Forces on Dislocation Lines in Three Dimensions

Topics in the Calculus of Variations: Recent Advances and New Trends Banff, May 21-25

Janusz Ginster
Center for Nonlinear Analysis
Carnegie Mellon University
Joint work with Irene Fonseca, Giovanni Leoni, Ethan O'Brien, and Stephan Wojtowytsch.
Carnegie
Mellon
University

Outline

1. Introduction
2. Results for Straight Dislocation Lines
3. Results for Curved Dislocation Lines in Three Dimensions
3.1 Asymptotics for the Energy
3.2 Forces on the Dislocation Line
4. Future Work on the Dynamics

Introduction

Dislocations are crystallographic defects.

Figure: Sketch of an edge dislocation in a cubic lattice.

Introduction

Dislocations are crystallographic defects.

Figure: Sketch of an edge dislocation in a cubic lattice.

- The defect is concentrated on lines.
- The vector $b \in \mathcal{B}$ which characterizes the defect is called Burgers vector.

The Continuous Theory

In the continuous theory, one models dislocations as singularities of the elastic strain $\beta: \Omega \rightarrow \mathbb{R}^{3 \times 3}$:

$$
\operatorname{curl} \beta=b \otimes \tau d \mathcal{H}_{\mid \gamma}^{1}
$$

where the γ is the dislocation curve, τ its tangent and b is the Burgers vector.

Figure: Sketch of an edge dislocation (left) and a screw dislocation (right) in a deformed cylinder. The dislocation line is the dashed, red line oriented downwards. The Burgers vector is drawn in blue.

Roadmap

- Understand the dynamics of curved dislocation lines.
- As a first step, study the asymptotic behavior of the induced elastic energy.
- Obtain the force as the variation of the effective energy.
- In a third step, we would like to solve the corresponding PDE (future work).

The Energy

For $\Omega \subseteq \mathbb{R}^{3}$, a fixed Burgers vector $b \in \mathbb{R}^{3}$ and a regular, closed curve $\gamma:[0, L] \rightarrow \Omega$, we define the corresponding dislocation density as

$$
\mu=b \otimes \tau \mathcal{H}_{\mid \gamma}^{1},
$$

where τ is the tangent of γ.
Moreover, we define the set of corresponding admissible strains to be

$$
\mathcal{A}_{\mu}=\left\{\beta \in L^{1}\left(\Omega ; \mathbb{R}^{3 \times 3}\right): \operatorname{curl} \beta=\mu \text { in } \mathcal{D}^{\prime}(\Omega)\right\} .
$$

The elastic energy is then

$$
E_{\varepsilon}(\mu)=\inf _{\beta \in \mathcal{A}(\mu)} \int_{\Omega \backslash B_{\varepsilon}(\gamma)} \frac{1}{2} \mathcal{C} \beta: \beta d x .
$$

Here, $\mathcal{C} \in \mathbb{R}^{3 \times 3 \times 3 \times 3}$ is an isotropic elastic tensor i.e., $\mathcal{C} A=2 \mu A_{\text {sym }}+\lambda \operatorname{trace}(A) I d$ where μ, λ are such that \mathcal{C} is positive definite on symmetric matrices.

The Energy II

Conti, Garroni, Ortiz '15: There exists a unique $K \in L^{\frac{3}{2}}\left(\mathbb{R}^{3}\right) \cap L_{\text {loc }}^{\infty}\left(\mathbb{R}^{3} \backslash \gamma\right)$ such that

$$
\left\{\begin{array}{l}
\operatorname{div} \mathcal{C} K=0 \\
\operatorname{curl} K=\mu_{\gamma}
\end{array}\right.
$$

