Dimension reduction in the context of structured deformations

Marco Morandotti

joint work with Graça Carita, José Matias, and David R. Owen

(Technische Universität München)

BIRS workshop Topics in the Calculus of Variations: Recent Advances and New Trends

22 May 2018

Scope - I

The scope of this research is to refine classical continuum theories of elastic bodies to broaden their range of applicability.

Scope - I

The scope of this research is to refine classical continuum theories of elastic bodies to broaden their range of applicability.

We consider two types of refinement, to

- (i) incorporate into a classical theory the effects of submacroscopic slips and separations (disarrangements);
- (ii) adapt the theory to the description of thin bodies.

Scope - I

The scope of this research is to refine classical continuum theories of elastic bodies to broaden their range of applicability.

We consider two types of refinement, to

- (i) incorporate into a classical theory the effects of submacroscopic slips and separations (disarrangements);
- (ii) adapt the theory to the description of thin bodies.

Examples are

- (i) finely layered bodies (stack of papers), granular bodies (pile of sand), bodies with defects (metal bar);
- (ii) membranes (sheet of rubber), thin plates (sheet of metal), fibered thin bodies (sheet of paper).

(日) (空) (日) (日) (日)

Dimension reduction

Dimension reduction is a way of adapting classical continuum theories of elastic bodies to thin objects.

Dimension reduction

Dimension reduction is a way of adapting classical continuum theories of elastic bodies to thin objects.

It usually involves a limit process in which one or two physical dimensions are shrunk to zero. Typical limit processes can be done either via Taylor expansion¹ or Γ -convergence.²

 ¹Deseri, Piccioni, Zurlo – Contin. Mech. Thermodyn. (2008)

 ²Le Dret, Raoult – J. Math. Pures Appl. (1995)

 Le Dret, Raoult – J. Nonlinear Sci. (1996)

 Braides, Fonseca – Appl. Math. Optim. (2001)

 Marco Morandotti (TUM)

 Dimension reduction and SD

 22 Mary 2018

 3/21

Dimension reduction

Dimension reduction is a way of adapting classical continuum theories of elastic bodies to thin objects.

It usually involves a limit process in which one or two physical dimensions are shrunk to zero. Typical limit processes can be done either via Taylor expansion¹ or Γ -convergence.²

Information about the microstructure can be lost in the dimension reduction procedure.

 ¹Deseri, Piccioni, Zurlo – Contin. Mech. Thermodyn. (2008)

 ²Le Dret, Raoult – J. Math. Pures Appl. (1995)

 Le Dret, Raoult – J. Nonlinear Sci. (1996)

 Braides, Fonseca – Appl. Math. Optim. (2001)

 Marco Morandotti (TUM)

 Dimension reduction and SD

 22 May 2018

 3/21

Introduced to provide a multiscale geometry that captures the contributions at the macrolevel of both smooth geometrical changes and non-smooth geometrical changes (disarrangements) at submacroscopic levels³.

Marco Morandotti (TUM)

Dimension reduction and SD

3 22 May 2018 4 / 21

► 4 3 ►

Introduced to provide a multiscale geometry that captures the contributions at the macrolevel of both smooth geometrical changes and non-smooth geometrical changes (disarrangements) at submacroscopic levels³. Revisited in the spirit of an energetic formulation – good for variational methods⁴.

³Del Piero, Owen – ARMA (1993) ⁴Choksi, Fonseca – ARMA (1997)

Marco Morandotti (TUM)

Dimension reduction and SD

Introduced to provide a multiscale geometry that captures the contributions at the macrolevel of both smooth geometrical changes and non-smooth geometrical changes (disarrangements) at submacroscopic levels³. Revisited in the spirit of an energetic formulation – good for variational methods⁴.

A structured deformation is a pair $(g,G) \in SBV \times L^1$ with $Dg = \nabla g \mathcal{L}^N + [g] \otimes \nu \mathcal{H}^{N-1}.$

³Del Piero, Owen – ARMA (1993) ⁴Choksi, Fonseca – ARMA (1997)

Marco Morandotti (TUM)

Dimension reduction and SD

Introduced to provide a multiscale geometry that captures the contributions at the macrolevel of both smooth geometrical changes and non-smooth geometrical changes (disarrangements) at submacroscopic levels³. Revisited in the spirit of an energetic formulation – good for variational methods⁴.

A structured deformation is a pair $(g, G) \in SBV \times L^1$ with $Dg = \nabla g \mathcal{L}^N + [g] \otimes \nu \mathcal{H}^{N-1}$. Approximation Theorem: there exists $f_n \in SBV$ such that

$$f_n \stackrel{L^1}{\to} g$$
 and $abla f_n \stackrel{\mathcal{M}}{\rightharpoonup} G$.

³Del Piero, Owen – ARMA (1993) ⁴Choksi, Fonseca – ARMA (1997)

Marco Morandotti (TUM)

Dimension reduction and SD

Some examples of Structured Deformations Structured Deformations are limits of simple deformations.

ТШТ

Marco Morandotti (TUM)

Dimension reduction and SD

Structured Deformations are limits of simple deformations.

• broken ramp: N = 1, $\Omega = (0, 1)$, $\kappa = \emptyset$, g(x) = 2x, and G(x) = 1.

Structured Deformations are limits of simple deformations.

• broken ramp: N = 1, $\Omega = (0, 1)$, $\kappa = \emptyset$, g(x) = 2x, and G(x) = 1. Take $f_n(x) := x + \frac{k}{n}$, for $\frac{k}{n} \leq x < \frac{k+1}{n}$ and $k = 0, \dots, n-1$.

イロト イポト イヨト イヨト 二日

Structured Deformations are limits of simple deformations.

• broken ramp: N = 1, $\Omega = (0, 1)$, $\kappa = \emptyset$, g(x) = 2x, and G(x) = 1. Take $f_n(x) := x + \frac{k}{n}$, for $\frac{k}{n} \leq x < \frac{k+1}{n}$ and $k = 0, \dots, n-1$. Then, $f_n(x) \to 2x$, $\nabla f_n(x) = 1$ and $Df_n = 1\mathcal{L}^1 + \sum_{k=1}^{n-1} \frac{1}{k} \delta_{k/n}$.

Structured Deformations are limits of simple deformations.

• broken ramp: N = 1, $\Omega = (0, 1)$, $\kappa = \emptyset$, g(x) = 2x, and G(x) = 1. Take $f_n(x) := x + \frac{k}{n}$, for $\frac{k}{n} \leq x < \frac{k+1}{n}$ and $k = 0, \dots, n-1$. Then, $f_n(x) \to 2x$, $\nabla f_n(x) = 1$ and $Df_n = 1\mathcal{L}^1 + \sum_{k=1}^{n-1} \frac{1}{k} \delta_{k/n}$.

ПΠ

Structured Deformations are limits of simple deformations.

• broken ramp: N = 1, $\Omega = (0, 1)$, $\kappa = \emptyset$, g(x) = 2x, and G(x) = 1. Take $f_n(x) := x + \frac{k}{n}$, for $\frac{k}{n} \leq x < \frac{k+1}{n}$ and $k = 0, \dots, n-1$. Then, $f_n(x) \to 2x$, $\nabla f_n(x) = 1$ and $Df_n = 1\mathcal{L}^1 + \sum_{k=1}^{n-1} \frac{1}{k} \delta_{k/n}$.

ΠЛ

Structured Deformations are limits of simple deformations.

