Dimension reduction in the context of structured deformations

Marco Morandotti
joint work with Graça Carita, José Matias, and David R. Owen

(Technische Universität München)

BIRS workshop
Topics in the Calculus of Variations: Recent Advances and New Trends

22 May 2018

Scope-I

The scope of this research is to refine classical continuum theories of elastic bodies to broaden their range of applicability.

Scope-I

The scope of this research is to refine classical continuum theories of elastic bodies to broaden their range of applicability.

We consider two types of refinement, to
(i) incorporate into a classical theory the effects of submacroscopic slips and separations (disarrangements);
(ii) adapt the theory to the description of thin bodies.

Scope-I

The scope of this research is to refine classical continuum theories of elastic bodies to broaden their range of applicability.

We consider two types of refinement, to
(i) incorporate into a classical theory the effects of submacroscopic slips and separations (disarrangements);
(ii) adapt the theory to the description of thin bodies.

Examples are
(i) finely layered bodies (stack of papers), granular bodies (pile of sand), bodies with defects (metal bar);
(ii) membranes (sheet of rubber), thin plates (sheet of metal), fibered thin bodies (sheet of paper).

Dimension reduction

Dimension reduction is a way of adapting classical continuum theories of elastic bodies to thin objects.

TII

Dimension reduction

Dimension reduction is a way of adapting classical continuum theories of elastic bodies to thin objects.

It usually involves a limit process in which one or two physical dimensions are shrunk to zero. Typical limit processes can be done either via Taylor expansion ${ }^{1}$ or Γ-convergence. ${ }^{2}$

[^0]
Dimension reduction

Dimension reduction is a way of adapting classical continuum theories of elastic bodies to thin objects.

It usually involves a limit process in which one or two physical dimensions are shrunk to zero. Typical limit processes can be done either via Taylor expansion ${ }^{1}$ or Γ-convergence. ${ }^{2}$

Information about the microstructure can be lost in the dimension reduction procedure.

```
1Deseri, Piccioni, Zurlo - Contin. Mech. Thermodyn. (2008)
2}\mathrm{ Le Dret, Raoult - J. Math. Pures Appl. (1995)
Le Dret, Raoult - J. Nonlinear Sci. (1996)
Braides, Fonseca - Appl. Math. Optim. (2001)
```


Structured Deformations

Introduced to provide a multiscale geometry that captures the contributions at the macrolevel of both smooth geometrical changes and non-smooth geometrical changes (disarrangements) at submacroscopic levels ${ }^{3}$.

Structured Deformations

Introduced to provide a multiscale geometry that captures the contributions at the macrolevel of both smooth geometrical changes and non-smooth geometrical changes (disarrangements) at submacroscopic levels ${ }^{3}$. Revisited in the spirit of an energetic formulation - good for variational methods ${ }^{4}$.

[^1]
Structured Deformations

Introduced to provide a multiscale geometry that captures the contributions at the macrolevel of both smooth geometrical changes and non-smooth geometrical changes (disarrangements) at submacroscopic levels ${ }^{3}$.
Revisited in the spirit of an energetic formulation - good for variational methods ${ }^{4}$.

A structured deformation is a pair $(g, G) \in S B V \times L^{1}$ with $D g=\nabla g \mathcal{L}^{N}+[g] \otimes \nu \mathcal{H}^{N-1}$.

[^2]
Structured Deformations

Introduced to provide a multiscale geometry that captures the contributions at the macrolevel of both smooth geometrical changes and non-smooth geometrical changes (disarrangements) at submacroscopic levels ${ }^{3}$.
Revisited in the spirit of an energetic formulation - good for variational methods ${ }^{4}$.

A structured deformation is a pair $(g, G) \in S B V \times L^{1}$ with
$D g=\nabla g \mathcal{L}^{N}+[g] \otimes \nu \mathcal{H}^{N-1}$.
Approximation Theorem: there exists $f_{n} \in S B V$ such that

$$
f_{n} \xrightarrow{L^{1}} g \quad \text { and } \quad \nabla f_{n} \xrightarrow{\mathcal{M}} G .
$$

[^3]
Some examples of Structured Deformations Structured Deformations are limits of simple deformations.

Some examples of Structured Deformations

 Structured Deformations are limits of simple deformations.- broken ramp: $N=1, \Omega=(0,1), \kappa=\emptyset, g(x)=2 x$, and $G(x)=1$.

Some examples of Structured Deformations

 Structured Deformations are limits of simple deformations.- broken ramp: $N=1, \Omega=(0,1), \kappa=\emptyset, g(x)=2 x$, and $G(x)=1$. Take $f_{n}(x):=x+\frac{k}{n}$, for $\frac{k}{n} \leqslant x<\frac{k+1}{n}$ and $k=0, \ldots, n-1$.

Some examples of Structured Deformations

 Structured Deformations are limits of simple deformations.- broken ramp: $N=1, \Omega=(0,1), \kappa=\emptyset, g(x)=2 x$, and $G(x)=1$. Take $f_{n}(x):=x+\frac{k}{n}$, for $\frac{k}{n} \leqslant x<\frac{k+1}{n}$ and $k=0, \ldots, n-1$. Then, $f_{n}(x) \rightarrow 2 x, \nabla f_{n}(x)=1$ and $D f_{n}=1 \mathcal{L}^{1}+\sum_{k=1}^{n-1} \frac{1}{k} \delta_{k / n}$.

Some examples of Structured Deformations

 Structured Deformations are limits of simple deformations.- broken ramp: $N=1, \Omega=(0,1), \kappa=\emptyset, g(x)=2 x$, and $G(x)=1$. Take $f_{n}(x):=x+\frac{k}{n}$, for $\frac{k}{n} \leqslant x<\frac{k+1}{n}$ and $k=0, \ldots, n-1$. Then, $f_{n}(x) \rightarrow 2 x, \nabla f_{n}(x)=1$ and $D f_{n}=1 \mathcal{L}^{1}+\sum_{k=1}^{n-1} \frac{1}{k} \delta_{k / n}$.

Some examples of Structured Deformations

 Structured Deformations are limits of simple deformations.- broken ramp: $N=1, \Omega=(0,1), \kappa=\emptyset, g(x)=2 x$, and $G(x)=1$. Take $f_{n}(x):=x+\frac{k}{n}$, for $\frac{k}{n} \leqslant x<\frac{k+1}{n}$ and $k=0, \ldots, n-1$. Then, $f_{n}(x) \rightarrow 2 x, \nabla f_{n}(x)=1$ and $D f_{n}=1 \mathcal{L}^{1}+\sum_{k=1}^{n-1} \frac{1}{k} \delta_{k / n}$.

Some examples of Structured Deformations

 Structured Deformations are limits of simple deformations.- broken ramp: $N=1, \Omega=(0,1), \kappa=\emptyset, g(x)=2 x$, and $G(x)=1$. Take $f_{n}(x):=x+\frac{k}{n}$, for $\frac{k}{n} \leqslant x<\frac{k+1}{n}$ and $k=0, \ldots, n-1$. Then, $f_{n}(x) \rightarrow 2 x, \nabla f_{n}(x)=1$ and $D f_{n}=1 \mathcal{L}^{1}+\sum_{k=1}^{n-1} \frac{1}{k} \delta_{k / n}$.

