Liftings of BV-maps and lower semicontinuity

Filip Rindler (joint with G. Shaw)

F.Rindler@warwick.ac.uk www.ercsingularity.org

BIRS worshop: Topics in the Calculus of Variations: Recent Advances and New Trends, Banff, 21-25 May 2018

Rate-independent systems (Mielke-Theil, Mielke-Rossi-Savaré)

Prototypical equation:

$$\frac{\dot{u}(t)}{|\dot{u}(t)|} - \Delta u(t) + DW_0(u(t)) = f(t) \quad \text{in } \Omega \times [0, T],$$

where $W_0 =$ double well potential:

Rate-independent systems (Mielke-Theil, Mielke-Rossi-Savaré)

Prototypical equation:

$$\frac{\dot{u}(t)}{|\dot{u}(t)|} - \Delta u(t) + DW_0(u(t)) = f(t) \quad \text{in } \Omega \times [0, T],$$

where $W_0 =$ double well potential:

Interpretation:

$$\frac{\dot{u}(t)}{|\dot{u}(t)|} := \operatorname{Sgn}(\dot{u}(t)), \quad \text{where} \quad \operatorname{Sgn}(s) := \begin{cases} \{-1\} & \text{if } s < 0, \\ [-1,1] & \text{if } s = 0, \\ \{1\} & \text{if } s > 0. \end{cases}$$

Prototypical equation:

$$\frac{\dot{u}(t)}{|\dot{u}(t)|} - \Delta u(t) + DW_0(u(t)) = f(t) \quad \text{in } \Omega \times [0, T],$$

where W_0 = double well potential:

Interpretation:

$$\frac{\dot{u}(t)}{|\dot{u}(t)|} := \operatorname{Sgn}(\dot{u}(t)), \quad \text{where} \quad \operatorname{Sgn}(s) := \begin{cases} \{-1\} & \text{if } s < 0, \\ [-1,1] & \text{if } s = 0, \\ \{1\} & \text{if } s > 0. \end{cases}$$

Features:

■ **Rate-independence:** Dissipation does not depend on rate (speed) of movement ~→ idealization!

Prototypical equation:

$$\frac{\dot{u}(t)}{|\dot{u}(t)|} - \Delta u(t) + DW_0(u(t)) = f(t) \quad \text{in } \Omega \times [0, T],$$

where W_0 = double well potential:

Interpretation:

$$\frac{\dot{u}(t)}{|\dot{u}(t)|} := \operatorname{Sgn}(\dot{u}(t)), \quad \text{where} \quad \operatorname{Sgn}(s) := \begin{cases} \{-1\} & \text{if } s < 0, \\ [-1,1] & \text{if } s = 0, \\ \{1\} & \text{if } s > 0. \end{cases}$$

Features:

- **Rate-independence:** Dissipation does not depend on rate (speed) of movement → idealization!
- Can only expect BV-regularity ~→ jumps

Prototypical equation:

$$\frac{\dot{u}(t)}{|\dot{u}(t)|} - \Delta u(t) + DW_0(u(t)) = f(t) \quad \text{in } \Omega \times [0, T],$$

where W_0 = double well potential:

Interpretation:

$$\frac{\dot{u}(t)}{|\dot{u}(t)|} := \operatorname{Sgn}(\dot{u}(t)), \quad \text{where} \quad \operatorname{Sgn}(s) := \begin{cases} \{-1\} & \text{if } s < 0, \\ [-1,1] & \text{if } s = 0, \\ \{1\} & \text{if } s > 0. \end{cases}$$

Features:

- **Rate-independence:** Dissipation does not depend on rate (speed) of movement ~→ idealization!
- Can only expect BV-regularity \rightsquigarrow jumps
- The above equation says nothing about the behavior on jump transients!

Jump parametrization?

Jump parametrization?

Two-speed solutions (R., Schwarzacher, Süli, Velázquez, 2017–):

- Strong solutions as long as possible
- Late jumps (similar to Mielke–Rossi–Savaré "Balanced Viscosity" theory)
- Jump resolution (viscous PDE on jump transients)

BV-maps with jumps: Relaxation

Let $\Omega \subset \mathbb{R}^d$ bounded Lipschitz domain, d, m > 1, and $\mathscr{F}[u] := \int_{\Omega} f(x, u(x), \nabla u(x)) \, dx, \qquad u \in W^{1,1}(\Omega; \mathbb{R}^m),$ where $f : \Omega \times \mathbb{R}^m \times \mathbb{R}^{m \times d} \to [0, \infty)$ with $0 \le f(x, y, A) \le C(1 + |y|^{d/(d-1)} + |A|).$