• broken ramp: N = 1, $\Omega = (0, 1)$, $\kappa = \emptyset$, g(x) = 2x, and G(x) = 1. Take $f_n(x) := x + \frac{k}{n}$, for $\frac{k}{n} \leq x < \frac{k+1}{n}$ and $k = 0, \dots, n-1$. Then, $f_n(x) \to 2x$, $\nabla f_n(x) = 1$ and $Df_n = 1\mathcal{L}^1 + \sum_{k=1}^{n-1} \frac{1}{k} \delta_{k/n}$.

ПΠ

Structured Deformations are limits of simple deformations.

• broken ramp: N = 1, $\Omega = (0, 1)$, $\kappa = \emptyset$, g(x) = 2x, and G(x) = 1. Take $f_n(x) := x + \frac{k}{n}$, for $\frac{k}{n} \leq x < \frac{k+1}{n}$ and $k = 0, \dots, n-1$. Then, $f_n(x) \to 2x$, $\nabla f_n(x) = 1$ and $Df_n = 1\mathcal{L}^1 + \sum_{k=1}^{n-1} \frac{1}{k} \delta_{k/n}$.

ПΠ

< 日 > < 同 > < 回 > < 回 > < 回 > <

Structured Deformations are limits of simple deformations.

• broken ramp: N = 1, $\Omega = (0, 1)$, $\kappa = \emptyset$, g(x) = 2x, and G(x) = 1. Take $f_n(x) := x + \frac{k}{n}$, for $\frac{k}{n} \leq x < \frac{k+1}{n}$ and $k = 0, \dots, n-1$. Then, $f_n(x) \to 2x$, $\nabla f_n(x) = 1$ and $Df_n = 1\mathcal{L}^1 + \sum_{k=1}^{n-1} \frac{1}{k} \delta_{k/n}$.

ΠЛ

Structured Deformations are limits of simple deformations.

• broken ramp: N = 1, $\Omega = (0, 1)$, $\kappa = \emptyset$, g(x) = 2x, and G(x) = 1. Take $f_n(x) := x + \frac{k}{n}$, for $\frac{k}{n} \leq x < \frac{k+1}{n}$ and $k = 0, \dots, n-1$. Then, $f_n(x) \to 2x$, $\nabla f_n(x) = 1$ and $Df_n = 1\mathcal{L}^1 + \sum_{k=1}^{n-1} \frac{1}{k} \delta_{k/n}$.

• deck of cards: N = 3, $\Omega = (0, 1)^3$, $\kappa = \emptyset$, $g(x) = (x_1 + x_3, x_2, x_3)$, and $G(x) = \mathbb{I}$.

ТШТ

Structured Deformations are limits of simple deformations.

• broken ramp: N = 1, $\Omega = (0, 1)$, $\kappa = \emptyset$, g(x) = 2x, and G(x) = 1. Take $f_n(x) := x + \frac{k}{n}$, for $\frac{k}{n} \leq x < \frac{k+1}{n}$ and $k = 0, \dots, n-1$. Then, $f_n(x) \to 2x$, $\nabla f_n(x) = 1$ and $Df_n = 1\mathcal{L}^1 + \sum_{k=1}^{n-1} \frac{1}{k} \delta_{k/n}$.

• deck of cards: N = 3, $\Omega = (0, 1)^3$, $\kappa = \emptyset$, $g(x) = (x_1 + x_3, x_2, x_3)$, and $G(x) = \mathbb{I}$. Take $f_n(x) := (x_1 + \frac{k}{n}, x_2, x_3)$, for $\frac{k}{n} \leq x_3 < \frac{k+1}{n}$ and $k = 0, \dots, n-1$.

Structured Deformations are limits of simple deformations.

• broken ramp: N = 1, $\Omega = (0, 1)$, $\kappa = \emptyset$, g(x) = 2x, and G(x) = 1. Take $f_n(x) := x + \frac{k}{n}$, for $\frac{k}{n} \leq x < \frac{k+1}{n}$ and $k = 0, \dots, n-1$. Then, $f_n(x) \to 2x$, $\nabla f_n(x) = 1$ and $Df_n = 1\mathcal{L}^1 + \sum_{k=1}^{n-1} \frac{1}{k} \delta_{k/n}$.

• deck of cards: N = 3, $\Omega = (0, 1)^3$, $\kappa = \emptyset$, $g(x) = (x_1 + x_3, x_2, x_3)$, and $G(x) = \mathbb{I}$. Take $f_n(x) := (x_1 + \frac{k}{n}, x_2, x_3)$, for $\frac{k}{n} \leq x_3 < \frac{k+1}{n}$ and $k = 0, \dots, n-1$. Then, $f_n(x) \to g(x)$, $\nabla f_n(x) = \mathbb{I}$ and $Df_n = \mathbb{I}\mathcal{L}^3 + \sum_{k=1}^{n-1} \frac{1}{k} \delta_{k/n}(x_3) e_1 \otimes e_3$.

From the examples it should be clear (and this can be formalized) that the singular part $D^s f_n$ (supported on the jump set $S(f_n)$) diffuses in the limit to generate volume energy (supported on the bulk).

From the examples it should be clear (and this can be formalized) that the singular part $D^s f_n$ (supported on the jump set $S(f_n)$) diffuses in the limit to generate volume energy (supported on the bulk). $\mathcal{H}^{N-1}(S(f_n)) \to \infty$, but $|D^s f_n|(\Omega) < +\infty$.

From the examples it should be clear (and this can be formalized) that the singular part $D^s f_n$ (supported on the jump set $S(f_n)$) diffuses in the limit to generate volume energy (supported on the bulk). $\mathcal{H}^{N-1}(S(f_n)) \to \infty$, but $|D^s f_n|(\Omega) < +\infty$.

Singularities are essentially captured by M and its derivatives.

From the examples it should be clear (and this can be formalized) that the singular part $D^s f_n$ (supported on the jump set $S(f_n)$) diffuses in the limit to generate volume energy (supported on the bulk). $\mathcal{H}^{N-1}(S(f_n)) \to \infty$, but $|D^s f_n|(\Omega) < +\infty$.

Singularities are essentially captured by M and its derivatives. If G and M provide information about plastic deformations, Mand curl M allow to describe the *Burgers vectors* and the *dislocation* density field in a body containing defects.

So, $M = \nabla g - G$ is a measurement of how non classical a deformation is.

ТШ

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼

Typical energies of interest in this context are of the form

$$E(u) = \int_{\Omega} W(\nabla u, \nabla^2 u) + \int_{S(u)} \psi_1([u], \nu_u) + \int_{S(\nabla u)} \psi_2([\nabla u], \nu_{\nabla u}),$$

with growth and coercivity assumptions on the densities

<ロ> <四> <四> <四> <三> <三> <三> <三> <三> <三> <三

Typical energies of interest in this context are of the form

$$\boldsymbol{E}(\boldsymbol{u}) = \int_{\Omega} \boldsymbol{W}(\nabla \boldsymbol{u}, \nabla^2 \boldsymbol{u}) + \int_{\boldsymbol{S}(\boldsymbol{u})} \psi_1([\boldsymbol{u}], \nu_{\boldsymbol{u}}) + \int_{\boldsymbol{S}(\nabla \boldsymbol{u})} \psi_2([\nabla \boldsymbol{u}], \nu_{\nabla \boldsymbol{u}}),$$

with growth and coercivity assumptions on the densities – which in general fail to be convex

Typical energies of interest in this context are of the form

$$\boldsymbol{E}(\boldsymbol{u}) = \int_{\Omega} \boldsymbol{W}(\nabla \boldsymbol{u}, \nabla^2 \boldsymbol{u}) + \int_{\boldsymbol{S}(\boldsymbol{u})} \psi_1([\boldsymbol{u}], \nu_{\boldsymbol{u}}) + \int_{\boldsymbol{S}(\nabla \boldsymbol{u})} \psi_2([\nabla \boldsymbol{u}], \nu_{\nabla \boldsymbol{u}}),$$

with growth and coercivity assumptions on the densities – which in general fail to be convex \rightarrow relaxation.