We use this solution to rewrite

$$
E_{\varepsilon}\left(\mu_{\gamma}\right)=\int_{\Omega \backslash B_{\varepsilon}(\gamma)} \frac{1}{2} \mathcal{C} K: K d x+\inf _{u \in H^{1}\left(\Omega ; \mathbb{R}^{3}\right)} I_{\varepsilon}(u),
$$

where

$$
I_{\varepsilon}(u)=\frac{1}{2} \int_{\Omega \backslash B_{\varepsilon}(\gamma)} \mathcal{C} \nabla u: \nabla u d x+\int_{\partial \Omega} u \cdot(\mathcal{C} K \nu) d \mathcal{H}^{2}-\int_{\partial B_{\varepsilon}(\gamma)} u \cdot\left(\mathcal{C} K \nu_{\varepsilon}\right) d \mathcal{H}^{2} .
$$

Results for Straight Parallel Dislocations

- cylindrical symmetry,
- straight, parallel dislocation edge/screw dislocations,
- reduction to an orthogonal slice,
- in-plane/out-of-plane components of the elastic strain satisfy β satisfy

$$
\operatorname{curl} \beta=\sum_{k} b_{k} \delta_{x_{k}}
$$

where b_{k} is an admissible Burger's vector.

Results for Straight Parallel Dislocations

$$
I_{\varepsilon}(u)=\int_{\tilde{\Omega} \backslash \cup_{k} B_{\varepsilon}\left(x_{k}\right)} \frac{1}{2} \mathcal{C} \nabla u: \nabla u d x+\int_{\partial \tilde{\Omega}} u \cdot(\mathcal{C} K \nu) d \mathcal{H}^{1}-\sum_{k} \int_{\partial B_{\varepsilon}\left(x_{k}\right)} u \cdot\left(\mathcal{C} K \nu_{\varepsilon}\right) d \mathcal{H}^{1}
$$

Cermelli, Leoni ' 05 in the edge case and Blass, Morandotti ' 14 in the screw case:

- Existence of minimizers u_{ε} for I_{ε} for fixed ε.

Results for Straight Parallel Dislocations

$$
I_{\varepsilon}(u)=\int_{\tilde{\Omega} \backslash \cup_{k} B_{\varepsilon}\left(x_{k}\right)} \frac{1}{2} \mathcal{C} \nabla u: \nabla u d x+\int_{\partial \tilde{\Omega}} u \cdot(\mathcal{C} K \nu) d \mathcal{H}^{1}-\sum_{k} \int_{\partial B_{\varepsilon}\left(x_{k}\right)} u \cdot\left(\mathcal{C} K \nu_{\varepsilon}\right) d \mathcal{H}^{1}
$$

Cermelli, Leoni ' 05 in the edge case and Blass, Morandotti ' 14 in the screw case:

- Existence of minimizers u_{ε} for I_{ε} for fixed ε.
- Strong Convergence of u_{ε} in $H_{l o c}^{1}(\Omega \backslash \gamma)$ to a minimizer of

$$
I_{0}(u)=\int_{\Omega} \frac{1}{2} \mathcal{C} \nabla u: \nabla u d x+\int_{\partial \Omega} u \cdot(\mathcal{C} K \nu) d \mathcal{H}^{1}
$$

Results for Straight Parallel Dislocations

$$
I_{\varepsilon}(u)=\int_{\tilde{\Omega} \backslash \cup_{k} B_{\varepsilon}\left(x_{k}\right)} \frac{1}{2} \mathcal{C} \nabla u: \nabla u d x+\int_{\partial \tilde{\Omega}} u \cdot(\mathcal{C} K \nu) d \mathcal{H}^{1}-\sum_{k} \int_{\partial B_{\varepsilon}\left(x_{k}\right)} u \cdot\left(\mathcal{C} K \nu_{\varepsilon}\right) d \mathcal{H}^{1}
$$

Cermelli, Leoni ' 05 in the edge case and Blass, Morandotti ' 14 in the screw case:

- Existence of minimizers u_{ε} for I_{ε} for fixed ε.
- Strong Convergence of u_{ε} in $H_{l o c}^{1}(\Omega \backslash \gamma)$ to a minimizer of

$$
I_{0}(u)=\int_{\Omega} \frac{1}{2} \mathcal{C} \nabla u: \nabla u d x+\int_{\partial \Omega} u \cdot(\mathcal{C} K \nu) d \mathcal{H}^{1}
$$