BV-maps with jumps: Relaxation

Let $\Omega \subset \mathbb{R}^d$ bounded Lipschitz domain, d, m > 1, and

$$\mathscr{F}[u] := \int_{\Omega} f(x, u(x), \nabla u(x)) \, \mathrm{d}x, \qquad u \in \mathrm{W}^{1,1}(\Omega; \mathbb{R}^m),$$

where $f: \Omega \times \mathbb{R}^m \times \mathbb{R}^{m \times d} \to [0, \infty)$ with

$$0 \leq f(x, y, A) \leq C(1 + |y|^{d/(d-1)} + |A|).$$

Relaxation of \mathscr{F} at $u \in BV(\Omega; \mathbb{R}^m)$:

$$\mathscr{F}_{**}[u] := \inf \left\{ \liminf_{j \to \infty} \mathscr{F}[u_j] \colon (u_j)_j \subset \mathrm{W}^{1,1}(\Omega; \mathbb{R}^m), \ u_j \rightsquigarrow u \right\}$$

with " $u_j \rightsquigarrow u$ " meaning BV-weak* or L¹-strong convergence.

Q: What is \mathscr{F}_{**} ? Does it have an integral representation?

BV-maps with jumps: Relaxation

Let $\Omega \subset \mathbb{R}^d$ bounded Lipschitz domain, d, m > 1, and

$$\mathscr{F}[u] := \int_{\Omega} f(x, u(x), \nabla u(x)) \, \mathrm{d}x, \qquad u \in \mathrm{W}^{1,1}(\Omega; \mathbb{R}^m),$$

where $f: \Omega \times \mathbb{R}^m \times \mathbb{R}^{m \times d} \to [0, \infty)$ with

$$0 \leq f(x, y, A) \leq C(1 + |y|^{d/(d-1)} + |A|).$$

Relaxation of \mathscr{F} at $u \in BV(\Omega; \mathbb{R}^m)$:

$$\mathscr{F}_{**}[u] := \inf \left\{ \liminf_{j \to \infty} \mathscr{F}[u_j] \colon (u_j)_j \subset \mathrm{W}^{1,1}(\Omega; \mathbb{R}^m), \ u_j \rightsquigarrow u \right\}$$

with " $u_j \rightsquigarrow u$ " meaning BV-weak* or L¹-strong convergence.

Q: What is \mathscr{F}_{**} ? Does it have an integral representation? Jump paths matter!

Previous work: Fonseca–Müller '93, Ambrosio–Dal Maso '92 and many other works (Leoni, Bouchitté, Mascarenhas, ...).

Theorem (R. & Shaw 2017)

Let $f: \overline{\Omega} \times \mathbb{R}^m \times \mathbb{R}^{m \times d} \to [0, \infty)$ where $d \ge 2$ and $m \ge 1$ be such that

(i) f is a Carathéodory function whose recession function f^{∞} exists as a limit,

$$f^{\infty}(x,y,A) = \lim_{\substack{(x,y_k,A_k) \to (x,y,A) \\ t_k \to \infty}} \frac{f(x_k,y_k,t_kA_k)}{t_k};$$

(ii) $0 \le f(x, y, A) \le C(1 + |y|^{d/(d-1)} + |A|);$ (iii) $f(x, y, \cdot)$ is quasiconvex for every $(x, y) \in \overline{\Omega} \times \mathbb{R}^m$. Then the sequential weak* relaxation \mathscr{F}_{**} of \mathscr{F} to $u \in BV(\Omega; \mathbb{R}^m)$ is

$$\mathscr{F}_{**}^{w*}[u] = \int_{\Omega} f(x, u, \nabla u) \, \mathrm{d}x + \int_{\Omega} f^{\infty}\left(x, u, \frac{\mathrm{d}D^{c}u}{\mathrm{d}|D^{c}u|}\right) \mathrm{d}|D^{c}u| + \int_{J} \mathcal{K}_{f}[u] \, \mathrm{d}\mathcal{H}^{d-1}$$

where J is the jump set of u and

$$\begin{split} \mathcal{K}_{f}[u](x) &:= \inf \left\{ \frac{1}{\omega_{d-1}} \int_{\mathbb{B}^{d}} f^{\infty}(x, \varphi(y), \nabla \varphi(y)) \, \mathrm{d}y \; : \\ \varphi \in \mathbb{C}^{\infty}(\mathbb{B}^{d}; \mathbb{R}^{m}), \; \varphi|_{\partial \mathbb{B}^{d}} = u^{\pm}(x) \; \textit{if} \; y \cdot n_{u}(x) \gtrless 0 \right\} \end{split}$$

$$\mathscr{E}_{\varepsilon}[u] := \frac{1}{\varepsilon} \int_{\Omega} g(x, u)^2 \, \mathrm{d}x + \varepsilon \int_{\Omega} h(x, u, \nabla u)^2 \, \mathrm{d}x.$$