Typical energies of interest in this context are of the form

$$\boldsymbol{E}(\boldsymbol{u}) = \int_{\Omega} \boldsymbol{W}(\nabla \boldsymbol{u}, \nabla^2 \boldsymbol{u}) + \int_{\boldsymbol{S}(\boldsymbol{u})} \psi_1([\boldsymbol{u}], \nu_{\boldsymbol{u}}) + \int_{\boldsymbol{S}(\nabla \boldsymbol{u})} \psi_2([\nabla \boldsymbol{u}], \nu_{\nabla \boldsymbol{u}}),$$

with growth and coercivity assumptions on the densities – which in general fail to be convex \rightarrow relaxation.

The generality of such energies allows to model many physical phenomena:

Typical energies of interest in this context are of the form

$$E(u) = \int_{\Omega} W(\nabla u, \nabla^2 u) + \int_{S(u)} \psi_1([u], \nu_u) + \int_{S(\nabla u)} \psi_2([\nabla u], \nu_{\nabla u}),$$

with growth and coercivity assumptions on the densities – which in general fail to be convex \rightarrow relaxation.

The generality of such energies allows to model many physical phenomena:

• $W(\xi, A) = W(\xi) = \frac{1}{2} |\xi|^2$, $\psi_1 = \psi_2 = 0$: elasticity;

ТЛП

Typical energies of interest in this context are of the form

$$\boldsymbol{E}(\boldsymbol{u}) = \int_{\Omega} \boldsymbol{W}(\nabla \boldsymbol{u}, \nabla^2 \boldsymbol{u}) + \int_{\boldsymbol{S}(\boldsymbol{u})} \psi_1([\boldsymbol{u}], \nu_{\boldsymbol{u}}) + \int_{\boldsymbol{S}(\nabla \boldsymbol{u})} \psi_2([\nabla \boldsymbol{u}], \nu_{\nabla \boldsymbol{u}}),$$

with growth and coercivity assumptions on the densities – which in general fail to be convex \rightarrow relaxation.

The generality of such energies allows to model many physical phenomena:

- $W(\xi, A) = W(\xi) = \frac{1}{2} |\xi|^2$, $\psi_1 = \psi_2 = 0$: elasticity;
- $W(\xi, A) = W(\xi) = \frac{1}{2} |\xi|^2$, $\psi_1 = 1$, $\psi_2 = 0$: Griffith's model for fractures;

Typical energies of interest in this context are of the form

$$\boldsymbol{E}(\boldsymbol{u}) = \int_{\Omega} \boldsymbol{W}(\nabla \boldsymbol{u}, \nabla^2 \boldsymbol{u}) + \int_{\boldsymbol{S}(\boldsymbol{u})} \psi_1([\boldsymbol{u}], \nu_{\boldsymbol{u}}) + \int_{\boldsymbol{S}(\nabla \boldsymbol{u})} \psi_2([\nabla \boldsymbol{u}], \nu_{\nabla \boldsymbol{u}}),$$

with growth and coercivity assumptions on the densities – which in general fail to be convex \rightarrow relaxation.

The generality of such energies allows to model many physical phenomena:

- $W(\xi, A) = W(\xi) = \frac{1}{2} |\xi|^2$, $\psi_1 = \psi_2 = 0$: elasticity;
- $W(\xi, A) = W(\xi) = \frac{1}{2} |\xi|^2$, $\psi_1 = 1$, $\psi_2 = 0$: Griffith's model for fractures;
- W depending on A includes bending effects.

Scope - II

ТШ

イロト イヨト イヨト イヨト

Scope - II

Programme: do the two relaxation procedures and find an integral representation.

→ ∃→
Scope - II

Programme: do the two relaxation procedures and find an integral representation.

Questions: (a) how are the two doubly relaxed energies related to one another (is the diagram a lozenge)?

ТШП

→ ∃→

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Scope - II

Programme: do the two relaxation procedures and find an integral representation.

Questions: (a) how are the two doubly relaxed energies related to one another (is the diagram a lozenge)?

(b) Does a simultaneous relaxation procedure yield a lower energy (what about a central path)?

Image: A math a math

Relaxation

Relaxing the energy *E* means to compute

$$I(\boldsymbol{g},\boldsymbol{G},\boldsymbol{\Gamma}):=\inf_{\{u_n\}\subset \boldsymbol{SBV}^2}\Big\{\liminf_{n\to\infty} E(u_n):u_n\stackrel{L^1}{\to}\boldsymbol{g}, \nabla u_n\stackrel{L^1}{\to}\boldsymbol{G}, \nabla^2 u_n\stackrel{*}{\to}\boldsymbol{\Gamma}\Big\}$$

Marco Morandotti (TUM)

Dimension reduction and SD

22 May 2018 9 / 21

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Relaxation

Relaxing the energy *E* means to compute

$$I(g, \boldsymbol{G}, \Gamma) := \inf_{\{u_n\} \subset SBV^2} \left\{ \liminf_{n \to \infty} \boldsymbol{E}(u_n) : u_n \stackrel{L^1}{\to} \boldsymbol{g}, \nabla u_n \stackrel{L^1}{\to} \boldsymbol{G}, \nabla^2 u_n \stackrel{*}{\to} \Gamma \right\}$$

and possibly to get a *representation formula*,where the bulk and surface densities are obtained by a *cell formula*,⁵ derived by a *blow-up method*.⁶

 ⁵Choksi, Fonseca – ARMA (1997)

 ⁶Fonseca, Müller – SIAM J. Math. Anal. (1992)

 Marco Morandotti (TUM)

 Dimension reduction and SD

 22 May 2018

 9 / 21

Relaxation

Relaxing the energy *E* means to compute

$$I(\boldsymbol{g},\boldsymbol{G},\Gamma):=\inf_{\{\boldsymbol{u}_n\}\subset \boldsymbol{SBV}^2}\Big\{\liminf_{n\to\infty} E(\boldsymbol{u}_n):\boldsymbol{u}_n\overset{L^1}{\to}\boldsymbol{g}, \nabla \boldsymbol{u}_n\overset{L^1}{\to}\boldsymbol{G}, \nabla^2\boldsymbol{u}_n\overset{*}{\to}\Gamma\Big\}$$

and possibly to get a *representation formula*,where the bulk and surface densities are obtained by a *cell formula*,⁵ derived by a *blow-up method*.⁶

In the formula above, we are looking for the most economical way to approximate the (second-order)⁷ structured deformation (g, G, Γ) by means of more regular deformations.