- This leads to

$$
\begin{aligned}
E_{\varepsilon}(\mu) & =\int_{\Omega \backslash U_{k} B_{\varepsilon}\left(x_{k}\right)} \frac{1}{2} \mathcal{C} K: K d x+I_{0}(u)+c+O(\varepsilon) \\
& =|\log \varepsilon| \sum_{k} \psi\left(b_{k}\right)+F\left(x_{1}, \ldots, x_{N}\right)+c+O(\varepsilon)
\end{aligned}
$$

Results for Straight Parallel Dislocations

$$
I_{\varepsilon}(u)=\int_{\tilde{\Omega} \backslash \cup_{k} B_{\varepsilon}\left(x_{k}\right)} \frac{1}{2} \mathcal{C} \nabla u: \nabla u d x+\int_{\partial \tilde{\Omega}} u \cdot(\mathcal{C K} \nu) d \mathcal{H}^{1}-\sum_{k} \int_{\partial B_{\varepsilon}\left(x_{k}\right)} u \cdot\left(\mathcal{C} K \nu_{\varepsilon}\right) d \mathcal{H}^{1}
$$

Cermelli, Leoni ' 05 in the edge case and Blass, Morandotti ' 14 in the screw case:

- Existence of minimizers u_{ε} for I_{ε} for fixed ε.
- Strong Convergence of u_{ε} in $H_{l o c}^{1}(\Omega \backslash \gamma)$ to a minimizer of

$$
I_{0}(u)=\int_{\Omega} \frac{1}{2} \mathcal{C} \nabla u: \nabla u d x+\int_{\partial \Omega} u \cdot(\mathcal{C} K \nu) d \mathcal{H}^{1}
$$

- This leads to

$$
\begin{aligned}
E_{\varepsilon}(\mu) & =\int_{\Omega \backslash \cup_{k} B_{\varepsilon}\left(x_{k}\right)} \frac{1}{2} \mathcal{C} K: K d x+I_{0}(u)+c+O(\varepsilon) \\
& =|\log \varepsilon| \sum_{k} \psi\left(b_{k}\right)+F\left(x_{1}, \ldots, x_{N}\right)+c+O(\varepsilon) .
\end{aligned}
$$

- The force on the k-th dislocation is then given by (edge case)

$$
\nabla_{x_{k}} F\left(x_{1}, \ldots, x_{N}\right)=-\int_{\partial B_{r}\left(x_{k}\right)}\left[\left(\frac{1}{2} \mathcal{C} \beta_{0}: \beta_{0}\right) \mathbf{I d}-\beta_{0}^{T} \mathcal{C} \beta_{0}\right] \nu d \mathcal{H}^{1},
$$

where $\beta_{0}=K+\nabla u_{0}$ and $0<r<\frac{1}{4} \min _{k \neq j}\left|x_{k}-x_{j}\right|$.

- In the screw case it simplifies even more.

Results for Curved Dislocation Lines in Three Dimensions

First we consider the toy case $\mathcal{C}=I d$.

$$
I_{\varepsilon}(u)=\int_{\Omega \backslash B_{\varepsilon}(\gamma)} \frac{1}{2}|\nabla u|^{2} d x+\int_{\partial \Omega} u \cdot K \nu d \mathcal{H}^{2}-\int_{\partial B_{\varepsilon}(\gamma)} u \cdot K \nu_{\varepsilon} d \mathcal{H}^{2}
$$

where K solves

$$
\left\{\begin{array}{l}
\operatorname{div} K=0 \text { in } \mathbb{R}^{3}, \\
\operatorname{curl} K=\mu_{\gamma} \text { in } \mathbb{R}^{3} .
\end{array}\right.
$$

Existence of a minimizer u_{ε} for fixed $\varepsilon>0$ is simple.
Theorem
Let u_{ε} be the minimizers for I_{ε}. Then there exists a a function $u_{0} \in H^{1}\left(\Omega ; \mathbb{R}^{3}\right)$ such that $u_{\varepsilon} \rightarrow u_{0}$ in $H_{l o c}^{1}(\Omega \backslash \gamma)$ and

$$
\lim _{\varepsilon \rightarrow 0} I_{\varepsilon}\left(u_{\varepsilon}\right) \rightarrow I_{0}\left(u_{0}\right)
$$

where $I_{0}\left(u_{0}\right)=\int_{\Omega} \frac{1}{2}\left|\nabla u_{0}\right|^{2} d x+\int_{\partial \Omega} u_{0} \cdot K \nu d \mathcal{H}^{2}$. Moreover, u_{0} minimizes I_{0}.