 \rightsquigarrow liquid crystals, fluid mixtures, phase transitions in solids, reaction–diffusion

$$\mathscr{E}_{\varepsilon}[u] := \frac{1}{\varepsilon} \int_{\Omega} g(x, u)^2 \, \mathrm{d}x + \varepsilon \int_{\Omega} h(x, u, \nabla u)^2 \, \mathrm{d}x.$$

 \rightsquigarrow liquid crystals, fluid mixtures, phase transitions in solids, reaction–diffusion

For f(x, y, A) := g(x, y)h(x, y, A), by the Cauchy–Schwarz inequality:

$$\mathscr{F}[u] := \int_{\Omega} f(x, u, \nabla u) \, \mathrm{d}x = \int_{\Omega} \frac{g(x, u)}{\sqrt{\varepsilon}} \cdot \sqrt{\varepsilon} h(x, u, \nabla u) \, \mathrm{d}x \le \mathscr{E}_{\varepsilon}[u].$$

$$\mathscr{E}_{\varepsilon}[u] := \frac{1}{\varepsilon} \int_{\Omega} g(x, u)^2 \, \mathrm{d}x + \varepsilon \int_{\Omega} h(x, u, \nabla u)^2 \, \mathrm{d}x.$$

 \rightsquigarrow liquid crystals, fluid mixtures, phase transitions in solids, reaction–diffusion

For f(x, y, A) := g(x, y)h(x, y, A), by the Cauchy–Schwarz inequality:

$$\mathscr{F}[u] := \int_{\Omega} f(x, u, \nabla u) \, \mathrm{d}x = \int_{\Omega} \frac{g(x, u)}{\sqrt{\varepsilon}} \cdot \sqrt{\varepsilon} h(x, u, \nabla u) \, \mathrm{d}x \le \mathscr{E}_{\varepsilon}[u].$$

• A relaxation of \mathscr{F} gives lower bound for Γ -lim_{$\varepsilon \to 0$} $\mathscr{E}_{\varepsilon}$ (often optimal!)

$$\mathscr{E}_{\varepsilon}[u] := \frac{1}{\varepsilon} \int_{\Omega} g(x, u)^2 \, \mathrm{d}x + \varepsilon \int_{\Omega} h(x, u, \nabla u)^2 \, \mathrm{d}x.$$

 \rightsquigarrow liquid crystals, fluid mixtures, phase transitions in solids, reaction–diffusion

For f(x, y, A) := g(x, y)h(x, y, A), by the Cauchy–Schwarz inequality:

$$\mathscr{F}[u] := \int_{\Omega} f(x, u, \nabla u) \, \mathrm{d}x = \int_{\Omega} \frac{g(x, u)}{\sqrt{\varepsilon}} \cdot \sqrt{\varepsilon} h(x, u, \nabla u) \, \mathrm{d}x \le \mathscr{E}_{\varepsilon}[u].$$

A relaxation of *F* gives lower bound for Γ-lim_{ε→0} ℰ_ε (often optimal!)
 Main difficulty: g may have zeroes ~ need L¹-relaxation *F*¹_{**} of *F*

$$\mathscr{E}_{\varepsilon}[u] := \frac{1}{\varepsilon} \int_{\Omega} g(x, u)^2 \, \mathrm{d}x + \varepsilon \int_{\Omega} h(x, u, \nabla u)^2 \, \mathrm{d}x.$$

 \rightsquigarrow liquid crystals, fluid mixtures, phase transitions in solids, reaction–diffusion

For f(x, y, A) := g(x, y)h(x, y, A), by the Cauchy–Schwarz inequality:

$$\mathscr{F}[u] := \int_{\Omega} f(x, u, \nabla u) \, \mathrm{d}x = \int_{\Omega} \frac{g(x, u)}{\sqrt{\varepsilon}} \cdot \sqrt{\varepsilon} h(x, u, \nabla u) \, \mathrm{d}x \leq \mathscr{E}_{\varepsilon}[u].$$

• A relaxation of \mathscr{F} gives lower bound for Γ -lim_{$\varepsilon \to 0$} $\mathscr{E}_{\varepsilon}$ (often optimal!)

- **Main difficulty:** g may have zeroes \rightsquigarrow need L^1 -relaxation \mathscr{F}^1_{**} of \mathscr{F}
- Dal Maso '79 example: there exists a continuous, convex (!), positively 1-homogeneous integrand f: Ω × ℝ^d → [0,∞) for which 𝔅 is not equal to 𝔅¹_{**} over W^{1,1}(Ω; ℝ).

Main works: Fonseca & Müller '92, Fonseca & Leoni '01.

- (a) Need g bounded.
- (b) Need fairly strong continuity assumptions in x.
- (c) Need joint lower semicontinuity in (x, y).