Relaxation à la Choksi-Fonseca - I

The relaxation of an energy like

$$\boldsymbol{E}(\boldsymbol{u}) := \int_{\Omega} \boldsymbol{W}(\nabla \boldsymbol{u}) \, \mathrm{d} \mathcal{L}^N + \int_{\boldsymbol{S}(\boldsymbol{u}) \cap \Omega} \psi([\boldsymbol{u}], \boldsymbol{\nu}(\boldsymbol{u})) \, \mathrm{d} \mathcal{H}^{N-1},$$

Marco Morandotti (TUM)

Dimension reduction and SD

22 May 2018 10 / 21

æ

<ロ> <同> <同> < 同> < 同> < 同> <

Relaxation à la Choksi-Fonseca - I

The relaxation of an energy like

$$\boldsymbol{E}(\boldsymbol{u}) := \int_{\Omega} \boldsymbol{W}(\nabla \boldsymbol{u}) \, \mathrm{d} \mathcal{L}^N + \int_{\boldsymbol{S}(\boldsymbol{u}) \cap \Omega} \psi([\boldsymbol{u}], \boldsymbol{\nu}(\boldsymbol{u})) \, \mathrm{d} \mathcal{H}^{N-1},$$

leads to the representation formula

$$I(g,G) = \int_{\Omega} H(\nabla g,G) \, \mathrm{d}\mathcal{L}^N + \int_{S(g) \cap \Omega} h([g],\nu(g)) \, \mathrm{d}\mathcal{H}^{N-1}.$$

πп

æ

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Relaxation à la Choksi-Fonseca - Il

The densities H and h are given by

$$egin{aligned} H(oldsymbol{A},oldsymbol{B})&\coloneqq\infigg\{\int_{Q}W(
abla u)\,\mathrm{d}\mathcal{L}^{N}+\int_{S(u)\cap Q}\psi([u],
u(u))\,\mathrm{d}\mathcal{H}^{N-1}:\ &u\in SBV(Q;\mathbb{R}^{N}),u_{|\partial Q}(x)=oldsymbol{A}x,\;|
abla u|\in L^{p}(Q),\;\int_{Q}
abla u=oldsymbol{B}igg\}, \end{aligned}$$

3

イロト イヨト イヨト イヨト

Relaxation à la Choksi-Fonseca - Il

The densities H and h are given by

$$\begin{split} H(\pmb{A},\pmb{B}) &\coloneqq \inf \bigg\{ \int_{Q} W(\nabla u) \, \mathrm{d}\mathcal{L}^{N} + \int_{S(u) \cap Q} \psi([u],\nu(u)) \, \mathrm{d}\mathcal{H}^{N-1} : \\ & u \in SBV(Q;\mathbb{R}^{N}), u_{|\partial Q}(x) = \pmb{A}x, \ |\nabla u| \in L^{p}(Q), \ \int_{Q} \nabla u = \pmb{B} \bigg\}, \\ & h(\xi,\eta) \coloneqq \inf \bigg\{ \int_{S(u) \cap Q_{\eta}} \psi([u],\nu(u)) \, \mathrm{d}\mathcal{H}^{N-1} : u \in SBV(Q_{\eta};\mathbb{R}^{N}), \\ & u_{|\partial Q_{\eta}}(x) = u_{\xi,\eta}, \ \nabla u = 0 \ \text{a.e.} \bigg\}, \end{split}$$

ТШ

Relaxation à la Choksi-Fonseca - Il

The densities H and h are given by

$$egin{aligned} H(oldsymbol{A},oldsymbol{B})&\coloneqq\infigg\{\int_{Q}W(
abla u)\,\mathrm{d}\mathcal{L}^{N}+\int_{S(u)\cap Q}\psi([u],
u(u))\,\mathrm{d}\mathcal{H}^{N-1}:\ &u\in SBV(Q;\mathbb{R}^{N}), u_{|\partial Q}(x)=oldsymbol{A}x, \ |
abla u|\,\in L^{p}(Q), \ \int_{Q}
abla u=oldsymbol{B}igg\},\ &h(\xi,\eta)&\coloneqq\infigg\{\int_{S(u)\cap Q_{\eta}}\psi([u],
u(u))\,\mathrm{d}\mathcal{H}^{N-1}:u\in SBV(Q_{\eta};\mathbb{R}^{N}),\ &u_{|\partial Q_{\eta}}(x)=u_{\xi,\eta},\
abla u=0 \ ext{a.e.}igg\}, \end{aligned}$$

where

$$u_{\xi,\eta}(x):=egin{cases} \xi & ext{if } 0\leqslant x\cdot\eta < 1/2, \ 0 & ext{if } -1/2 < x\cdot\eta < 0. \end{cases}$$

Marco Morandotti (TUM)

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

TΠ

Dimension reduction in the context of SD⁸

$$E_{\varepsilon}(u) := \int_{\Omega_{\varepsilon}} W_{3d}(\nabla u) \, \mathrm{d}x + \int_{\Omega_{\varepsilon} \cap S(u)} h_{3d}([u], \nu(u)) \, \mathrm{d}\mathcal{H}^2$$

for $u \in SBV(\Omega_{\varepsilon}; \mathbb{R}^3)$, with $\Omega_{\varepsilon} := \omega \times (-\frac{\varepsilon}{2}, \frac{\varepsilon}{2})$.

⁸Carita, Matias, M., Owen – J. Elast. (2018)

Marco Morandotti (TUM)

Dimension reduction and SD

э

Dimension reduction in the context of SD⁸

$$E_arepsilon(u):=\int_{\Omega_arepsilon}W_{3d}(
abla u)\,\mathrm{d}x+\int_{\Omega_arepsilon\cap S(u)}h_{3d}ig([u],
u(u)ig)\,\mathrm{d}\mathcal{H}^2$$

for $u \in SBV(\Omega_{\varepsilon}; \mathbb{R}^3)$, with $\Omega_{\varepsilon} := \omega \times (-\frac{\varepsilon}{2}, \frac{\varepsilon}{2})$.

Left-hand side: first dim. red., then structured deformations; Right-hand side: first structured deformations, then dim. red.

⁸Carita, Matias, M., Owen – J. Elast. (2018)

Marco Morandotti (TUM)

Dimension reduction and SD

22 May 2018 12 / 21

Hypotheses on the energy densities

We assume that:

 (H_1) There exists a constant $c_W > 0$ such that growth conditions from above and below are satisfied

 $rac{1}{c_W}|A|^p\leqslant W_{3d}(A),$

 $|W_{3d}(A) - W_{3d}(B)| \leq c_W |A - B|(1 + |A|^{p-1} + |B|^{p-1}),$

for any $A,B\in \mathbb{R}^{3 imes 3}$, and for some p>1.

Hypotheses on the energy densities

We assume that:

 (H_1) There exists a constant $c_W > 0$ such that growth conditions from above and below are satisfied

 $\frac{1}{c_W}|A|^p\leqslant W_{3d}(A),$

 $|W_{3d}(A) - W_{3d}(B)| \leq c_W |A - B|(1 + |A|^{p-1} + |B|^{p-1}),$

for any $A, B \in \mathbb{R}^{3 \times 3}$, and for some p > 1.