Some examples of Structured Deformations

 Structured Deformations are limits of simple deformations.- broken ramp: $N=1, \Omega=(0,1), \kappa=\emptyset, g(x)=2 x$, and $G(x)=1$. Take $f_{n}(x):=x+\frac{k}{n}$, for $\frac{k}{n} \leqslant x<\frac{k+1}{n}$ and $k=0, \ldots, n-1$. Then, $f_{n}(x) \rightarrow 2 x, \nabla f_{n}(x)=1$ and $D f_{n}=1 \mathcal{L}^{1}+\sum_{k=1}^{n-1} \frac{1}{k} \delta_{k / n}$.

Some examples of Structured Deformations

 Structured Deformations are limits of simple deformations.- broken ramp: $N=1, \Omega=(0,1), \kappa=\emptyset, g(x)=2 x$, and $G(x)=1$. Take $f_{n}(x):=x+\frac{k}{n}$, for $\frac{k}{n} \leqslant x<\frac{k+1}{n}$ and $k=0, \ldots, n-1$. Then, $f_{n}(x) \rightarrow 2 x, \nabla f_{n}(x)=1$ and $D f_{n}=1 \mathcal{L}^{1}+\sum_{k=1}^{n-1} \frac{1}{k} \delta_{k / n}$.

Some examples of Structured Deformations

 Structured Deformations are limits of simple deformations.- broken ramp: $N=1, \Omega=(0,1), \kappa=\emptyset, g(x)=2 x$, and $G(x)=1$. Take $f_{n}(x):=x+\frac{k}{n}$, for $\frac{k}{n} \leqslant x<\frac{k+1}{n}$ and $k=0, \ldots, n-1$. Then, $f_{n}(x) \rightarrow 2 x, \nabla f_{n}(x)=1$ and $D f_{n}=1 \mathcal{L}^{1}+\sum_{k=1}^{n-1} \frac{1}{k} \delta_{k / n}$.

- deck of cards: $N=3, \Omega=(0,1)^{3}, \kappa=\emptyset, g(x)=\left(x_{1}+x_{3}, x_{2}, x_{3}\right)$, and $G(x)=\mathbb{I}$.

Some examples of Structured Deformations

 Structured Deformations are limits of simple deformations.- broken ramp: $N=1, \Omega=(0,1), \kappa=\emptyset, g(x)=2 x$, and $G(x)=1$. Take $f_{n}(x):=x+\frac{k}{n}$, for $\frac{k}{n} \leqslant x<\frac{k+1}{n}$ and $k=0, \ldots, n-1$. Then, $f_{n}(x) \rightarrow 2 x, \nabla f_{n}(x)=1$ and $D f_{n}=1 \mathcal{L}^{1}+\sum_{k=1}^{n-1} \frac{1}{k} \delta_{k / n}$.

- deck of cards: $N=3, \Omega=(0,1)^{3}, \kappa=\emptyset, g(x)=\left(x_{1}+x_{3}, x_{2}, x_{3}\right)$, and $G(x)=\mathbb{I}$. Take $f_{n}(x):=\left(x_{1}+\frac{k}{n}, x_{2}, x_{3}\right)$, for $\frac{k}{n} \leqslant x_{3}<\frac{k+1}{n}$ and $k=0, \ldots, n-1$.

Some examples of Structured Deformations

 Structured Deformations are limits of simple deformations.- broken ramp: $N=1, \Omega=(0,1), \kappa=\emptyset, g(x)=2 x$, and $G(x)=1$. Take $f_{n}(x):=x+\frac{k}{n}$, for $\frac{k}{n} \leqslant x<\frac{k+1}{n}$ and $k=0, \ldots, n-1$. Then, $f_{n}(x) \rightarrow 2 x, \nabla f_{n}(x)=1$ and $D f_{n}=1 \mathcal{L}^{1}+\sum_{k=1}^{n-1} \frac{1}{k} \delta_{k / n}$.

- deck of cards: $N=3, \Omega=(0,1)^{3}, \kappa=\emptyset, g(x)=\left(x_{1}+x_{3}, x_{2}, x_{3}\right)$, and $G(x)=\mathbb{I}$. Take $f_{n}(x):=\left(x_{1}+\frac{k}{n}, x_{2}, x_{3}\right)$, for $\frac{k}{n} \leqslant x_{3}<\frac{k+1}{n}$ and $k=0, \ldots, n-1$. Then, $f_{n}(x) \rightarrow g(x), \nabla f_{n}(x)=\mathbb{I}$ and $D f_{n}=\mathbb{I} \mathcal{L}^{3}+\sum_{k=1}^{n-1} \frac{1}{k} \delta_{k / n}\left(x_{3}\right) e_{1} \otimes e_{3}$.

More on Disarrangements

From the examples it should be clear (and this can be formalized) that the singular part $D^{s} f_{n}$ (supported on the jump set $S\left(f_{n}\right)$) diffuses in the limit to generate volume energy (supported on the bulk).

More on Disarrangements

From the examples it should be clear (and this can be formalized) that the singular part $D^{s} f_{n}$ (supported on the jump set $S\left(f_{n}\right)$) diffuses in the limit to generate volume energy (supported on the bulk). $\mathcal{H}^{N-1}\left(S\left(f_{n}\right)\right) \rightarrow \infty$, but $\left|D^{s} f_{n}\right|(\Omega)<+\infty$.

More on Disarrangements

From the examples it should be clear (and this can be formalized) that the singular part $D^{s} f_{n}$ (supported on the jump set $S\left(f_{n}\right)$) diffuses in the limit to generate volume energy (supported on the bulk). $\mathcal{H}^{N-1}\left(S\left(f_{n}\right)\right) \rightarrow \infty$, but $\left|D^{s} f_{n}\right|(\Omega)<+\infty$.

Singularities are essentially captured by M and its derivatives.

More on Disarrangements

From the examples it should be clear (and this can be formalized) that the singular part $D^{s} f_{n}$ (supported on the jump set $S\left(f_{n}\right)$) diffuses in the limit to generate volume energy (supported on the bulk). $\mathcal{H}^{N-1}\left(S\left(f_{n}\right)\right) \rightarrow \infty$, but $\left|D^{s} f_{n}\right|(\Omega)<+\infty$. Singularities are essentially captured by M and its derivatives. If G and M provide information about plastic deformations, M and curl M allow to describe the Burgers vectors and the dislocation density field in a body containing defects.

So, $M=\nabla g-G$ is a measurement of how non classical a deformation is.

Energies

Typical energies of interest in this context are of the form

$$
E(u)=\int_{\Omega} W\left(\nabla u, \nabla^{2} u\right)+\int_{S(u)} \psi_{1}\left([u], \nu_{u}\right)+\int_{S(\nabla u)} \psi_{2}\left([\nabla u], \nu_{\nabla u}\right),
$$

with growth and coercivity assumptions on the densities

Energies

Typical energies of interest in this context are of the form

$$
E(u)=\int_{\Omega} W\left(\nabla u, \nabla^{2} u\right)+\int_{S(u)} \psi_{1}\left([u], \nu_{u}\right)+\int_{S(\nabla u)} \psi_{2}\left([\nabla u], \nu_{\nabla u}\right),
$$

with growth and coercivity assumptions on the densities - which in general fail to be convex

Energies

Typical energies of interest in this context are of the form

$$
E(u)=\int_{\Omega} W\left(\nabla u, \nabla^{2} u\right)+\int_{S(u)} \psi_{1}\left([u], \nu_{u}\right)+\int_{S(\nabla u)} \psi_{2}\left([\nabla u], \nu_{\nabla u}\right),
$$

with growth and coercivity assumptions on the densities - which in general fail to be convex \rightarrow relaxation.