Interesting integrands that are not covered:

 Models of chemical reactions (Rubinstein-Sternberg-Keller 1989, Lin-Pan-Wang 2012) or harmonic maps (Chen-Struwe 1989) lead to

$$g(x,y) := \operatorname{dist}(y,K)^{p}, \qquad h(x,u,A) := |A|$$

with K = compact Riemannian manifold.

Inhomogeneity, e.g.

$$g(x,y) := |y|^{1-|x|}, \qquad h(x,u,A) := |A|.$$

Assume that $g: \overline{\Omega} \times \mathbb{R}^m \to [0, \infty)$ is continuous and: (a) partial coercivity:

$$g(x,y)|A| \leq f(x,y,A) \leq Cg(x,y)(1+|A|)$$

(b) there exists R > 0 and M > 1 for which

 $g(x,y) \leq Mg(x,ty)$ for all $x \in \Omega$, $|y| \geq R$ and $t \geq 1$,

(c) for every compact $K \subset \mathbb{R}^m$ and $\varepsilon > 0$, there exists $R_{\varepsilon} > 0$ such that

$$|(f-f^{\infty})(x,y,A)| \leq \varepsilon g(x,y)(1+|A|)$$

for $(x, y, A) \in \overline{\Omega} \times K \times \mathbb{R}^{m \times d}$ with $|A| \ge R_{\varepsilon}$.

Theorem (R. & Shaw 2018)

Let $f: \overline{\Omega} \times \mathbb{R}^m \times \mathbb{R}^{m \times d} \to [0, \infty)$ where $d \ge 2$ and $m \ge 1$ be such that (i) f is a Carathéodory function whose recession function f^{∞} exists as a limit; (ii) f is partially coercive via $g(g(x, y)|A| \le f(x, y, A) \le Cg(x, y)(1 + |A|))$; (iii) $f(x, y, \cdot)$ is quasiconvex for every $(x, y) \in \overline{\Omega} \times \mathbb{R}^m$. Define

$$\mathscr{G} := \left\{ u \in \mathrm{L}^1(\Omega; \mathbb{R}^m) : \int_{\Omega} g(x, u(x)) \, \mathrm{d} x < \infty \right\}.$$

Then, the L¹-relaxation of \mathscr{F} from $W^{1,1}(\Omega; \mathbb{R}^m) \cap \mathscr{G}$ to $BV(\Omega; \mathbb{R}^m) \cap \mathscr{G}$ is

$$\mathscr{F}^{1}_{**}[u] = \int_{\Omega} f(x, u, \nabla u) \, \mathrm{d}x + \int_{\Omega} f^{\infty}\left(x, u, \frac{\mathrm{d}D^{c}u}{\mathrm{d}|D^{c}u|}\right) \mathrm{d}|D^{c}u| + \int_{J} H_{f}[u] \, \mathrm{d}\mathscr{H}^{d-1}$$

where $H_f[u]$ is given on the next slide.

Surface densities

Given
$$u \in BV(\Omega; \mathbb{R}^m)$$
 and $x \in J = J_u$, let $\mathscr{A}_u(x)$ by
 $\mathscr{A}_u(x) := \left\{ \varphi \in (\mathbb{C}^{\infty} \cap L^{\infty}) (\mathbb{B}^d; \mathbb{R}^m) : \varphi = u_x^{\pm} \text{ on } \partial \mathbb{B}^d \right\},$

Define

$$\begin{split} \mathcal{K}_{f}[u](x) &:= \inf \bigg\{ \omega_{d-1}^{-1} \int_{\mathbb{B}^{d}} f^{\infty}(x, \varphi(z), \nabla \varphi(z)) \, \mathrm{d}z \; : \; \varphi \in \mathscr{A}_{u}(x) \bigg\}, \\ \mathcal{H}_{f}^{r}[u](x) &:= \inf \bigg\{ \omega_{d-1}^{-1} \int_{\mathbb{B}^{d}} f^{\infty} \left(x + rz, \varphi(z), \nabla \varphi(z) \right) \mathrm{d}z \; : \; \varphi \in \mathscr{A}_{u}(x), \\ & \|\varphi\|_{\mathrm{L}^{1}} \leq 2 \|u_{x}^{\pm}\|_{\mathrm{L}^{1}} \bigg\}, \end{split}$$

 $H_f[u](x) := \liminf_{r \to 0} H_f^r[u](x).$

Example in paper: In general, $K_f \neq H_f$, hence \mathscr{F}_{**}^{w*} and \mathscr{F}_{**}^1 differ

In previous works (Fonseca, Müller, Leoni, Bouchitté, Mascarenhas ...): technical assumptions are strong enough to force $K_f = H_f$.

• Very (very) careful truncation.

Very (very) careful truncation.

Partial coercivity implies that 𝔅 is coercive in small boxes B^d(x, r) × B^m(y, R) about every pair (x, y) ⊂ Ω × ℝ^m which "matters from the perspective of computing 𝔅¹_{*}". Very (very) careful truncation.