 (H_2) There exists a constant $c_h > 0$, such that for all $(\lambda, \nu) \in \mathbb{R}^3 \times \mathbb{S}^2$

$$\frac{1}{c_h}|\lambda|\leqslant h_{3d}(\lambda,\nu)\leqslant c_h|\lambda|.$$

 (H_3) $h_{3d}(\cdot,
u)$ is positively 1-homogeneous: for all t>0 , $\lambda\in\mathbb{R}^3$

$$h_{3d}(t\lambda,\nu) = t h_{3d}(\lambda,\nu).$$

 (H_4) $h_{3d}(\cdot,
u)$ is subadditive: for all $\lambda_1, \lambda_2 \in \mathbb{R}^3$

$$h_{3d}(\lambda_1+\lambda_2,\nu)\leqslant h_{3d}(\lambda_1,\nu)+h_{3d}(\lambda_2,\nu) \quad \text{for all } n \in \mathbb{R}$$

Marco Morandotti (TUM)

Dimension reduction and SD

Dimension reduction

Rescale by ε in x_3 and consider the functional $F_{\varepsilon}(u)$

$$\frac{E_{\varepsilon}(u)}{\varepsilon} = \int_{\Omega} W_{3d} \bigg(\nabla_{\alpha} u \bigg| \frac{\nabla_{3} u}{\varepsilon} \bigg) \mathrm{d}x + \int_{\Omega \cap S(u)} h_{3d} \bigg([u], \nu_{\alpha}(u) \bigg| \frac{\nu_{3}(u)}{\varepsilon} \bigg) \mathrm{d}\mathcal{H}^{2}(x).$$

æ

<ロ> <同> <同> < 同> < 同> < 同> <

Dimension reduction

Rescale by ε in x_3 and consider the functional $F_{\varepsilon}(u)$

$$rac{E_arepsilon(u)}{arepsilon} = \int_\Omega W_{3d}igg(
abla_lpha uigg|rac{
abla_3 u}{arepsilon}igg) \mathrm{d}x + \int_{\Omega\cap S(u)} h_{3d}igg([u],
u_lpha(u)igg|rac{
u_3(u)}{arepsilon}igg) \mathrm{d}\mathcal{H}^2(x).$$

The coercivity assumption grants boundedness of the gradients in L^p , so that $\varepsilon_n^{-1} \nabla_3 u_n$ has a weak limit $d \in L^p(\Omega; \mathbb{R}^3)$. Therefore, given $(\overline{u}, \overline{d}) \in SBV(\omega; \mathbb{R}^3) \times L^p(\omega; \mathbb{R}^3)$, let

$$\begin{split} \mathcal{F}_{3d,2d}(\overline{u},\overline{d}) &\coloneqq \inf \bigg\{ \liminf_{n \to \infty} F_{\varepsilon_n}(u_n) : u_n \in \boldsymbol{SBV}(\Omega;\mathbb{R}^3), u_n \stackrel{L^1(\Omega;\mathbb{R}^3)}{\longrightarrow} \overline{u}, \\ &\int_{\overline{I}} \frac{\nabla_3 u_n}{\varepsilon_n} \, \mathrm{d} x_3 \rightharpoonup \overline{d} \, \ln L^p(\omega;\mathbb{R}^3), \, \nu(u_n) \cdot \boldsymbol{e}_3 = 0 \bigg\}. \end{split}$$

ТШ

э

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Dimension reduction

Rescale by ε in x_3 and consider the functional $F_{\varepsilon}(u)$

$$\frac{E_{\varepsilon}(u)}{\varepsilon} = \int_{\Omega} W_{3d} \bigg(\nabla_{\alpha} u \bigg| \frac{\nabla_{3} u}{\varepsilon} \bigg) \mathrm{d}x + \int_{\Omega \cap S(u)} h_{3d} \bigg([u], \nu_{\alpha}(u) \bigg| \frac{\nu_{3}(u)}{\varepsilon} \bigg) \mathrm{d}\mathcal{H}^{2}(x).$$

The coercivity assumption grants boundedness of the gradients in L^p , so that $\varepsilon_n^{-1} \nabla_3 u_n$ has a weak limit $d \in L^p(\Omega; \mathbb{R}^3)$. Therefore, given $(\overline{u}, \overline{d}) \in SBV(\omega; \mathbb{R}^3) \times L^p(\omega; \mathbb{R}^3)$, let

$$\begin{split} \mathcal{F}_{3d,2d}(\overline{u},\overline{d}) &\coloneqq \inf \bigg\{ \liminf_{n \to \infty} F_{\varepsilon_n}(u_n) : u_n \in SBV(\Omega;\mathbb{R}^3), u_n \stackrel{L^1(\Omega;\mathbb{R}^3)}{\longrightarrow} \overline{u}, \\ &\int_{\overline{I}} \frac{\nabla_3 u_n}{\varepsilon_n} \, \mathrm{d} x_3 \rightharpoonup \overline{d} \, \ln L^p(\omega;\mathbb{R}^3), \, \nu(u_n) \cdot e_3 = 0 \bigg\}. \end{split}$$

Theorem (Carita-Matias-M.-Owen (2018))

$$\mathcal{F}_{3d,2d}(\overline{u},\overline{d}) = \int_{\omega} W_{3d,2d}(\nabla \overline{u},\overline{d}) \, \mathrm{d}x_{\alpha} + \int_{\omega \cap S(\overline{u})} h_{3d,2d}([\overline{u}],\nu(\overline{u})) \, \mathrm{d}\mathcal{H}^{1}(x_{\alpha}).$$

Integral representation

Theorem (Carita-Matias-M.-Owen (2018) - cont'd)

 $W_{3d,2d}\colon \mathbb{R}^{3 imes 2} imes \mathbb{R}^3 o [0,+\infty)$ and $h_{3d,2d}\colon \mathbb{R}^3 imes \mathbb{S}^1 o [0,+\infty)$ are

$$egin{aligned} W_{3d,2d}(A,d)&=\infigg\{\int_{Q'}W_{3d}(
abla_lpha u|m{z})\,\mathrm{d}x_lpha+\int_{Q'\cap S(u)}h_{3d}([u], ilde{
u}(u))\,\mathrm{d}\mathcal{H}^1(x_lpha):\ &u\in SBV(Q';\mathbb{R}^3),\ m{z}\in L^p_{Q'}$$
 , so $(\mathbb{R}^2;\mathbb{R}^3),\ m{u}|_{\partial Q'}(x_lpha)=Ax_lpha,\ \int\ m{z}\,\mathrm{d}x_lpha=digg\} \end{aligned}$

JQ'

Integral representation

Theorem (Carita-Matias-M.-Owen (2018) - cont'd)

 $W_{3d,2d}\colon \mathbb{R}^{3 imes 2} imes \mathbb{R}^3 o [0,+\infty)$ and $h_{3d,2d}\colon \mathbb{R}^3 imes \mathbb{S}^1 o [0,+\infty)$ are

$$egin{aligned} W_{3d,2d}(A,d)&=\infigg\{\int_{Q'}W_{3d}(
abla_lpha u|m{z})\,\mathrm{d}x_lpha+\int_{Q'\cap S(u)}h_{3d}([u], ilde{
u}(u))\,\mathrm{d}\mathcal{H}^1(x_lpha):\ &u\in SBV(Q';\mathbb{R}^3),\ m{z}\in L^p_{Q'-\mathrm{per}}(\mathbb{R}^2;\mathbb{R}^3),\ u|_{\partial Q'}(x_lpha)=Ax_lpha,\int_{Q'}m{z}\,\mathrm{d}x_lpha=digg\} \end{aligned}$$

$$h_{3d,\underline{2d}}(\lambda,\eta) = \inf \left\{ \int_{Q'_{\eta} \cap S(u)} h_{3d}([u],\tilde{\nu}(u)) \ \mathrm{d}\mathcal{H}^{1}(x_{\alpha}) : u \in SBV(Q'_{\eta};\mathbb{R}^{3}), \right.$$

$$u|_{\partial Q'_{\eta}}(x_{\alpha})=\gamma_{\lambda,\eta}(x_{\alpha}), \ \nabla u=0, \ a.e. \};$$

with

$$\gamma_{\lambda,\eta}(x_{lpha}) := egin{cases} \lambda & ext{if } \mathbf{0} \leqslant x_{lpha} \cdot \eta < rac{1}{2}, \ \mathbf{0} & ext{if } -rac{1}{2} < x_{lpha} \cdot \eta < \mathbf{0} \end{cases}$$

