ω ∖ γ).

Hence, the key is: ∥Kνε∥L2(∂Bε(γ))
→ 0.
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Asymptotics for the Strain
Question: How does ∥Kνε∥L2(∂Bε(γ))

behave?

We know that ⎧⎪⎪⎨⎪⎪⎩

divK = 0 in R3,

curlK = µγ in R3.

As divµγ = 0, we have

K = curl(−∆)−1µγ = −b ⊗
ˆ
γ

x − y

4π ∣x − y ∣3
× τ(y)dH1(y).

Theorem
Let γ be a C2,α curve. Then there exists ε0 = ε0(∥γ∥C2,α) > 0 such that for all 0 < ε < ε0 and
x ∈ ∂Bε(γ) it holds

K(x) = −b ⊗ ( 1

2π ε
τ(π(x)) × νε(x) +

1

2π
∣ log(ε)∣ τ(π(x)) ×H(π(x)) +O(1)).

Here, π(x) is the point on γ closest to x, νε(x) is the outer normal to ∂Bε(γ), and H is the
curvature of γ. The O(1)-term is uniformly bounded for all γ such that ∥γ∥C2,α ≤M.

In particular,

∥Kνε∥L2(∂Bε(γ))
≲ ∣ log ε∣ε 1

2 → 0.
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The Force on a Dislocation Line in Three Dimensions
Now, we derive the force on the dislocation as the variation with respect to the curve of the
effective energy

Fε(µγ) =
ˆ

Ω∖Bε(γ)

1

2
∣Kγ ∣2 dx +

ˆ
Ω

1

2
∣∇uγ ∣2 dx +

ˆ
∂Ω

uγ ⋅Kγν dH2.

Lemma
Let γ ∈ C2,α ([0,L]; Ω) be a closed curve and ϕ ∈ C2,α ([0,L];R3). Then there exists δ > 0 such

that the functions K ∶ (−δ, δ) ×Ω ∖Bε(γ) → R3×3, (t, x) → Kγ+tϕ(x) and
u ∶ (−δ, δ) ×Ω→ R3, (t, x) → uγ+tϕ(x) are smooth.
Moreover, it holds

d

dt
∣
t=0

Kγ+tϕ(x) = −b ⊗∇x

ˆ
γ
[(− x − y

4π ∣x − y ∣3
× τ(y)) ⋅ ϕ(y)] dH1(y)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶wγ

.

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩

−∆ ( d
dt ∣t=0

uγ+tϕ) = 0 in Ω,

∇( d
dt ∣t=0

uγ+tϕ) ν = −( d
dt ∣t=0

Kt) ν on ∂Ω.
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The Force on a Dislocation Line in Three Dimensions

Theorem
Under the same assumptions.

dFε(µγ+tϕ)
dt

∣
t=0

= −
ˆ
∂Bε(γ)

1

2
∣Kγ ∣2 ϕ ⋅ ν +wγ b ⋅ (Kγ +∇uγ)ν − uγ ⋅ K̇γν dH2

=
ˆ
γ
(−∣b∣2 ∣ log ε∣

2π
H +O(1)) ⋅ ϕdH1.

Again, the term O(1) is uniformly bounded as long as ∥γ∥C2,α is uniformly bounded.

This result is consistent with the fact that one can also use the asymptotics for Kγ to show that

Fε(µγ) = ∣b∣2 ∣ log ε∣
2π

H1(γ) +O(1).



Forces on Dislocation Lines in Three Dimensions

The Force on a Dislocation Line in Three Dimensions
The corresponding results for the isotropic elasticity CA = 2µAsym + λtrace(A) Id is:

Theorem
Under the same assumptions as before,

dFε(µγ+tϕ)
dt

∣
t=0

= −
ˆ
γ
∣ log ε∣ (ψ(τ)H ⋅ ϕ +∇ψ(τ) ⋅H (τ ⋅ ϕ) + ∇2ψH ⋅ ϕ) +O(1)ϕ,

where ψ(τ) = µ
4π

(b ⋅ τ)2 + µ
2π

λ+µ
2µ+λ

∣b − (b ⋅ τ)τ ∣2 is the line tension energy density per unit

dislocation.

To prove this we need again an asymptotic formula for the solution of

⎧⎪⎪⎨⎪⎪⎩

div CKγ = 0,

curlKγ = µγ .

It can formally be written as

Kγ = K̃γ
°

=solution for C=Id

+Nijkl ∗ (µγ)kl ,

where Nijkl = −(∂j∂k∂pεilp + λ
2µ+λ

∂j∂i∂pεklp) ∣x ∣8π
.
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The Force on the Dislocation Line in Three Dimensions

Theorem
For a closed curve γ ∈ C2,α, it holds for ε > 0 small enough and x ∈ ∂Bε(γ)

Kγ(x) =
1

ε
(b ⋅ ν

4π
(4µ + 3λ

2µ + λ
ν ⊗ (τ × ν) + λ

2µ + λ
(τ × ν) ⊗ ν)

+ b ⋅ (τ × ν)
4π

2µ

2µ + λ
((τ × ν) ⊗ (τ × ν) + ν ⊗ ν) + b ⋅ τ

2π
τ ⊗ (τ × ν) +W)

+∣ log ε∣( 1

4π
b ⊗ (τ ×H) − 3(b ⋅ τ)

8π
(H × τ) ⊗ τ + 1

4π
(H × b) ⊗ τ + 1

8π
(τ × b) ⊗H

− 1

8π
(τ ×H) ⊗ b + λ

2µ + λ
( − 3(b ⋅ (H × τ)

8π
τ ⊗ τ + 1

8π
(b × τ) ⊗H

+ 1

8π
H ⊗ (b × τ) + 1

4π
τ ⊗ (b ×H) + 1

4π
(b ×H) ⊗ τ + (τ × b) ⋅H

8π
δij) )

+O(1).
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The Force on a Dislocation Line in Three Dimensions

This also shows that (c.f. also Conti, Garroni, Ortiz ‘15)

Fε(µγ) = ∣ log ε∣
ˆ
γ
ψ(τ)dH1 +O(1),

where ψ(τ) = µ
4π

(b ⋅ τ)2 + µ
2π

λ+µ
2µ+λ

∣b − (b ⋅ τ)τ ∣2 which is consistent with

dFε(µγ+tϕ)
dt

∣
t=0

≈ ∣ log ε∣
d
´
γ+tϕ ψ(τ)dH

1

dt
∣
t=0

.
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Future Work on the Dynamics

● Again, first C = Id , no restriction on the movement of the line, and rescale time by ∣ log ε∣:

γ′ = ∣b∣2

2π
H +O(∣ log ε∣−1).

● Abstract existence result for curve shortening flow in arbitrary dimensions available, Gage,
Hamilton ‘86.

● Understand regularity of the O(∣ log ε∣−1)-term and use a fixed point argument to obtain
existence.

● Study the limit ε→ 0.

● Dislocations cannot move in any direction.

● More realistic dynamics:
γ′ = m(b, τ)H,

where m(b, τ) = projection into the plane spanned by b and τ (if b /∥ τ).

● Replace H by the variation of the anisotropic line tension energy.

Thank you for your attention!
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