Partial coercivity implies that 𝔅 is coercive in small boxes B^d(x, r) × B^m(y, R) about every pair (x, y) ⊂ Ω × ℝ^m which "matters from the perspective of computing 𝔅¹_{*}".

Liftings.

$$\mathrm{BV}_{\#}(\Omega;\mathbb{R}^m):=\left\{ u\in \mathrm{BV}(\Omega;\mathbb{R}^m) : \int_{\Omega} u(x) \,\mathrm{d} x=0 \right\}.$$

$$\mathrm{BV}_{\#}(\Omega;\mathbb{R}^m):=\big\{\,u\in\mathrm{BV}(\Omega;\mathbb{R}^m)\ :\ \oint_{\Omega}u(x)\,\mathrm{d} x=0\,\big\}.$$

Definition

A lifting $\gamma \in \text{Lift}(\Omega \times \mathbb{R}^m)$ is a measure $\gamma \in \mathbf{M}(\Omega \times \mathbb{R}^m; \mathbb{R}^{m \times d})$ for which there exists a (unique) $u \in BV_{\#}(\Omega; \mathbb{R}^m)$ such that the **chain rule** holds:

$$\int_{\Omega} \nabla_x \varphi(x, u(x)) \, \mathrm{d}x + \int_{\Omega \times \mathbb{R}^m} \nabla_y \varphi(x, y) \, \mathrm{d}\gamma(x, y) = 0 \quad \text{for all } \varphi \in \mathrm{C}^1_0(\Omega \times \mathbb{R}^m).$$

This *u* is called the **barycenter** $[\gamma]$ of γ . Weak* convergence of liftings means weak* convergence in $\mathbf{M}(\Omega \times \mathbb{R}^m; \mathbb{R}^{m \times d})$.

$$\mathrm{BV}_{\#}(\Omega;\mathbb{R}^m):=\big\{\,u\in\mathrm{BV}(\Omega;\mathbb{R}^m)\ :\ \int_{\Omega}u(x)\,\mathrm{d} x=0\,\big\}.$$

Definition

A lifting $\gamma \in \text{Lift}(\Omega \times \mathbb{R}^m)$ is a measure $\gamma \in \mathbf{M}(\Omega \times \mathbb{R}^m; \mathbb{R}^{m \times d})$ for which there exists a (unique) $u \in BV_{\#}(\Omega; \mathbb{R}^m)$ such that the chain rule holds:

$$\int_{\Omega} \nabla_x \varphi(x, u(x)) \, \mathrm{d}x + \int_{\Omega \times \mathbb{R}^m} \nabla_y \varphi(x, y) \, \mathrm{d}\gamma(x, y) = 0 \quad \text{for all } \varphi \in \mathrm{C}^1_0(\Omega \times \mathbb{R}^m).$$

This *u* is called the **barycenter** $[\gamma]$ of γ . Weak* convergence of liftings means weak* convergence in $\mathbf{M}(\Omega \times \mathbb{R}^m; \mathbb{R}^{m \times d})$.

$$\mathrm{BV}_{\#}(\Omega;\mathbb{R}^m):=\big\{\,u\in\mathrm{BV}(\Omega;\mathbb{R}^m)\ :\ \oint_{\Omega}u(x)\,\mathrm{d} x=0\,\big\}.$$

Definition

A lifting $\gamma \in \text{Lift}(\Omega \times \mathbb{R}^m)$ is a measure $\gamma \in \mathbf{M}(\Omega \times \mathbb{R}^m; \mathbb{R}^{m \times d})$ for which there exists a (unique) $u \in BV_{\#}(\Omega; \mathbb{R}^m)$ such that the chain rule holds:

$$\int_{\Omega} \nabla_x \varphi(x, u(x)) \, \mathrm{d}x + \int_{\Omega \times \mathbb{R}^m} \nabla_y \varphi(x, y) \, \mathrm{d}\gamma(x, y) = 0 \quad \text{for all } \varphi \in \mathrm{C}^1_0(\Omega \times \mathbb{R}^m).$$

This *u* is called the **barycenter** $[\gamma]$ of γ . Weak* convergence of liftings means weak* convergence in $\mathbf{M}(\Omega \times \mathbb{R}^m; \mathbb{R}^{m \times d})$.