The proof is obtained via blow-up:

Marco Morandotti (TUM)

Dimension reduction and SD

22 May 2018 16 / 21

3

<ロ> <同> <同> < 同> < 同> < 同> <

The proof is obtained via blow-up:

• we prove upper bounds for the Radon-Nikodým derivatives of $\mathcal{F}_{3d,2d}(\overline{u},\overline{d})$ with respect to \mathcal{L}^2 and $\mathcal{H}^1 \sqcup S(\overline{u})$ at $x_0 \in \omega$:

э

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

The proof is obtained via blow-up:

• we prove upper bounds for the Radon-Nikodým derivatives of $\mathcal{F}_{3d,2d}(\overline{u},\overline{d})$ with respect to \mathcal{L}^2 and $\mathcal{H}^1 \sqcup S(\overline{u})$ at $x_0 \in \omega$:

 $\frac{\mathrm{d}\mathcal{F}_{3d,2d}(\overline{u},\overline{d})}{\mathrm{d}\mathcal{L}^2}(x_0) \leqslant W_{3d,2d}(\nabla_{\alpha}\overline{u}(x_0),\overline{d}(x_0)), \ \frac{\mathrm{d}\mathcal{F}_{3d,2d}(\overline{u},\overline{d})}{\mathrm{d}\mathcal{H}^1 \sqcup S(\overline{u})}(x_0) \leqslant h_{3d,2d}([\overline{u}](x_0),\nu(\overline{u})(x_0)).$

The proof is obtained via blow-up:

• we prove upper bounds for the Radon-Nikodým derivatives of $\mathcal{F}_{3d,2d}(\overline{u},\overline{d})$ with respect to \mathcal{L}^2 and $\mathcal{H}^1 \sqcup S(\overline{u})$ at $x_0 \in \omega$:

$$\frac{\mathrm{d}\mathcal{F}_{3d,2d}(\overline{u},\overline{d})}{\mathrm{d}\mathcal{L}^2}(x_0) \leqslant W_{3d,2d}(\nabla_{\alpha}\overline{u}(x_0),\overline{d}(x_0)), \ \frac{\mathrm{d}\mathcal{F}_{3d,2d}(\overline{u},\overline{d})}{\mathrm{d}\mathcal{H}^1 \, \bigsqcup S(\overline{u})}(x_0) \leqslant h_{3d,2d}([\overline{u}](x_0),\nu(\overline{u})(x_0)).$$

• lower bounds for the Radon-Nikodým derivatives of μ , the weak-* limit of the measures μ_n

$$\mu_n(\boldsymbol{B}) := \int_{\boldsymbol{B}\times I} W_{3d}\Big(\nabla_{\alpha} u_n \Big| \frac{\nabla_3 u_n}{\varepsilon_n}\Big) dx + \int_{(\boldsymbol{B}\times I)\cap S(u_n)} h_{3d}([u_n], \tilde{\nu}(u_n)) d\mathcal{H}^2(x).$$

with respect to \mathcal{L}^2 and $|[\overline{u}]|\mathcal{H}^1 \sqcup S(\overline{u})$:

ТШ

3

The proof is obtained via blow-up:

• we prove upper bounds for the Radon-Nikodým derivatives of $\mathcal{F}_{3d,2d}(\overline{u},\overline{d})$ with respect to \mathcal{L}^2 and $\mathcal{H}^1 \sqcup S(\overline{u})$ at $x_0 \in \omega$:

$$\frac{\mathrm{d}\mathcal{F}_{3d,2d}(\overline{u},\overline{d})}{\mathrm{d}\mathcal{L}^2}(x_0) \leqslant W_{3d,2d}(\nabla_{\alpha}\overline{u}(x_0),\overline{d}(x_0)), \ \frac{\mathrm{d}\mathcal{F}_{3d,2d}(\overline{u},\overline{d})}{\mathrm{d}\mathcal{H}^1 \, \bigsqcup S(\overline{u})}(x_0) \leqslant h_{3d,2d}([\overline{u}](x_0),\nu(\overline{u})(x_0)).$$

• lower bounds for the Radon-Nikodým derivatives of μ , the weak-* limit of the measures μ_n

$$\mu_n(\boldsymbol{B}) := \int_{\boldsymbol{B}\times I} W_{3d}\Big(\nabla_{\alpha} u_n\Big|\frac{\nabla_3 u_n}{\varepsilon_n}\Big) \mathrm{d}x + \int_{(\boldsymbol{B}\times I)\cap S(u_n)} h_{3d}([u_n],\tilde{\nu}(u_n)) \mathrm{d}\mathcal{H}^2(x).$$

with respect to \mathcal{L}^2 and $|[\overline{u}]|\mathcal{H}^1 \sqcup S(\overline{u})$:

 $\frac{\mathrm{d}\mu}{\mathrm{d}\mathcal{L}^2}(x_0) \geqslant W_{3d,2d}(\nabla_{\alpha}\overline{u}(x_0),\overline{d}(x_0)), \ \frac{\mathrm{d}\mu}{\mathrm{d}(|[\overline{u}]|\mathcal{H}^1 \bigsqcup S(\overline{u}))}(x_0) \geqslant \frac{h_{3d,2d}([\overline{u}](x_0),\nu(\overline{u})(x_0))}{|[\overline{u}]|(x_0)}.$

・ロン ・四 ・ ・ ヨン ・ ヨン ・ ヨ

The doubly relaxed energies

Theorem (Carita-Matias-M.-Owen (2018))

The densities for the doubly relaxed energy are obtained:

Marco Morandotti (TUM)

Dimension reduction and SD

22 May 2018 17 / 21

э

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

The doubly relaxed energies

Theorem (Carita-Matias-M.-Owen (2018))

The densities for the doubly relaxed energy are obtained:

$$\begin{aligned} \mathcal{F}_{3d,2d,SD}(\overline{g},\overline{G},\overline{d}) = & \int_{\omega} W_{3d,2d,SD}(\nabla \overline{g},\overline{G},\overline{d}) \, \mathrm{d}x_{\alpha} + \int_{\omega \cap S(\overline{g})} h_{3d,2d,SD}([\overline{g}],\nu(\overline{g})) \, \mathrm{d}\mathcal{H}^{1}, \\ \mathcal{F}_{3d,SD,2d}(\overline{g},\overline{G},\overline{d}) = & \int_{\omega} W_{3d,SD,2d}(\nabla \overline{g},\overline{G},\overline{d}) \, \mathrm{d}x_{\alpha} + \int_{\omega \cap S(\overline{g})} h_{3d,SD,2d}([\overline{g}],\nu(\overline{g})) \, \mathrm{d}\mathcal{H}^{1}. \end{aligned}$$

3

・ロット (母) ・ ヨ) ・ コ)

The doubly relaxed energies

Theorem (Carita-Matias-M.-Owen (2018))