Energies

Typical energies of interest in this context are of the form

$$
E(u)=\int_{\Omega} W\left(\nabla u, \nabla^{2} u\right)+\int_{S(u)} \psi_{1}\left([u], \nu_{u}\right)+\int_{S(\nabla u)} \psi_{2}\left([\nabla u], \nu_{\nabla u}\right),
$$

with growth and coercivity assumptions on the densities - which in general fail to be convex \rightarrow relaxation.
The generality of such energies allows to model many physical phenomena:

Energies

Typical energies of interest in this context are of the form

$$
E(u)=\int_{\Omega} W\left(\nabla u, \nabla^{2} u\right)+\int_{S(u)} \psi_{1}\left([u], \nu_{u}\right)+\int_{S(\nabla u)} \psi_{2}\left([\nabla u], \nu_{\nabla u}\right),
$$

with growth and coercivity assumptions on the densities - which in general fail to be convex \rightarrow relaxation.
The generality of such energies allows to model many physical phenomena:

- $W(\xi, A)=W(\xi)=\frac{1}{2}|\xi|^{2}, \psi_{1}=\psi_{2}=0$: elasticity;

Energies

Typical energies of interest in this context are of the form

$$
E(u)=\int_{\Omega} W\left(\nabla u, \nabla^{2} u\right)+\int_{S(u)} \psi_{1}\left([u], \nu_{u}\right)+\int_{S(\nabla u)} \psi_{2}\left([\nabla u], \nu_{\nabla u}\right),
$$

with growth and coercivity assumptions on the densities - which in general fail to be convex \rightarrow relaxation.
The generality of such energies allows to model many physical phenomena:

- $W(\xi, A)=W(\xi)=\frac{1}{2}|\xi|^{2}, \psi_{1}=\psi_{2}=0$: elasticity;
- $W(\xi, A)=W(\xi)=\frac{1}{2}|\xi|^{2}, \psi_{1}=1, \psi_{2}=0$: Griffith's model for fractures;

Energies

Typical energies of interest in this context are of the form

$$
E(u)=\int_{\Omega} W\left(\nabla u, \nabla^{2} u\right)+\int_{S(u)} \psi_{1}\left([u], \nu_{u}\right)+\int_{S(\nabla u)} \psi_{2}\left([\nabla u], \nu_{\nabla u}\right),
$$

with growth and coercivity assumptions on the densities - which in general fail to be convex \rightarrow relaxation.
The generality of such energies allows to model many physical phenomena:

- $W(\xi, A)=W(\xi)=\frac{1}{2}|\xi|^{2}, \psi_{1}=\psi_{2}=0$: elasticity;
- $W(\xi, \boldsymbol{A})=W(\xi)=\frac{1}{2}|\xi|^{2}, \psi_{1}=1, \psi_{2}=0$: Griffith's model for fractures;
- W depending on A includes bending effects.

Scope - II

TII

Scope - II

Programme: do the two relaxation procedures and find an integral representation.

Scope - II

Programme: do the two relaxation procedures and find an integral representation.
Questions: (a) how are the two doubly relaxed energies related to one another (is the diagram a lozenge)?

Scope - II

Programme: do the two relaxation procedures and find an integral representation.
Questions: (a) how are the two doubly relaxed energies related to one another (is the diagram a lozenge)?
(b) Does a simultaneous relaxation procedure yield a lower energy (what about a central path)?

Relaxation

Relaxing the energy E means to compute
$I(g, G, \Gamma):=\inf _{\left\{u_{n}\right\} \subset S B V^{2}}\left\{\liminf _{n \rightarrow \infty} E\left(u_{n}\right): u_{n} \xrightarrow{L^{1}} g, \nabla u_{n} \xrightarrow{L^{1}} G, \nabla^{2} u_{n} \xrightarrow{*} \Gamma\right\}$

Relaxation

Relaxing the energy E means to compute
$I(g, G, \Gamma):=\inf _{\left\{u_{n}\right\} \subset S B V^{2}}\left\{\liminf _{n \rightarrow \infty} E\left(u_{n}\right): u_{n} \xrightarrow{L^{1}} g, \nabla u_{n} \xrightarrow{L^{1}} G, \nabla^{2} u_{n} \xrightarrow{*} \Gamma\right\}$
and possibly to get a representation formula, where the bulk and surface densities are obtained by a cell formula, ${ }^{5}$ derived by a blow-up method. ${ }^{6}$

[^4]
Relaxation

Relaxing the energy E means to compute
$I(g, G, \Gamma):=\inf _{\left\{u_{n}\right\} \subset S B V^{2}}\left\{\liminf _{n \rightarrow \infty} E\left(u_{n}\right): u_{n} \xrightarrow{L^{1}} g, \nabla u_{n} \xrightarrow{L^{1}} G, \nabla^{2} u_{n} \xrightarrow{*} \Gamma\right\}$
and possibly to get a representation formula,where the bulk and surface densities are obtained by a cell formula, ${ }^{5}$ derived by a blow-up method. ${ }^{6}$

In the formula above, we are looking for the most economical way to approximate the (second-order) ${ }^{7}$ structured deformation (g, G, Γ) by means of more regular deformations.

[^5]
Relaxation à la Choksi-Fonseca - I

The relaxation of an energy like

$$
E(u):=\int_{\Omega} W(\nabla u) \mathrm{d} \mathcal{L}^{N}+\int_{S(u) \cap \Omega} \psi([u], \nu(u)) \mathrm{d} \mathcal{H}^{N-1},
$$

Relaxation à la Choksi-Fonseca - I

The relaxation of an energy like

$$
E(u):=\int_{\Omega} W(\nabla u) \mathrm{d} \mathcal{L}^{N}+\int_{S(u) \cap \Omega} \psi([u], \nu(u)) \mathrm{d} \mathcal{H}^{N-1},
$$

leads to the representation formula

$$
I(g, G)=\int_{\Omega} H(\nabla g, G) \mathrm{d} \mathcal{L}^{N}+\int_{S(g) \cap \Omega} h([g], \nu(g)) \mathrm{d} \mathcal{H}^{N-1}
$$

Relaxation à la Choksi-Fonseca - II

The densities H and h are given by

$$
\begin{aligned}
H(A, B):= & \inf \left\{\int_{Q} W(\nabla u) \mathrm{d} \mathcal{L}^{N}+\int_{S(u) \cap Q} \psi([u], \nu(u)) \mathrm{d} \mathcal{H}^{N-1}:\right. \\
& \left.u \in \operatorname{SBV}\left(Q ; \mathbb{R}^{N}\right), u_{\mid \partial Q}(x)=A x,|\nabla u| \in L^{p}(Q), \int_{Q} \nabla u=B\right\},
\end{aligned}
$$

Relaxation à la Choksi-Fonseca - II

The densities H and h are given by

$$
\begin{aligned}
& H(A, B):=\inf \left\{\int_{Q} W(\nabla u) \mathrm{d} \mathcal{L}^{N}+\int_{S(u) \cap Q} \psi([u], \nu(u)) \mathrm{d} \mathcal{H}^{N-1}:\right. \\
& \left.u \in \operatorname{SBV}\left(Q ; \mathbb{R}^{N}\right), u_{\mid \partial Q}(x)=A x,|\nabla u| \in L^{p}(\boldsymbol{Q}), \int_{Q} \nabla u=B\right\}, \\
& h(\xi, \eta):=\inf \left\{\int_{S(u) \cap Q_{\eta}} \psi([u], \nu(u)) \mathrm{d} \mathcal{H}^{N-1}: u \in \operatorname{SBV}\left(Q_{\eta} ; \mathbb{R}^{N}\right),\right. \\
& \left.u_{\mid \partial Q_{\eta}}(x)=u_{\xi, \eta}, \nabla u=0 \text { a.e. }\right\},
\end{aligned}
$$