Lemma

 $\pi_{\#}\gamma = Du \text{ in } \mathbf{M}(\Omega; \mathbb{R}^{m \times d}) \text{ and } \pi_{\#}|\gamma| \geq |Du| \text{ in } \mathbf{M}^{+}(\Omega).$

Elementary liftings

Definition (Elementary/Minimal Liftings)

Given $u \in BV_{\#}(\Omega; \mathbb{R}^m)$, the associated elementary lifting $\gamma[u] \in Lift(\Omega \times \mathbb{R}^m)$ is

$$\gamma[u] := |Du| \otimes \left(\frac{\mathrm{d}Du}{\mathrm{d}|Du|} \int_0^1 \delta_{u^\theta} \mathrm{d}\theta\right),$$

where u^{θ} is the jump interpolant,

$$u^{ heta}(x):=egin{cases} heta u^{-}(x)+(1- heta)u^{+}(x) & ext{if } x\in J_{u},\ \widetilde{u}(x) & ext{otherwise}. \end{cases}$$

that is,

$$\langle \varphi, \gamma[u]
angle = \int_{\Omega} \int_{0}^{1} \varphi(x, u^{\theta}(x)) \, \mathrm{d}\theta \, \mathrm{d}Du(x) \quad \text{for all } \varphi \in \mathrm{C}_{0}(\Omega imes \mathbb{R}^{m}).$$

Chain rule

The liftings chain rule for the elementary lifting

$$\gamma[u](\mathrm{d} x,\mathrm{d} y):=Du(\mathrm{d} x)\otimes\int_0^1\delta_{u^\theta(x)}(\mathrm{d} y)\;\mathrm{d} \theta,$$

follows from usual BV-chain rule:

Chain rule

The liftings chain rule for the elementary lifting

$$\gamma[u](\mathrm{d} x,\mathrm{d} y):=Du(\mathrm{d} x)\otimes\int_0^1\delta_{u^\theta(x)}(\mathrm{d} y)\;\mathrm{d} \theta,$$

follows from usual BV-chain rule:

For
$$\varphi \in C_0^1(\Omega \times \mathbb{R}^m)$$
:

$$\int_{\Omega} \nabla_x \varphi(x, u(x)) \, dx + \int_{\Omega \times \mathbb{R}^m} \nabla_y \varphi(x, y) \, d\gamma(x, y)$$

$$= \int_{\Omega} \nabla_x \varphi(x, u(x)) \, dx + \int_{\Omega} \int_0^1 \nabla_y \varphi(x, u^{\theta}(x)) \, d\theta \, dDu(x)$$

$$= \int_{\Omega} \nabla_x [\varphi(x, u(x))] \, dx$$

$$= 0.$$

Non-elementary liftings

Non-elementary liftings

Example:

 $\gamma[u_j] \xrightarrow{*} \gamma \neq \gamma[u]$ for some $\gamma \in \text{Lift}((-1, 1) \times \mathbb{R}^2)$.

Non-elementary liftings

Example:

 $\gamma[u_j] \xrightarrow{*} \gamma \neq \gamma[u]$ for some $\gamma \in \text{Lift}((-1, 1) \times \mathbb{R}^2)$.

Lemma

Every lifting $\gamma \in \text{Lift}(\Omega \times \mathbb{R})$ is elementary: $\gamma = \gamma[u]$ for some $u \in BV_{\#}(\Omega; \mathbb{R})$.

Lemma (Compactness)

Let $(\gamma_j)_j \subset \text{Lift}(\Omega \times \mathbb{R}^m)$ be such that $\sup_j |\gamma_j|(\Omega \times \mathbb{R}^m) < \infty$. Then there exists a subsequence $(\gamma_{jk})_k \subset (\gamma_j)_j$ and a limit $\gamma \in \text{Lift}(\Omega \times \mathbb{R}^m)$ such that

 $\gamma_{j_k} \stackrel{*}{\rightharpoondown} \gamma \text{ in } \mathsf{M}(\Omega \times \mathbb{R}^m; \mathbb{R}^{m \times d}) \text{ and } [\gamma_{j_k}] \stackrel{*}{\rightharpoondown} [\gamma] \text{ in } \mathrm{BV}_{\#}(\Omega; \mathbb{R}^m).$

Lemma (Compactness)

Let $(\gamma_j)_j \subset \text{Lift}(\Omega \times \mathbb{R}^m)$ be such that $\sup_j |\gamma_j|(\Omega \times \mathbb{R}^m) < \infty$. Then there exists a subsequence $(\gamma_{j_k})_k \subset (\gamma_j)_j$ and a limit $\gamma \in \text{Lift}(\Omega \times \mathbb{R}^m)$ such that

$$\gamma_{j_k} \stackrel{*}{\rightharpoondown} \gamma \text{ in } \mathbf{M}(\Omega imes \mathbb{R}^m; \mathbb{R}^{m imes d}) \text{ and } [\gamma_{j_k}] \stackrel{*}{\rightharpoondown} [\gamma] \text{ in } \mathrm{BV}_{\#}(\Omega; \mathbb{R}^m).$$

Corollary (Lifting generation from BV)

Let $(u_j)_j \subset BV_{\#}(\Omega; \mathbb{R}^m)$ be a bounded sequence with $u_j \xrightarrow{*} u$ in $BV_{\#}(\Omega; \mathbb{R}^m)$. Then there exists a (non-relabelled) subsequence and a limit $\gamma \in \text{Lift}(\Omega \times \mathbb{R}^m)$ with $[\gamma] = u$ such that

 $\gamma[u_j] \xrightarrow{*} \gamma$ in Lift $(\Omega \times \mathbb{R}^m)$.