Results for Curved Dislocation Lines in Three Dimensions

Sketch of proof:

- Standard estimates

$$
\begin{aligned}
& \int_{\Omega \backslash B_{\varepsilon}(\gamma)}\left|\nabla u_{\varepsilon}\right|^{2}-\int_{\partial B_{\varepsilon}(\gamma)} u_{\varepsilon} \cdot K \nu_{\varepsilon} d \mathcal{H}^{2}-\int_{\partial \Omega} u_{\varepsilon} \cdot K \nu d \mathcal{H}^{2} \\
\geq & \int_{\Omega \backslash B_{\varepsilon}(\gamma)}\left|\nabla u_{\varepsilon}\right|^{2}-C_{\varepsilon}\left\|K \nu_{\varepsilon}\right\|_{L^{2}\left(\partial B_{\varepsilon}(\gamma)\right)}\left\|u_{\varepsilon}\right\|_{H^{1}\left(\Omega \backslash B_{\varepsilon}(\gamma)\right)}-C\left\|u_{\varepsilon}\right\|_{H^{1}\left(\Omega \backslash B_{\varepsilon}(\gamma)\right)}\|K \nu\|_{L^{2}(\partial \Omega)} .
\end{aligned}
$$

- By regularity of γ we can choose C_{ε} independent from ε.
- Typically $K \sim \frac{1}{\operatorname{dist}(x, \gamma)}$ but we can show $\left\|K \nu_{\varepsilon}\right\|_{L^{2}\left(\partial B_{\varepsilon}(\gamma)\right)} \rightarrow 0$.
- Extend u_{ε} to Ω. Again constant does not depend on ε. \Rightarrow Boundedness of extended u_{ε}.
- Hence, there exists $u_{0} \in H^{1}(\Omega)$ and a subsequence such that $u_{\varepsilon} \rightharpoonup u_{0}$ in H^{1}.
- Lower semi-continuity: $\liminf _{\varepsilon} I_{\varepsilon}\left(u_{\varepsilon}\right) \geq I_{0}\left(u_{0}\right)$.
- Also, $I_{0}\left(u_{0}\right) \leftarrow I_{\varepsilon}\left(u_{0}\right) \geq I_{\varepsilon}\left(u_{\varepsilon}\right)$.
- This shows also $\int_{\Omega \backslash B_{\varepsilon}(\gamma)}\left|\nabla u_{\varepsilon}\right|^{2} d x \rightarrow \int_{\Omega}\left|\nabla u_{0}\right|^{2} d x$ which implies the strong convergence in $H_{l o c}^{1}(\Omega \backslash \gamma)$.
Hence, the key is: $\left\|K \nu_{\varepsilon}\right\|_{L^{2}\left(\partial B_{\varepsilon}(\gamma)\right)} \rightarrow 0$.

Asymptotics for the Strain

Question: How does $\left\|K \nu_{\varepsilon}\right\|_{L^{2}\left(\partial B_{\varepsilon}(\gamma)\right)}$ behave?
We know that

$$
\left\{\begin{array}{l}
\operatorname{div} K=0 \text { in } \mathbb{R}^{3}, \\
\operatorname{curl} K=\mu_{\gamma} \text { in } \mathbb{R}^{3} .
\end{array}\right.
$$

As $\operatorname{div} \mu_{\gamma}=0$, we have

$$
K=\operatorname{curl}(-\Delta)^{-1} \mu_{\gamma}=-b \otimes \int_{\gamma} \frac{x-y}{4 \pi|x-y|^{3}} \times \tau(y) d \mathcal{H}^{1}(y)
$$