The densities for the doubly relaxed energy are obtained:

$$\begin{split} \mathcal{F}_{3d,2d,SD}(\overline{g},\overline{G},\overline{d}) = & \int_{\omega} W_{3d,2d,SD}(\nabla \overline{g},\overline{G},\overline{d}) \, \mathrm{d}x_{\alpha} + \int_{\omega \cap S(\overline{g})} h_{3d,2d,SD}([\overline{g}],\nu(\overline{g})) \, \mathrm{d}\mathcal{H}^{1}, \\ \mathcal{F}_{3d,SD,2d}(\overline{g},\overline{G},\overline{d}) = & \int_{\omega} W_{3d,SD,2d}(\nabla \overline{g},\overline{G},\overline{d}) \, \mathrm{d}x_{\alpha} + \int_{\omega \cap S(\overline{g})} h_{3d,SD,2d}([\overline{g}],\nu(\overline{g})) \, \mathrm{d}\mathcal{H}^{1}. \end{split}$$

Recall that

$$\frac{1}{\varepsilon_n}\int_I \nabla_3 u_n\,\mathrm{d} x_3 \stackrel{L^p}{\rightharpoonup} \overline{d}:$$

the vector \overline{d} emerges as the weak limit of the out-of-plane deformation gradient.

・ロット (母) ・ ヨ) ・ コ)

An example

Consider an initial energy E_{ε} in which the densities are $W_{3d} = 0$ and $h_{3d}(\lambda, \nu) = |\lambda \cdot \nu|$.

Theorem (Carita-Matias-M.-Owen (2018))

Let $W_{3d} = 0$ and $h_{3d}(\lambda, \nu) = |\lambda \cdot \nu|$. Then the two functionals $\mathcal{F}_{3d,2d,SD}$ and $\mathcal{F}_{3d,SD,2d}$ coincide (and neither one depends on \overline{d}):

$$\mathcal{F}_{3d,SD,2d}(\overline{g},\overline{G},\overline{d}) = \widehat{\mathcal{F}}_{3d,SD,2d}(\overline{g},\overline{G}) = \int_{\omega} |\operatorname{tr}(\widehat{\nabla g} - \widehat{\overline{G}})| \, \mathrm{d}x_{\alpha} + \int_{\omega \cap S(\overline{g})} |\overline{g}] \cdot \tilde{\nu}(\overline{g})| \, \mathrm{d}\mathcal{H}^{1}(x_{\alpha}).$$

An example

Consider an initial energy E_{ε} in which the densities are $W_{3d} = 0$ and $h_{3d}(\lambda, \nu) = |\lambda \cdot \nu|$.

Theorem (Carita-Matias-M.-Owen (2018))

Let $W_{3d} = 0$ and $h_{3d}(\lambda, \nu) = |\lambda \cdot \nu|$. Then the two functionals $\mathcal{F}_{3d,2d,SD}$ and $\mathcal{F}_{3d,SD,2d}$ coincide (and neither one depends on \overline{d}):

$$\mathcal{F}_{3d,SD,2d}(\overline{g},\overline{G},\overline{d}) = \widehat{\mathcal{F}}_{3d,SD,2d}(\overline{g},\overline{G}) = \int_{\omega} |\operatorname{tr}(\widehat{\nabla g} - \widehat{\overline{G}})| \, \mathrm{d}x_{\alpha} + \int_{\omega \cap S(\overline{g})} |\overline{g}] \cdot \widetilde{\nu}(\overline{g})| \, \mathrm{d}\mathcal{H}^{1}(x_{\alpha}).$$

The result is in agreement with previous results in the literature.⁹

Comparison with other relaxation procedures For a function $u \in SBV^2(\Omega_{\varepsilon}; \mathbb{R}^3)$, consider the initial energy¹⁰

$$egin{aligned} E^{MS}_arepsilon(u) \coloneqq & \int_{\Omega_arepsilon} W(
abla u,
abla^2 u) \, \mathrm{d}x + \int_{\Omega_arepsilon \cap S(u)} \Psi_1([u],
u(u)) \, \mathrm{d}\mathcal{H}^2(x) \ & + \int_{\Omega_arepsilon \cap S(
abla u)} \Psi_2([
abla u],
u(
abla u)) \, \mathrm{d}\mathcal{H}^2(x) \end{aligned}$$

¹⁰Matias, Santos – Appl. Math. Optim. (2014)

Marco Morandotti (TUM)

Dimension reduction and SD

► 4 3 ×

Comparison with other relaxation procedures For a function $u \in SBV^2(\Omega_{\varepsilon}; \mathbb{R}^3)$, consider the initial energy¹⁰

$$egin{aligned} E^{MS}_arepsilon(u) \coloneqq & \int_{\Omega_arepsilon} W(
abla u,
abla^2 u) \, \mathrm{d}x + \int_{\Omega_arepsilon \cap S(u)} \Psi_1([u],
u(u)) \, \mathrm{d}\mathcal{H}^2(x) \ & + \int_{\Omega_arepsilon \cap S(
abla u)} \Psi_2([
abla u],
u(
abla u)) \, \mathrm{d}\mathcal{H}^2(x) \end{aligned}$$

and the relaxation of the rescaled energy $J_{arepsilon}(u)\coloneqq rac{1}{arepsilon}E^{MS}_{arepsilon}(u)$

 $I(g,G,d):=\inf\Big\{ \liminf_{n o\infty} J_{arepsilon_n}(u_n): u_n\in SBV^2(\Omega;\mathbb{R}^3), u_n\stackrel{L^1}{ o}g, rac{1}{arepsilon_n}
abla_3 u_n\stackrel{L^1}{ o}d,
abla_lpha u_n\stackrel{L^1}{ o}G\Big\},$

э

19 / 21

Theorem (Carita-Matias-M.-Owen (2018))

The simultaneous procedure yields a relaxed energy which is lower than the two sequential procedures.

Comparison with other relaxation procedures For a function $u \in SBV^2(\Omega_{\varepsilon}; \mathbb{R}^3)$, consider the initial energy¹⁰

$$egin{aligned} E^{MS}_arepsilon(u) &\coloneqq \int_{\Omega_arepsilon} W(
abla u,
abla^2 u) \,\mathrm{d}x + \int_{\Omega_arepsilon \cap S(u)} \Psi_1([u],
u(u)) \,\mathrm{d}\mathcal{H}^2(x) \ &+ \int_{\Omega_arepsilon \cap S(
abla u)} \Psi_2([
abla u],
u(
abla u)) \,\mathrm{d}\mathcal{H}^2(x) \end{aligned}$$

and the relaxation of the rescaled energy $J_{arepsilon}(u)\coloneqq rac{1}{arepsilon}E^{MS}_{arepsilon}(u)$

 $I(g,G,d):=\inf\Big\{ \liminf_{n o\infty} J_{arepsilon_n}(u_n): u_n\in SBV^2(\Omega;\mathbb{R}^3), u_n\stackrel{L^1}{ o}g, rac{1}{arepsilon_n}
abla_3 u_n\stackrel{L^1}{ o}d,
abla_lpha u_n\stackrel{L^1}{ o}G\Big\},$

Theorem (Carita-Matias-M.-Owen (2018))

The simultaneous procedure yields a relaxed energy which is lower than the two sequential procedures. In fact, in the case $W_{3d} = 0$ and $h_{3d}(\lambda, \nu) = |\lambda \cdot \nu|$, the relaxed energy is always equal to zero.