Structure theorem

Graph map: gr^{*u*} : $x \mapsto (x, u(x))$ for $u \in BV(\Omega; \mathbb{R}^m)$

Structure theorem

Graph map: gr^{*u*}: $x \mapsto (x, u(x))$ for $u \in BV(\Omega; \mathbb{R}^m)$

Pushforward: If $\mu \in \mathbf{M}(\Omega)$ satisfying $|\mu| \ll \mathscr{H}^{d-1}$ and $|\mu|(J_u) = 0$, then the pushforward $\operatorname{gr}_{\#}^{u} \mu$ of μ under gr^{u} is well-defined as a measure on $\Omega \times \mathbb{R}^{m}$. (we will usually take $\mu = |Du| \bigsqcup (\Omega \setminus J_u)$

Structure theorem

Graph map: gr^{*u*}: $x \mapsto (x, u(x))$ for $u \in BV(\Omega; \mathbb{R}^m)$

Pushforward: If $\mu \in \mathbf{M}(\Omega)$ satisfying $|\mu| \ll \mathscr{H}^{d-1}$ and $|\mu|(J_u) = 0$, then the pushforward $\operatorname{gr}_{\#}^{u} \mu$ of μ under gr^{u} is well-defined as a measure on $\Omega \times \mathbb{R}^{m}$. (we will usually take $\mu = |Du| \bigsqcup (\Omega \setminus J_u)$

Theorem (Structure Theorem for Liftings, R. & Shaw 2017)

If $\gamma \in \text{Lift}(\Omega \times \mathbb{R}^m)$ with $u = [\gamma]$, then γ admits the following decomposition into mutually singular measures:

 $\gamma = \gamma[u] \bigsqcup ((\Omega \setminus \mathscr{J}_u) \times \mathbb{R}^m) + \gamma^{\mathrm{gs}}.$

Moreover, $\gamma^{gs} \in \mathbf{M}(\Omega \times \mathbb{R}^m; \mathbb{R}^{m \times d})$ satisfies

$$\operatorname{\mathsf{div}}_{{\scriptscriptstyle \mathcal{Y}}} \gamma^{\operatorname{gs}} = - |D^j u| \otimes rac{n_u}{|u^+ - u^-|} (\delta_{u^+} - \delta_{u^-}),$$

and it is **graph-singular** with respect to u in the sense that γ^{gs} is singular with respect to all measures of the form $gr^{u}_{\#}\lambda$ where $\lambda \in \mathbf{M}(\Omega)$ satisfies both $\lambda \ll \mathscr{H}^{d-1}$ and $\lambda(J_{u}) = 0$.

Let $\gamma \in \text{Lift}(\Omega \times \mathbb{R}^m)$ with $u = [\gamma]$ be minimal in the sense that $|\gamma|(\Omega \times \mathbb{R}^m) = |Du|(\Omega)$. Then γ must be elementary, $\gamma = \gamma[u]$. In particular, if $u_j \to u$ in $BV_{\#}(\Omega; \mathbb{R}^m)$ strictly, then $\gamma[u_j] \to \gamma[u]$ strictly in Lift $(\Omega \times \mathbb{R}^m)$.

Let $\gamma \in \text{Lift}(\Omega \times \mathbb{R}^m)$ with $u = [\gamma]$ be minimal in the sense that $|\gamma|(\Omega \times \mathbb{R}^m) = |Du|(\Omega)$. Then γ must be elementary, $\gamma = \gamma[u]$. In particular, if $u_j \to u$ in $BV_{\#}(\Omega; \mathbb{R}^m)$ strictly, then $\gamma[u_j] \to \gamma[u]$ strictly in $\text{Lift}(\Omega \times \mathbb{R}^m)$.

Define $\mathscr{F}_{\mathrm{L}} \colon \mathbf{Lift}(\Omega \times \mathbb{R}^m) \to \mathbb{R}$ by

$$\mathscr{F}_{\mathrm{L}}[\gamma] = \int_{\Omega} f(x, [\gamma](x), \nabla[\gamma](x)) \, \mathrm{d}x + \int_{\Omega \times \mathbb{R}^m} f^{\infty}(x, y, \gamma^s) \, \mathrm{d}x$$

Let $\gamma \in \text{Lift}(\Omega \times \mathbb{R}^m)$ with $u = [\gamma]$ be minimal in the sense that $|\gamma|(\Omega \times \mathbb{R}^m) = |Du|(\Omega)$. Then γ must be elementary, $\gamma = \gamma[u]$. In particular, if $u_j \to u$ in $BV_{\#}(\Omega; \mathbb{R}^m)$ strictly, then $\gamma[u_j] \to \gamma[u]$ strictly in Lift $(\Omega \times \mathbb{R}^m)$.