Theorem

Let γ be a $C^{2, \alpha}$ curve. Then there exists $\varepsilon_{0}=\varepsilon_{0}\left(\|\gamma\|_{C^{2, \alpha}}\right)>0$ such that for all $0<\varepsilon<\varepsilon_{0}$ and $x \in \partial B_{\varepsilon}(\gamma)$ it holds

$$
K(x)=-b \otimes\left(\frac{1}{2 \pi \varepsilon} \tau(\pi(x)) \times \nu_{\varepsilon}(x)+\frac{1}{2 \pi}|\log (\varepsilon)| \tau(\pi(x)) \times H(\pi(x))+O(1)\right) .
$$

Here, $\pi(x)$ is the point on γ closest to $x, \nu_{\varepsilon}(x)$ is the outer normal to $\partial B_{\varepsilon}(\gamma)$, and H is the curvature of γ. The $O(1)$-term is uniformly bounded for all γ such that $\|\gamma\|_{C^{2, \alpha}} \leq M$. In particular,

$$
\left\|K \nu_{\varepsilon}\right\|_{L^{2}\left(\partial B_{\varepsilon}(\gamma)\right)} \lesssim|\log \varepsilon| \varepsilon^{\frac{1}{2}} \rightarrow 0
$$

The Force on a Dislocation Line in Three Dimensions

Now, we derive the force on the dislocation as the variation with respect to the curve of the effective energy

$$
F_{\varepsilon}\left(\mu_{\gamma}\right)=\int_{\Omega \backslash B_{\varepsilon}(\gamma)} \frac{1}{2}\left|K_{\gamma}\right|^{2} d x+\int_{\Omega} \frac{1}{2}\left|\nabla u_{\gamma}\right|^{2} d x+\int_{\partial \Omega} u_{\gamma} \cdot K_{\gamma} \nu d \mathcal{H}^{2} .
$$

The Force on a Dislocation Line in Three Dimensions

Now, we derive the force on the dislocation as the variation with respect to the curve of the effective energy

$$
F_{\varepsilon}\left(\mu_{\gamma}\right)=\int_{\Omega \backslash B_{\varepsilon}(\gamma)} \frac{1}{2}\left|K_{\gamma}\right|^{2} d x+\int_{\Omega} \frac{1}{2}\left|\nabla u_{\gamma}\right|^{2} d x+\int_{\partial \Omega} u_{\gamma} \cdot K_{\gamma} \nu d \mathcal{H}^{2} .
$$

Lemma

Let $\gamma \in C^{2, \alpha}([0, L] ; \Omega)$ be a closed curve and $\varphi \in C^{2, \alpha}\left([0, L] ; \mathbb{R}^{3}\right)$. Then there exists $\delta>0$ such that the functions $K:(-\delta, \delta) \times \Omega \backslash B_{\varepsilon}(\gamma) \rightarrow \mathbb{R}^{3 \times 3},(t, x) \rightarrow K_{\gamma+t \varphi}(x)$ and $u:(-\delta, \delta) \times \Omega \rightarrow \mathbb{R}^{3},(t, x) \rightarrow u_{\gamma+t \varphi}(x)$ are smooth.
Moreover, it holds

$$
\left.\frac{d}{d t}\right|_{t=0} K_{\gamma+t \varphi}(x)=-b \otimes \nabla_{x} \underbrace{\int_{\gamma}\left[\left(-\frac{x-y}{4 \pi|x-y|^{3}} \times \tau(y)\right) \cdot \varphi(y)\right] d \mathcal{H}^{1}(y)}_{=: w_{\gamma}} .
$$

and

$$
\left\{\begin{array}{l}
-\Delta\left(\left.\frac{d}{d t} \right\rvert\, t=0\right. \\
\nabla\left(\frac{d}{d t} u_{\gamma+t \varphi} u_{\gamma+t \varphi}\right) \nu=0 \text { in } \Omega, \\
=-\left(\left.\frac{d}{d t} \right\rvert\, t=0\right.
\end{array} K_{t}\right) \nu \text { on } \partial \Omega . .
$$