Relaxation à la Choksi-Fonseca - II

The densities H and h are given by

$$
\begin{gathered}
H(A, B):=\inf \left\{\int_{Q} W(\nabla u) \mathrm{d} \mathcal{L}^{N}+\int_{S(u) \cap Q} \psi([u], \nu(u)) \mathrm{d} \mathcal{H}^{N-1}:\right. \\
\left.u \in \operatorname{SBV}\left(Q ; \mathbb{R}^{N}\right), u_{\mid \partial Q}(x)=A x,|\nabla u| \in L^{p}(\boldsymbol{Q}), \int_{Q} \nabla u=B\right\}, \\
h(\xi, \eta):=\inf \left\{\int_{S(u) \cap Q_{\eta}} \psi([u], \nu(u)) \mathrm{d} \mathcal{H}^{N-1}: u \in S B V\left(Q_{\eta} ; \mathbb{R}^{N}\right),\right. \\
\left.u_{\mid \partial Q_{\eta}}(x)=u_{\xi, \eta}, \nabla u=0 \text { a.e. }\right\},
\end{gathered}
$$

where

$$
u_{\xi, \eta}(x):= \begin{cases}\xi & \text { if } 0 \leqslant x \cdot \eta<1 / 2 \\ 0 & \text { if }-1 / 2<x \cdot \eta<0 .\end{cases}
$$

Dimension reduction in the context of SD^{8}

$$
E_{\varepsilon}(u):=\int_{\Omega_{\varepsilon}} W_{3 d}(\nabla u) \mathrm{d} x+\int_{\Omega_{\varepsilon} \cap S(u)} h_{3 d}([u], \nu(u)) \mathrm{d} \mathcal{H}^{2}
$$

for $u \in \operatorname{SBV}\left(\Omega_{\varepsilon} ; \mathbb{R}^{3}\right)$, with $\Omega_{\varepsilon}:=\omega \times\left(-\frac{\varepsilon}{2}, \frac{\varepsilon}{2}\right)$.

Dimension reduction in the context of SD^{8}

$$
E_{\varepsilon}(u):=\int_{\Omega_{\varepsilon}} W_{3 d}(\nabla u) \mathrm{d} x+\int_{\Omega_{\varepsilon} \cap S(u)} h_{3 d}([u], \nu(u)) \mathrm{d} \mathcal{H}^{2}
$$

for $u \in S B V\left(\Omega_{\varepsilon} ; \mathbb{R}^{3}\right)$, with $\Omega_{\varepsilon}:=\omega \times\left(-\frac{\varepsilon}{2}, \frac{\varepsilon}{2}\right)$.

Left-hand side: first dim. red., then structured deformations; Right-hand side: first structured deformations, then dim. red.

Hypotheses on the energy densities

We assume that:
$\left(H_{1}\right)$ There exists a constant $c_{W}>0$ such that growth conditions from above and below are satisfied

$$
\begin{gathered}
\frac{1}{c_{W}}|A|^{p} \leqslant W_{3 d}(A) \\
\left|W_{3 d}(A)-W_{3 d}(B)\right| \leqslant c_{W}|A-B|\left(1+|A|^{p-1}+|B|^{p-1}\right),
\end{gathered}
$$

for any $A, B \in \mathbb{R}^{3 \times 3}$, and for some $p>1$.

Hypotheses on the energy densities

We assume that:
$\left(H_{1}\right)$ There exists a constant $c_{W}>0$ such that growth conditions from above and below are satisfied

$$
\begin{gathered}
\frac{1}{c_{W}}|A|^{p} \leqslant W_{3 d}(A), \\
\left|W_{3 d}(A)-W_{3 d}(B)\right| \leqslant c_{W}|A-B|\left(1+|A|^{p-1}+|B|^{p-1}\right),
\end{gathered}
$$

for any $A, B \in \mathbb{R}^{3 \times 3}$, and for some $p>1$.
$\left(H_{2}\right)$ There exists a constant $c_{h}>0$, such that for all $(\lambda, \nu) \in \mathbb{R}^{3} \times \mathbb{S}^{2}$

$$
\frac{1}{c_{h}}|\lambda| \leqslant h_{3 d}(\lambda, \nu) \leqslant c_{h}|\lambda| .
$$

$\left(H_{3}\right) h_{3 d}(\cdot, \nu)$ is positively 1-homogeneous: for all $t>0, \lambda \in \mathbb{R}^{3}$

$$
h_{3 d}(t \lambda, \nu)=t h_{3 d}(\lambda, \nu) .
$$

$\left(H_{4}\right) h_{3 d}(\cdot, \nu)$ is subadditive: for all $\lambda_{1}, \lambda_{2} \in \mathbb{R}^{3}$

$$
h_{3 d}\left(\lambda_{1}+\lambda_{2}, \nu\right) \leqslant h_{3 d}\left(\lambda_{1}, \nu\right)+h_{3 d}\left(\lambda_{2}, \nu\right) .
$$

Dimension reduction

Rescale by ε in x_{3} and consider the functional $F_{\varepsilon}(u)$

$$
\frac{E_{\varepsilon}(u)}{\varepsilon}=\int_{\Omega} W_{3 d}\left(\nabla_{\alpha} u \left\lvert\, \frac{\nabla_{3} u}{\varepsilon}\right.\right) \mathrm{d} x+\int_{\Omega \cap S(u)} h_{3 d}\left([u], \nu_{\alpha}(u) \left\lvert\, \frac{\nu_{3}(u)}{\varepsilon}\right.\right) \mathrm{d} \mathcal{H}^{2}(x) .
$$

Dimension reduction

Rescale by ε in x_{3} and consider the functional $F_{\varepsilon}(u)$

$$
\frac{E_{\varepsilon}(u)}{\varepsilon}=\int_{\Omega} W_{3 d}\left(\nabla_{\alpha} u \left\lvert\, \frac{\nabla_{3} u}{\varepsilon}\right.\right) \mathrm{d} x+\int_{\Omega \cap S(u)} h_{3 d}\left([u], \nu_{\alpha}(u) \left\lvert\, \frac{\nu_{3}(u)}{\varepsilon}\right.\right) \mathrm{d} \mathcal{H}^{2}(x) .
$$

The coercivity assumption grants boundedness of the gradients in L^{p}, so that $\varepsilon_{n}^{-1} \nabla_{3} u_{n}$ has a weak limit $d \in L^{p}\left(\Omega ; \mathbb{R}^{3}\right)$. Therefore, given $(\bar{u}, \bar{d}) \in S B V\left(\omega ; \mathbb{R}^{3}\right) \times L^{p}\left(\omega ; \mathbb{R}^{3}\right)$, let

$$
\begin{gathered}
\mathcal{F}_{3 d, 2 d}(\bar{u}, \bar{d}):=\inf \left\{\liminf _{n \rightarrow \infty} F_{\varepsilon_{n}}\left(u_{n}\right): u_{n} \in S B V\left(\Omega ; \mathbb{R}^{3}\right), u_{n} \xrightarrow{L^{1}\left(\Omega ; \mathbb{R}^{3}\right)} \bar{u}\right. \\
\left.\int_{I} \frac{\nabla_{3} u_{n}}{\varepsilon_{n}} \mathrm{~d} x_{3} \rightharpoonup \bar{d} \operatorname{in} L^{p}\left(\omega ; \mathbb{R}^{3}\right), \nu\left(u_{n}\right) \cdot e_{3}=0\right\}
\end{gathered}
$$