¹⁰Matias, Santos – Appl. Math. Optim. (2014)

Marco Morandotti (TUM)

Dimension reduction and SD

э

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

The functional I admits an integral representation $I = I_1 + I_2$, where, for $(g, G) \in BV^2(\omega; \mathbb{R}^3) \times BV(\omega; \mathbb{R}^{3 \times 2})$,

$$I_1(g,G) = \int_{\omega} W_1(G - \nabla g) \, \mathrm{d}x_{\alpha} + \int_{\omega} W_1\left(-\frac{\mathrm{d}D^c g}{\mathrm{d}|D^c g|}\right) \mathrm{d}|D^c g|(x_{\alpha}) + \int_{\omega \cap S(g)} \Gamma_1([g],\nu(g)) \, \mathrm{d}\mathcal{H}^1(x_{\alpha})$$

and for $(d,G) \in BV(\omega;\mathbb{R}^3) imes BV(\omega;\mathbb{R}^{3 imes 2})$

$$I_{2}(d,G) = \int_{\omega} W_{2}(d,G,\nabla d,\nabla G) \,\mathrm{d}\mathbf{x}_{\alpha} + \int_{\omega} W_{2}^{\infty} \left(d,G,\frac{\mathrm{d}D^{c}(d,G)}{\mathrm{d}|D^{c}(d,G)|} \right) \,\mathrm{d}|D^{c}(d,G)| + \int_{\omega} \Gamma_{2}((d,G)^{+},(d,G)^{-},\nu((d,G))) \,\mathrm{d}\mathcal{H}^{1}(\mathbf{x}_{\alpha}) \,\mathrm{d}\mathbf{x}_{\alpha} + \int_{\omega} W_{2}(d,G) \,\mathrm{d}\mathbf{x}_{\alpha} + \int_{\omega} W_{2}$$

The energy densities of I_1 are obtained as follows: for each $A \in \mathbb{R}^{3 \times 2}$, $\lambda \in \mathbb{R}^3$, and $\eta \in \mathbb{S}^1$,

$$\begin{split} W_1(A) &= \inf\left\{\int_{Q'\cap S(u)}\overline{\Psi}_1([u],\nu(u))\,\mathrm{d}\mathcal{H}^1(x_\alpha) : u\in SBV(Q';\mathbb{R}^3), u|_{\partial Q'}=0, \nabla u=A \ a.e.\right\},\\ \Gamma_1(\lambda,\eta) &= \inf\left\{\int_{Q'_\eta\cap S(u)}\overline{\Psi}_1([u],\nu(u))\,\mathrm{d}\mathcal{H}^1(x_\alpha) : u\in SBV(Q'_\eta;\mathbb{R}^3), u|_{\partial Q'_\eta}=\gamma_{\lambda,\eta}, \nabla u=0 \ a.e.\right\},\end{split}$$

 $\text{with } \overline{\Psi}_1(\lambda,\nu) := \inf\{\Psi_1(\lambda,(\nu|t)) : t \in \mathbb{R}\}. \text{ For each } A \in \mathbb{R}^{3 \times 2}, B_\beta \in \mathbb{R}^{3 \times 3 \times 2}, \Lambda, \Theta \in \mathbb{R}^{3 \times 3 \times 2}, \text{ and } \eta \in \mathbb{S}^1, \mathbb{R}^{3 \times 3 \times 2}, \mathbb{R}^{3 \times 3 \times 2},$

$$W_2(A, B_\beta) = \inf \left\{ \int_{Q'} \overline{W}(A, \nabla u) \, \mathrm{d}x_\alpha + \int_{Q' \cap S(u)} \overline{\Psi}_2([u], \nu(u)) \, \mathrm{d}\mathcal{H}^1(x_\alpha) : u \in SBV(Q'; \mathbb{R}^{3 \times 3}), u_{ik}|_{\partial Q'} = \sum_{j=1}^2 B_{ijk} x_j \right\},$$

$$\Gamma_{2}(\Lambda,\Theta,\eta) = \inf \left\{ \int_{Q_{\eta}'} \overline{W}^{\infty}(u,\nabla u) \, \mathrm{d}x_{\alpha} + \int_{Q_{\eta}'\cap S(u)} \overline{\Psi}_{2}([u],\nu(u)) \, \mathrm{d}\mathcal{H}^{1}(x_{\alpha}) : u \in SBV(Q_{\eta}';\mathbb{R}^{3\times3}), u|_{\partial Q_{\eta}'} = u_{\Lambda,\Theta,\eta} \right\}$$

where

$$u_{\Lambda,\Theta,\eta}(x_{\alpha}) := \begin{cases} \Lambda & \text{if } 0 \leqslant x_{\alpha} \cdot \eta < 1/2, \\ \Theta & \text{if } -1/2 < x_{\alpha} \cdot \eta < 0, \end{cases}$$

and with \overline{W} and $\overline{\Psi}_2$ as follows: decomposing $B \in \mathbb{R}^{3 \times 3 \times 3}$ into $(B_{\beta}, B_3) \in \mathbb{R}^{3 \times 3 \times 2} \times \mathbb{R}^{3 \times 3 \times 1}$ (i.e., B_{β} denotes B_{ijk} with k = 1, 2), define $\overline{W}(A, B_{\beta}) := \inf\{W(A, (B_{\beta}, B_3)) : B_3 \in \mathbb{R}^{3 \times 3 \times 1}\}$, and for $\Lambda \in \mathbb{R}^{3 \times 3}$ and $\eta \in \mathbb{S}^1$, let $\overline{\Psi}_2(\Lambda, \eta) := \inf\{\Psi_2(\Lambda, (\eta|t)) : t \in \mathbb{R}\}$.

Marco Morandotti (TUM)

Dimension reduction and SD

22 May 2018 20 / 21

Future Developments

• to find analogous results for p = 1;

Marco Morandotti (TUM)

Dimension reduction and SD

22 May 2018 21 / 21

3

イロト イヨト イヨト イヨト

Future Developments

- to find analogous results for p = 1;
- to look at higher order expansions, in the sense of Γ -convergence¹¹ or
- to look at other rescalings;

¹¹Matias-M.-Owen-Zappale – *in progress*

Marco Morandotti (TUM)

Dimension reduction and SD

< 3 >

э

Future Developments

- to find analogous results for p = 1;
- to look at higher order expansions, in the sense of Γ-convergence¹¹ — or
- to look at other rescalings;
- to model complex systems, such as biological membranes¹², incorporating shearing, tilting, thinning/thickening, bending effects;

¹¹Matias-M.-Owen-Zappale – *in progress* ¹²Deseri, Owen, Pocivavsek – *in progress*

Dimension reduction and SD

Future Developments

- to find analogous results for p = 1;
- to look at higher order expansions, in the sense of Γ-convergence¹¹ — or
- to look at other rescalings;
- to model complex systems, such as biological membranes¹², incorporating shearing, tilting, thinning/thickening, bending effects;
- to study evolution problems.

¹¹Matias-M.-Owen-Zappale – in progress
¹²Deseri, Owen, Pocivavsek – in progress

Marco Morandotti (TUM)

Dimension reduction and SD

Future Developments

- to find analogous results for p = 1;
- to look at higher order expansions, in the sense of Γ-convergence¹¹ — or
- to look at other rescalings;
- to model complex systems, such as biological membranes¹², incorporating shearing, tilting, thinning/thickening, bending effects;
- to study evolution problems.

Thank you for your attention!