The Force on a Dislocation Line in Three Dimensions

Theorem
Under the same assumptions.

$$
\begin{aligned}
\left.\frac{d F_{\varepsilon}\left(\mu_{\gamma+t \varphi}\right)}{d t}\right|_{t=0} & =-\int_{\partial B_{\varepsilon}(\gamma)} \frac{1}{2}\left|K_{\gamma}\right|^{2} \varphi \cdot \nu+w_{\gamma} b \cdot\left(K_{\gamma}+\nabla u_{\gamma}\right) \nu-u_{\gamma} \cdot \dot{K}_{\gamma} \nu d \mathcal{H}^{2} \\
& =\int_{\gamma}\left(-|b|^{2} \frac{|\log \varepsilon|}{2 \pi} H+O(1)\right) \cdot \varphi d \mathcal{H}^{1}
\end{aligned}
$$

Again, the term $O(1)$ is uniformly bounded as long as $\|\gamma\|_{C^{2, \alpha}}$ is uniformly bounded. This result is consistent with the fact that one can also use the asymptotics for K_{γ} to show that

$$
F_{\varepsilon}\left(\mu_{\gamma}\right)=|b|^{2} \frac{|\log \varepsilon|}{2 \pi} \mathcal{H}^{1}(\gamma)+O(1)
$$

The Force on a Dislocation Line in Three Dimensions

The corresponding results for the isotropic elasticity $\mathcal{C} A=2 \mu A_{\text {sym }}+\lambda \operatorname{trace}(A)$ Id is:

Theorem

Under the same assumptions as before,

$$
\left.\frac{d F_{\varepsilon}\left(\mu_{\gamma+t \varphi}\right)}{d t}\right|_{t=0}=-\int_{\gamma}|\log \varepsilon|\left(\psi(\tau) H \cdot \varphi+\nabla \psi(\tau) \cdot H(\tau \cdot \varphi)+\nabla^{2} \psi H \cdot \varphi\right)+O(1) \varphi
$$

where $\psi(\tau)=\frac{\mu}{4 \pi}(b \cdot \tau)^{2}+\frac{\mu}{2 \pi} \frac{\lambda+\mu}{2 \mu+\lambda}|b-(b \cdot \tau) \tau|^{2}$ is the line tension energy density per unit dislocation.
To prove this we need again an asymptotic formula for the solution of

$$
\left\{\begin{array}{l}
\operatorname{div} \mathcal{C} K_{\gamma}=0, \\
\operatorname{curl} K_{\gamma}=\mu_{\gamma}
\end{array}\right.
$$

It can formally be written as

$$
K_{\gamma}=\underbrace{\tilde{K}_{\gamma}}_{=\text {solution for } \mathcal{C}=I d}+N_{i j k l} *\left(\mu_{\gamma}\right)_{k l} \text {, }
$$

where $N_{i j k l}=-\left(\partial_{j} \partial_{k} \partial_{p} \varepsilon_{i l p}+\frac{\lambda}{2 \mu+\lambda} \partial_{j} \partial_{i} \partial_{p} \varepsilon_{k l p}\right) \frac{|x|}{8 \pi}$.

The Force on the Dislocation Line in Three Dimensions

Theorem

For a closed curve $\gamma \in C^{2, \alpha}$, it holds for $\varepsilon>0$ small enough and $x \in \partial B_{\varepsilon}(\gamma)$