Dimension reduction

Rescale by ε in x_{3} and consider the functional $F_{\varepsilon}(u)$

$$
\frac{E_{\varepsilon}(u)}{\varepsilon}=\int_{\Omega} W_{3 d}\left(\nabla_{\alpha} u \left\lvert\, \frac{\nabla_{3} u}{\varepsilon}\right.\right) \mathrm{d} x+\int_{\Omega \cap S(u)} h_{3 d}\left([u], \nu_{\alpha}(u) \left\lvert\, \frac{\nu_{3}(u)}{\varepsilon}\right.\right) \mathrm{d} \mathcal{H}^{2}(x) .
$$

The coercivity assumption grants boundedness of the gradients in L^{p}, so that $\varepsilon_{n}^{-1} \nabla_{3} u_{n}$ has a weak limit $d \in L^{p}\left(\Omega ; \mathbb{R}^{3}\right)$. Therefore, given $(\bar{u}, \bar{d}) \in S B V\left(\omega ; \mathbb{R}^{3}\right) \times L^{p}\left(\omega ; \mathbb{R}^{3}\right)$, let

$$
\begin{aligned}
\mathcal{F}_{3 d, 2 d}(\bar{u}, \bar{d}): & =\inf \left\{\liminf _{n \rightarrow \infty} F_{\varepsilon_{n}}\left(u_{n}\right): u_{n} \in S B V\left(\Omega ; \mathbb{R}^{3}\right), u_{n} \xrightarrow{L^{1}\left(\Omega ; \mathbb{R}^{3}\right)} \bar{u}\right. \\
& \left.\int_{I} \frac{\nabla_{3} u_{n}}{\varepsilon_{n}} \mathrm{~d} x_{3} \rightharpoonup \bar{d} \operatorname{in} L^{p}\left(\omega ; \mathbb{R}^{3}\right), \nu\left(u_{n}\right) \cdot e_{3}=0\right\}
\end{aligned}
$$

Theorem (Carita-Matias-M.-Owen (2018))

$\mathcal{F}_{3 d, 2 d}(\bar{u}, \bar{d})=\int_{\omega} W_{3 d, 2 d}(\nabla \bar{u}, \bar{d}) \mathrm{d} x_{\alpha}+\int_{\omega \cap S(\bar{u})} h_{3 d, 2 d}([\bar{u}], \nu(\bar{u})) \mathrm{d} \mathcal{H}^{1}\left(x_{\alpha}\right)$.

Integral representation

Theorem (Carita-Matias-M.-Owen (2018) - cont'd)

$W_{3 d, 2 d}: \mathbb{R}^{3 \times 2} \times \mathbb{R}^{3} \rightarrow[0,+\infty)$ and $h_{3 d, 2 d}: \mathbb{R}^{3} \times \mathbb{S}^{1} \rightarrow[0,+\infty)$ are $W_{3 d, 2 d}(A, d)=\inf \left\{\int_{Q^{\prime}} W_{3 d}\left(\nabla_{\alpha} u \mid z\right) \mathrm{d} x_{\alpha}+\int_{Q^{\prime} \cap S(u)} h_{3 d}([u], \tilde{\nu}(u)) \mathrm{d} \mathcal{H}^{1}\left(x_{\alpha}\right):\right.$
$\left.u \in S B V\left(Q^{\prime} ; \mathbb{R}^{3}\right), z \in L_{Q^{\prime}-\operatorname{per}}^{p}\left(\mathbb{R}^{2} ; \mathbb{R}^{3}\right),\left.u\right|_{\partial Q^{\prime}}\left(x_{\alpha}\right)=A x_{\alpha}, \int_{Q^{\prime}} z \mathrm{~d} x_{\alpha}=d\right\}$,

Integral representation

Theorem (Carita-Matias-M.-Owen (2018) - cont'd)

$W_{3 d, 2 d}: \mathbb{R}^{3 \times 2} \times \mathbb{R}^{3} \rightarrow[0,+\infty)$ and $h_{3 d, 2 d}: \mathbb{R}^{3} \times \mathbb{S}^{1} \rightarrow[0,+\infty)$ are

$$
\begin{gathered}
W_{3 d, 2 d}(A, d)=\inf \left\{\int_{Q^{\prime}} W_{3 d}\left(\nabla_{\alpha} u \mid z\right) \mathrm{d} x_{\alpha}+\int_{Q^{\prime} \cap S(u)} h_{3 d}([u], \tilde{\nu}(u)) \mathrm{d} \mathcal{H}^{1}\left(x_{\alpha}\right):\right. \\
\left.u \in S B V\left(Q^{\prime} ; \mathbb{R}^{3}\right), z \in L_{Q^{\prime}-\mathrm{per}}^{p}\left(\mathbb{R}^{2} ; \mathbb{R}^{3}\right),\left.u\right|_{\partial Q^{\prime}}\left(x_{\alpha}\right)=A x_{\alpha}, \int_{Q^{\prime}} z \mathrm{~d} x_{\alpha}=d\right\}, \\
h_{3 d, 2 d}(\lambda, \eta)=\inf \left\{\int_{Q_{\eta}^{\prime} \cap S(u)} h_{3 d}([u], \tilde{\nu}(u)) \mathrm{d} \mathcal{H}^{1}\left(x_{\alpha}\right): u \in S B V\left(Q_{\eta}^{\prime} ; \mathbb{R}^{3}\right),\right. \\
\left.\left.u\right|_{\partial Q_{\eta}^{\prime}}\left(x_{\alpha}\right)=\gamma_{\lambda, \eta}\left(x_{\alpha}\right), \nabla u=0, \text { a.e. }\right\} ;
\end{gathered}
$$

with

$$
\gamma_{\lambda, \eta}\left(x_{\alpha}\right):= \begin{cases}\lambda & \text { if } 0 \leqslant x_{\alpha} \cdot \eta<\frac{1}{2} \\ 0 & \text { if }-\frac{1}{2}<x_{\alpha} \cdot \eta<0\end{cases}
$$

About the proof

The proof is obtained via blow-up:

TII

About the proof

The proof is obtained via blow-up:

- we prove upper bounds for the Radon-Nikodým derivatives of $\mathcal{F}_{3 d, 2 d}(\bar{u}, \bar{d})$ with respect to \mathcal{L}^{2} and $\mathcal{H}^{1}\left\llcorner S(\bar{u})\right.$ at $x_{0} \in \omega$:

About the proof

The proof is obtained via blow-up:

- we prove upper bounds for the Radon-Nikodým derivatives of $\mathcal{F}_{3 d, 2 d}(\bar{u}, \bar{d})$ with respect to \mathcal{L}^{2} and $\mathcal{H}^{1}\left\llcorner S(\bar{u})\right.$ at $x_{0} \in \omega$:

$$
\frac{\mathrm{d} \mathcal{F}_{3 d, 2 d}(\bar{u}, \bar{d})}{\mathrm{d} \mathcal{L}^{2}}\left(x_{0}\right) \leqslant W_{3 d, 2 d}\left(\nabla_{\alpha} \bar{u}\left(x_{0}\right), \bar{d}\left(x_{0}\right)\right), \frac{\mathrm{d} \mathcal{F}_{3 d, 2 d}(\bar{u}, \bar{d})}{\mathrm{d} \mathcal{H}^{1}\llcorner\boldsymbol{S}(\bar{u})}\left(x_{0}\right) \leqslant h_{3 d, 2 d}\left([\bar{u}]\left(x_{0}\right), \nu(\bar{u})\left(x_{0}\right)\right) .
$$

About the proof

The proof is obtained via blow-up:

- we prove upper bounds for the Radon-Nikodým derivatives of $\mathcal{F}_{3 d, 2 d}(\bar{u}, \bar{d})$ with respect to \mathcal{L}^{2} and $\mathcal{H}^{1}\left\llcorner S(\bar{u})\right.$ at $x_{0} \in \omega$:

$$
\frac{\mathrm{d} \mathcal{F}_{3 d, 2 d}(\bar{u}, \bar{d})}{\mathrm{d} \mathcal{L}^{2}}\left(x_{0}\right) \leqslant W_{3 d, 2 d}\left(\nabla_{\alpha} \bar{u}\left(x_{0}\right), \bar{d}\left(x_{0}\right)\right), \frac{\mathrm{d} \mathcal{F}_{3 d, 2 d}(\bar{u}, \bar{d})}{\mathrm{d} \mathcal{H}^{1}\llcorner\boldsymbol{S}(\bar{u})}\left(x_{0}\right) \leqslant h_{3 d, 2 d}\left([\bar{u}]\left(x_{0}\right), \nu(\bar{u})\left(x_{0}\right)\right) .
$$

- lower bounds for the Radon-Nikodým derivatives of μ, the weak-* limit of the measures μ_{n}

$$
\mu_{n}(B):=\int_{B \times I} W_{3 d}\left(\nabla_{\alpha} u_{n} \left\lvert\, \frac{\nabla_{3} u_{n}}{\varepsilon_{n}}\right.\right) \mathrm{d} x+\int_{(B \times I) \cap S\left(u_{n}\right)} h_{3 d}\left(\left[u_{n}\right], \tilde{\nu}\left(u_{n}\right)\right) \mathrm{d} \mathcal{H}^{2}(x)
$$

with respect to \mathcal{L}^{2} and $|[\bar{u}]| \mathcal{H}^{1}\llcorner S(\bar{u})$:

About the proof

The proof is obtained via blow-up:

- we prove upper bounds for the Radon-Nikodým derivatives of $\mathcal{F}_{3 d, 2 d}(\bar{u}, \bar{d})$ with respect to \mathcal{L}^{2} and $\mathcal{H}^{1}\left\llcorner S(\bar{u})\right.$ at $x_{0} \in \omega$:

$$
\frac{\mathrm{d} \mathcal{F}_{3 d, 2 d}(\bar{u}, \bar{d})}{\mathrm{d} \mathcal{L}^{2}}\left(x_{0}\right) \leqslant W_{3 d, 2 d}\left(\nabla_{\alpha} \bar{u}\left(x_{0}\right), \bar{d}\left(x_{0}\right)\right), \frac{\mathrm{d} \mathcal{F}_{3 d, 2 d}(\bar{u}, \bar{d})}{\mathrm{d} \mathcal{H}^{1}\llcorner\boldsymbol{S}(\bar{u})}\left(x_{0}\right) \leqslant h_{3 d, 2 d}\left([\bar{u}]\left(x_{0}\right), \nu(\bar{u})\left(x_{0}\right)\right) .
$$

- lower bounds for the Radon-Nikodým derivatives of μ, the weak-* limit of the measures μ_{n}

$$
\mu_{n}(B):=\int_{B \times I} W_{3 d}\left(\nabla_{\alpha} u_{n} \left\lvert\, \frac{\nabla_{3} u_{n}}{\varepsilon_{n}}\right.\right) \mathrm{d} x+\int_{(B \times I) \cap S\left(u_{n}\right)} h_{3 d}\left(\left[u_{n}\right], \tilde{\nu}\left(u_{n}\right)\right) \mathrm{d} \mathcal{H}^{2}(x) .
$$

with respect to \mathcal{L}^{2} and $|[\bar{u}]| \mathcal{H}^{1}\llcorner S(\bar{u})$:

$$
\frac{\mathrm{d} \mu}{\mathrm{~d} \mathcal{L}^{2}}\left(x_{0}\right) \geqslant W_{3 d, 2 d}\left(\nabla_{\alpha} \bar{u}\left(x_{0}\right), \bar{d}\left(x_{0}\right)\right), \frac{\mathrm{d} \mu}{\mathrm{~d}\left(|[\bar{u}]| \mathcal{H}^{1}\llcorner\boldsymbol{S}(\bar{u}))\right.}\left(x_{0}\right) \geqslant \frac{h_{3 d, 2 d}\left([\bar{u}]\left(x_{0}\right), \nu(\bar{u})\left(x_{0}\right)\right)}{|[\bar{u}]|\left(x_{0}\right)} .
$$

The doubly relaxed energies

Theorem (Carita-Matias-M.-Owen (2018))

The densities for the doubly relaxed energy are obtained:

The doubly relaxed energies

Theorem (Carita-Matias-M.-Owen (2018))

The densities for the doubly relaxed energy are obtained:
$\mathcal{F}_{3 d, 2 d, S D}(\bar{g}, \bar{G}, \bar{d})=\int_{\omega} W_{3 d, 2 d, S D}(\nabla \bar{g}, \bar{G}, \bar{d}) \mathrm{d} x_{\alpha}+\int_{\omega \cap S(\bar{g})} h_{3 d, 2 d, S D}([\bar{g}], \nu(\bar{g})) \mathrm{d} \mathcal{H}^{1}$,
$\mathcal{F}_{3 d, S D, 2 d}(\bar{g}, \bar{G}, \bar{d})=\int_{\omega} W_{3 d, S D, 2 d}(\nabla \bar{g}, \bar{G}, \bar{d}) \mathrm{d} x_{\alpha}+\int_{\omega \cap S(\bar{g})} h_{3 d, S D, 2 d}([\bar{g}], \nu(\bar{g})) \mathrm{d} \mathcal{H}^{1}$.

The doubly relaxed energies

Theorem (Carita-Matias-M.-Owen (2018))

The densities for the doubly relaxed energy are obtained:

$$
\begin{aligned}
& \mathcal{F}_{3 d, 2 d, S D}(\bar{g}, \bar{G}, \bar{d})=\int_{\omega} W_{3 d, 2 d, S D}(\nabla \bar{g}, \bar{G}, \bar{d}) \mathrm{d} x_{\alpha}+\int_{\omega \cap S(\bar{g})} h_{3 d, 2 d, S D}([\bar{g}], \nu(\bar{g})) \mathrm{d} \mathcal{H}^{1}, \\
& \mathcal{F}_{3 d, S D, 2 d}(\bar{g}, \bar{G}, \bar{d})=\int_{\omega} W_{3 d, S D, 2 d}(\nabla \bar{g}, \bar{G}, \bar{d}) \mathrm{d} x_{\alpha}+\int_{\omega \cap S(\bar{g})} h_{3 d, S D, 2 d}([\bar{g}], \nu(\bar{g})) \mathrm{d} \mathcal{H}^{1} .
\end{aligned}
$$

Recall that

$$
\frac{1}{\varepsilon_{n}} \int_{I} \nabla_{3} u_{n} \mathrm{~d} x_{3} \stackrel{L^{p}}{\rightharpoonup} \bar{d}:
$$

the vector \bar{d} emerges as the weak limit of the out-of-plane deformation gradient.

An example

Consider an initial energy E_{ε} in which the densities are $W_{3 d}=0$ and $h_{3 d}(\lambda, \nu)=|\lambda \cdot \nu|$.