$$
\begin{aligned}
& K_{\gamma}(x)= \frac{1}{\varepsilon}\left(\frac{b \cdot \nu}{4 \pi}\left(\frac{4 \mu+3 \lambda}{2 \mu+\lambda} \nu \otimes(\tau \times \nu)+\frac{\lambda}{2 \mu+\lambda}(\tau \times \nu) \otimes \nu\right)\right. \\
&\left.+\frac{b \cdot(\tau \times \nu)}{4 \pi} \frac{2 \mu}{2 \mu+\lambda}((\tau \times \nu) \otimes(\tau \times \nu)+\nu \otimes \nu)+\frac{b \cdot \tau}{2 \pi} \tau \otimes(\tau \times \nu)+W\right) \\
&+|\log \varepsilon|\left(\frac{1}{4 \pi} b \otimes(\tau \times H)-\frac{3(b \cdot \tau)}{8 \pi}(H \times \tau) \otimes \tau+\frac{1}{4 \pi}(H \times b) \otimes \tau+\frac{1}{8 \pi}(\tau \times b) \otimes H\right. \\
&-\frac{1}{8 \pi}(\tau \times H) \otimes b+\frac{\lambda}{2 \mu+\lambda}\left(-\frac{3(b \cdot(H \times \tau)}{8 \pi} \tau \otimes \tau+\frac{1}{8 \pi}(b \times \tau) \otimes H\right. \\
&\left.\left.+\frac{1}{8 \pi} H \otimes(b \times \tau)+\frac{1}{4 \pi} \tau \otimes(b \times H)+\frac{1}{4 \pi}(b \times H) \otimes \tau+\frac{(\tau \times b) \cdot H}{8 \pi} \delta_{i j}\right)\right) \\
&+O(1) .
\end{aligned}
$$

Carnegie

The Force on a Dislocation Line in Three Dimensions

This also shows that (c.f. also Conti, Garroni, Ortiz '15)

$$
F_{\varepsilon}\left(\mu_{\gamma}\right)=|\log \varepsilon| \int_{\gamma} \psi(\tau) d \mathcal{H}^{1}+O(1)
$$

where $\psi(\tau)=\frac{\mu}{4 \pi}(b \cdot \tau)^{2}+\frac{\mu}{2 \pi} \frac{\lambda+\mu}{2 \mu+\lambda}|b-(b \cdot \tau) \tau|^{2}$ which is consistent with

$$
\left.\left.\frac{d F_{\varepsilon}\left(\mu_{\gamma+t \varphi}\right)}{d t}\right|_{t=0} \approx|\log \varepsilon| \frac{d \int_{\gamma+t \varphi} \psi(\tau) d \mathcal{H}^{1}}{d t}\right|_{t=0}
$$

Future Work on the Dynamics

- Again, first $\mathcal{C}=I d$, no restriction on the movement of the line, and rescale time by $|\log \varepsilon|$:

$$
\gamma^{\prime}=\frac{|b|^{2}}{2 \pi} H+O\left(|\log \varepsilon|^{-1}\right) .
$$

- Abstract existence result for curve shortening flow in arbitrary dimensions available, Gage, Hamilton '86.
- Understand regularity of the $O\left(|\log \varepsilon|^{-1}\right)$-term and use a fixed point argument to obtain existence.
- Study the limit $\varepsilon \rightarrow 0$.
- Dislocations cannot move in any direction.
- More realistic dynamics:

$$
\gamma^{\prime}=m(b, \tau) H
$$

where $m(b, \tau)=$ projection into the plane spanned by b and τ (if $b \| \tau$).

- Replace H by the variation of the anisotropic line tension energy.

Future Work on the Dynamics

- Again, first $\mathcal{C}=I d$, no restriction on the movement of the line, and rescale time by $|\log \varepsilon|$:

$$
\gamma^{\prime}=\frac{|b|^{2}}{2 \pi} H+O\left(|\log \varepsilon|^{-1}\right)
$$

- Abstract existence result for curve shortening flow in arbitrary dimensions available, Gage, Hamilton '86.
- Understand regularity of the $O\left(|\log \varepsilon|^{-1}\right)$-term and use a fixed point argument to obtain existence.
- Study the limit $\varepsilon \rightarrow 0$.
- Dislocations cannot move in any direction.
- More realistic dynamics:

$$
\gamma^{\prime}=m(b, \tau) H
$$

where $m(b, \tau)=$ projection into the plane spanned by b and τ (if $b \| \tau$).

- Replace H by the variation of the anisotropic line tension energy.

Thank you for your attention!