Theorem (Carita-Matias-M.-Owen (2018))

Let $W_{3 d}=0$ and $h_{3 d}(\lambda, \nu)=|\lambda \cdot \nu|$. Then the two functionals $\mathcal{F}_{3 d, 2 d, S D}$ and $\mathcal{F}_{3 d, S D, 2 d}$ coincide (and neither one depends on \bar{d}):

$$
\mathcal{F}_{3 d, S D, 2 d}(\bar{g}, \bar{G}, \bar{d})=\widehat{\mathcal{F}}_{3 d, S D, 2 d}(\bar{g}, \bar{G})=\int_{\omega}|\operatorname{tr}(\widehat{\bar{\nabla}} \bar{g}-\widehat{\bar{G}})| \mathrm{d} x_{\alpha}+\int_{\omega \cap S(\bar{g})}|[\bar{g}] \cdot \tilde{v}(\bar{g})| \mathrm{d} \mathcal{H}^{1}\left(x_{\alpha}\right) .
$$

An example

Consider an initial energy E_{ε} in which the densities are $W_{3 d}=0$ and $h_{3 d}(\lambda, \nu)=|\lambda \cdot \nu|$.

Theorem (Carita-Matias-M.-Owen (2018))

Let $W_{3 d}=0$ and $h_{3 d}(\lambda, \nu)=|\lambda \cdot \nu|$. Then the two functionals $\mathcal{F}_{3 d, 2 d, S D}$ and $\mathcal{F}_{3 d, S D, 2 d}$ coincide (and neither one depends on \bar{d}):
$\mathcal{F}_{3 d, S D, 2 d}(\bar{g}, \bar{G}, \bar{d})=\widehat{\mathcal{F}}_{3 d, S D, 2 d}(\bar{g}, \bar{G})=\int_{\omega}|\operatorname{tr}(\widehat{\nabla \bar{g}}-\widehat{\bar{G}})| \mathrm{d} x_{\alpha}+\int_{\omega \cap S(\bar{g})}|[\bar{g}] \cdot \tilde{\nu}(\bar{g})| \mathrm{d} \mathcal{H}^{1}\left(x_{\alpha}\right)$.

The result is in agreement with previous results in the literature. ${ }^{9}$

```
9}\mathrm{ Owen, Paroni - ARMA (2015)
Barroso, Matias, M., Owen - MEMOCS (2017)
    Šilhavý - MEMOCS (2017)
```


Comparison with other relaxation procedures

 For a function $u \in S B V^{2}\left(\Omega_{\varepsilon} ; \mathbb{R}^{3}\right)$, consider the initial energy ${ }^{10}$$$
\begin{aligned}
E_{\varepsilon}^{M S}(u) & :=\int_{\Omega_{\varepsilon}} W\left(\nabla u, \nabla^{2} u\right) \mathrm{d} x+\int_{\Omega_{\varepsilon} \cap S(u)} \Psi_{1}([u], \nu(u)) \mathrm{d} \mathcal{H}^{2}(x) \\
& +\int_{\Omega_{\varepsilon} \cap S(\nabla u)} \Psi_{2}([\nabla u], \nu(\nabla u)) \mathrm{d} \mathcal{H}^{2}(x)
\end{aligned}
$$

Comparison with other relaxation procedures

 For a function $u \in S B V^{2}\left(\Omega_{\varepsilon} ; \mathbb{R}^{3}\right)$, consider the initial energy ${ }^{10}$$$
\begin{aligned}
E_{\varepsilon}^{M S}(u): & =\int_{\Omega_{\varepsilon}} W\left(\nabla u, \nabla^{2} u\right) \mathrm{d} x+\int_{\Omega_{\varepsilon} \cap S(u)} \Psi_{1}([u], \nu(u)) \mathrm{d} \mathcal{H}^{2}(x) \\
& +\int_{\Omega_{\varepsilon} \cap S(\nabla u)} \Psi_{2}([\nabla u], \nu(\nabla u)) \mathrm{d} \mathcal{H}^{2}(x)
\end{aligned}
$$

and the relaxation of the rescaled energy $J_{\varepsilon}(u):=\frac{1}{\varepsilon} E_{\varepsilon}^{M S}(u)$
$I(g, G, d):=\inf \left\{\liminf _{n \rightarrow \infty} J_{\varepsilon_{n}}\left(u_{n}\right): u_{n} \in S B V^{2}\left(\Omega ; \mathbb{R}^{3}\right), u_{n} \xrightarrow{L^{1}} g, \frac{1}{\varepsilon_{n}} \nabla_{3} u_{n} \xrightarrow{L^{1}} d, \nabla_{\alpha} u_{n} \xrightarrow{L^{1}} G\right\}$,

Theorem (Carita-Matias-M.-Owen (2018))

The simultaneous procedure yields a relaxed energy which is lower than the two sequential procedures.

Comparison with other relaxation procedures

 For a function $u \in S B V^{2}\left(\Omega_{\varepsilon} ; \mathbb{R}^{3}\right)$, consider the initial energy ${ }^{10}$$$
\begin{aligned}
E_{\varepsilon}^{M S}(u) & :=\int_{\Omega_{\varepsilon}} W\left(\nabla u, \nabla^{2} u\right) \mathrm{d} x+\int_{\Omega_{\varepsilon} \cap S(u)} \Psi_{1}([u], \nu(u)) \mathrm{d} \mathcal{H}^{2}(x) \\
& +\int_{\Omega_{\varepsilon} \cap S(\nabla u)} \Psi_{2}([\nabla u], \nu(\nabla u)) \mathrm{d} \mathcal{H}^{2}(x)
\end{aligned}
$$

and the relaxation of the rescaled energy $J_{\varepsilon}(u):=\frac{1}{\varepsilon} E_{\varepsilon}^{M S}(u)$
$I(g, G, d):=\inf \left\{\liminf _{n \rightarrow \infty} J_{\varepsilon_{n}}\left(u_{n}\right): u_{n} \in S B V^{2}\left(\Omega ; \mathbb{R}^{3}\right), u_{n} \xrightarrow{L^{1}} g, \frac{1}{\varepsilon_{n}} \nabla_{3} u_{n} \xrightarrow{L^{1}} d, \nabla_{\alpha} u_{n} \xrightarrow{L^{1}} G\right\}$,

Theorem (Carita-Matias-M.-Owen (2018))

The simultaneous procedure yields a relaxed energy which is lower than the two sequential procedures.
In fact, in the case $W_{3 d}=0$ and $h_{3 d}(\lambda, \nu)=|\lambda \cdot \nu|$, the relaxed energy is always equal to zero.

The functional I admits an integral representation $I=I_{1}+I_{2}$, where, for $(g, G) \in B V^{2}\left(\omega ; \mathbb{R}^{3}\right) \times B V\left(\omega ; \mathbb{R}^{3 \times 2}\right)$,

$$
I_{1}(g, G)=\int_{\omega} W_{1}(G-\nabla g) \mathrm{d} x_{\alpha}+\int_{\omega} W_{1}\left(-\frac{\mathrm{d} D^{c} g}{\mathrm{~d}\left|D^{c} g\right|}\right) \mathrm{d}\left|D^{c} g\right|\left(x_{\alpha}\right)+\int_{\omega \cap S(g)} \Gamma_{1}([g], \nu(g)) \mathrm{d} \mathcal{H}^{1}\left(x_{\alpha}\right)
$$

and for $(d, G) \in B V\left(\omega ; \mathbb{R}^{3}\right) \times B V\left(\omega ; \mathbb{R}^{3 \times 2}\right)$
$I_{2}(d, G)=\int_{\omega} W_{2}(d, G, \nabla d, \nabla G) \mathrm{d} x_{\alpha}+\int_{\omega} W_{2}^{\infty}\left(d, G, \frac{\mathrm{~d} D^{c}(d, G)}{\mathrm{d}\left|D^{c}(d, G)\right|}\right) \mathrm{d}\left|D^{c}(d, G)\right|+\int_{\omega \cap S((d, G))} \Gamma_{2}\left((d, G)^{+},(d, G)^{-}, \nu((d, G))\right) \mathrm{d} \mathcal{H}^{1}\left(x_{\alpha}\right)$
The energy densities of I_{1} are obtained as follows: for each $A \in \mathbb{R}^{3 \times 2}, \lambda \in \mathbb{R}^{3}$, and $\eta \in \mathbb{S}^{1}$,

$$
\begin{aligned}
W_{1}(A) & =\inf \left\{\int_{Q^{\prime} \cap S(u)} \bar{\Psi}_{1}([u], \nu(u)) \mathrm{d} \mathcal{H}^{1}\left(x_{\alpha}\right): u \in S B V\left(Q^{\prime} ; \mathbb{R}^{3}\right),\left.u\right|_{\partial Q^{\prime}}=0, \nabla u=\text { A a.e. }\right\} \\
\Gamma_{1}(\lambda, \eta) & =\inf \left\{\int_{Q_{\eta}^{\prime} \cap S(u)} \bar{\Psi}_{1}([u], \nu(u)) \mathrm{d} \mathcal{H}^{1}\left(x_{\alpha}\right): u \in \operatorname{SBV}\left(Q_{\eta}^{\prime} ; \mathbb{R}^{3}\right),\left.u\right|_{\partial Q_{\eta}^{\prime}}=\gamma_{\lambda, \eta}, \nabla u=0 \text { a.e. }\right\},
\end{aligned}
$$

with $\bar{\Psi}_{1}(\lambda, \nu):=\inf \left\{\Psi_{1}(\lambda,(\nu \mid t)): t \in \mathbb{R}\right\}$. For each $A \in \mathbb{R}^{3 \times 2}, B_{\beta} \in \mathbb{R}^{3 \times 3 \times 2}, \Lambda, \Theta \in \mathbb{R}^{3 \times 3 \times 2}$, and $\eta \in \mathbb{S}^{1}$,
$W_{2}\left(A, B_{\beta}\right)=\inf \left\{\int_{Q^{\prime}} \bar{W}(A, \nabla u) \mathrm{d} x_{\alpha}+\int_{Q^{\prime} \cap S(u)} \bar{\Psi}_{2}([u], \nu(u)) \mathrm{d} \mathcal{H}^{1}\left(x_{\alpha}\right): u \in S B V\left(Q^{\prime} ; \mathbb{R}^{3 \times 3}\right),\left.u_{i k}\right|_{\partial Q^{\prime}}=\sum_{j=1}^{2} B_{i j k} x_{j}\right\}$,
$\Gamma_{2}(\Lambda, \Theta, \eta)=\inf \left\{\int_{Q_{\eta}^{\prime}} \bar{W}^{\infty}(u, \nabla u) \mathrm{d} x_{\alpha}+\int_{Q_{\eta}^{\prime} \cap S(u)} \bar{\Psi}_{2}([u], \nu(u)) \mathrm{d} \mathcal{H}^{1}\left(x_{\alpha}\right): u \in S B V\left(Q_{\eta}^{\prime} ; \mathbb{R}^{3 \times 3}\right),\left.u\right|_{\partial Q_{\eta}^{\prime}}=u_{\Lambda, \Theta, \eta}\right\}$ where

$$
u_{\Lambda, \Theta, \eta}\left(x_{\alpha}\right):= \begin{cases}\Lambda & \text { if } 0 \leqslant x_{\alpha} \cdot \eta<1 / 2 \\ \Theta & \text { if }-1 / 2<x_{\alpha} \cdot \eta<0\end{cases}
$$

and with \bar{W} and $\bar{\Psi}_{2}$ as follows: decomposing $B \in \mathbb{R}^{3 \times 3 \times 3}$ into $\left(B_{\beta}, B_{3}\right) \in \mathbb{R}^{3 \times 3 \times 2} \times \mathbb{R}^{3 \times 3 \times 1}$ (i.e., B_{β} denotes $B_{i j k}$
with $k=1,2$), define $\bar{W}\left(A, B_{\beta}\right):=\inf \left\{W\left(A,\left(B_{\beta}, B_{3}\right)\right): B_{3} \in \mathbb{R}^{3 \times 3 \times 1}\right\}$, and for $\Lambda \in \mathbb{R}^{3 \times 3}$ and $\eta \in \mathbb{S}^{1}$, let $\bar{\Psi}_{2}(\Lambda, \eta):=\inf \left\{\Psi_{2}(\Lambda,(\eta \mid t)): t \in \mathbb{R}\right\}$.

Future Developments

- to find analogous results for $p=1$;

TIII

Future Developments

- to find analogous results for $p=1$;
- to look at higher order expansions, in the sense of Γ-convergence ${ }^{11}$ - or
- to look at other rescalings;

Future Developments

- to find analogous results for $p=1$;
- to look at higher order expansions, in the sense of Γ-convergence ${ }^{11}$ - or
- to look at other rescalings;
- to model complex systems, such as biological membranes ${ }^{12}$, incorporating shearing, tilting, thinning/thickening, bending effects;

[^6]
Future Developments

- to find analogous results for $p=1$;
- to look at higher order expansions, in the sense of Γ-convergence ${ }^{11}$ - or
- to look at other rescalings;
- to model complex systems, such as biological membranes ${ }^{12}$, incorporating shearing, tilting, thinning/thickening, bending effects;
- to study evolution problems.

[^7]
Future Developments

- to find analogous results for $p=1$;
- to look at higher order expansions, in the sense of Γ-convergence ${ }^{11}$ - or
- to look at other rescalings;
- to model complex systems, such as biological membranes ${ }^{12}$, incorporating shearing, tilting, thinning/thickening, bending effects;
- to study evolution problems.

Thank you for your attention!

[^8]π

[^0]: ${ }^{1}$ Deseri, Piccioni, Zurlo - Contin. Mech. Thermodyn. (2008)
 ${ }^{2}$ Le Dret, Raoult - J. Math. Pures Appl. (1995)
 Le Dret, Raoult - J. Nonlinear Sci. (1996) Braides, Fonseca - Appl. Math. Optim. (2001)

[^1]: ${ }^{3}$ Del Piero, Owen - ARMA (1993)
 ${ }^{4}$ Choksi, Fonseca - ARMA (1997)

[^2]: ${ }^{3}$ Del Piero, Owen - ARMA (1993) ${ }^{4}$ Choksi, Fonseca - ARMA (1997)

[^3]: ${ }^{3}$ Del Piero, Owen - ARMA (1993) ${ }^{4}$ Choksi, Fonseca - ARMA (1997)

[^4]: ${ }^{5}$ Choksi, Fonseca - ARMA (1997)
 ${ }^{6}$ Fonseca, Müller - SIAM J. Math. Anal. (1992)

[^5]: ${ }^{5}$ Choksi, Fonseca - ARMA (1997)
 ${ }^{6}$ Fonseca, Müller - SIAM J. Math. Anal. (1992)
 ${ }^{7}$ Barroso, Matias, M., Owen - ARMA (2017)

[^6]: ${ }^{11}$ Matias-M.-Owen-Zappale - in progress
 ${ }^{12}$ Deseri, Owen, Pocivavsek - in progress

[^7]: ${ }^{11}$ Matias-M.-Owen-Zappale - in progress

[^8]: ${ }^{11}$ Matias-M.-Owen-Zappale - in progress ${ }^{12}$ Deseri, Owen, Pocivavsek - in progress