Define $\mathscr{F}_{L} \colon \mathbf{Lift}(\Omega \times \mathbb{R}^{m}) \to \mathbb{R}$ by

$$\mathscr{F}_{\mathrm{L}}[\gamma] = \int_{\Omega} f(x, [\gamma](x), \nabla[\gamma](x)) \, \mathrm{d}x + \int_{\Omega \times \mathbb{R}^m} f^{\infty}(x, y, \gamma^s) \, \mathrm{d}x$$

For $u \in \mathrm{BV}_{\#}(\Omega;\mathbb{R}^m)$ we have by the structure theorem

$$\mathscr{F}_{\mathrm{L}}[\gamma[u]] = \int_{\Omega} f(x, u, \nabla u) \, \mathrm{d}x + \int_{\Omega \times \mathbb{R}^m} f^{\infty}(x, u, D^s u) = \mathscr{F}[u].$$

Let $\gamma \in \text{Lift}(\Omega \times \mathbb{R}^m)$ with $u = [\gamma]$ be minimal in the sense that $|\gamma|(\Omega \times \mathbb{R}^m) = |Du|(\Omega)$. Then γ must be elementary, $\gamma = \gamma[u]$. In particular, if $u_j \to u$ in $BV_{\#}(\Omega; \mathbb{R}^m)$ strictly, then $\gamma[u_j] \to \gamma[u]$ strictly in $\text{Lift}(\Omega \times \mathbb{R}^m)$.

Define $\mathscr{F}_{L} \colon \mathbf{Lift}(\Omega \times \mathbb{R}^{m}) \to \mathbb{R}$ by

$$\mathscr{F}_{\mathrm{L}}[\gamma] = \int_{\Omega} f(x, [\gamma](x), \nabla[\gamma](x)) \, \mathrm{d}x + \int_{\Omega \times \mathbb{R}^m} f^{\infty}(x, y, \gamma^s) \, \mathrm{d}x$$

For $u \in \mathrm{BV}_{\#}(\Omega;\mathbb{R}^m)$ we have by the structure theorem

$$\mathscr{F}_{\mathrm{L}}[\gamma[u]] = \int_{\Omega} f(x, u, \nabla u) \, \mathrm{d}x + \int_{\Omega \times \mathbb{R}^m} f^{\infty}(x, u, D^s u) = \mathscr{F}[u].$$

Strategy: Study \mathscr{F} via \mathscr{F}_{L} (via blowups / Young measures for liftings ...).

Thank you for your attention!

Solution concepts for a motivating example

Zero-dimensional (ODE) setup:

$$\mathscr{W}_{0}(z) = W_{0}(z) := \min\{z(z+2), z(z-2)\}, \qquad \mathscr{R}_{1}(z) = R_{1}(z) := |z|$$

$$\begin{cases} \operatorname{Sgn}(\dot{u}(t)) + DW_0 \ni f(t) := t \\ u(0) = -1 \end{cases}$$

where

$$\mathrm{Sgn}(s) := egin{cases} \{-1\} & ext{if } s < 0, \ [-1,1] & ext{if } s = 0, \ \{1\} & ext{if } s > 0. \end{cases}$$

Weak & balanced viscosity / two-speed solution

Effective energy: $W_0(z) + |z - (-1)| - t \cdot z$

Perspective integrands / measures

For an integrand $f: \Omega \times \mathbb{R}^m \times \mathbb{R}^{m \times d} \to \mathbb{R}$, define the **perspective** integrand

$$(Pf)(x,y,(A,t)) := egin{cases} |t|f(x,y,|t|^{-1}A) & ext{if } |t| > 0, \ f^{\infty}(x,y,A) & ext{if } t = 0. \end{cases}$$

- Pf is positively one-homogeneous in the (A, t)-argument.
- The perspective measure $P\gamma \in \mathsf{M}(\Omega \times \mathbb{R}^m; \mathbb{R}^{m \times d} \times \mathbb{R})$ of a lifting $\gamma \in \mathsf{Lift}(\Omega \times \mathbb{R}^m)$ is

$$P\gamma := \left(\gamma, \operatorname{gr}_{\#}^{[\gamma]}(\mathscr{L}^d \sqcup \Omega)\right).$$

By a (hard) Structure Theorem: Pγ admits the following decomposition with respect to gr[#]_#(ℒ^d ∟ Ω), where u = [γ]:

$$P\gamma = (\nabla u, 1) \operatorname{gr}_{\#}^{u}(\mathscr{L}^{d} \sqsubseteq \Omega) + (\gamma^{s}, 0).$$

If $u_j \to u$ area-strictly in $BV_{\#}(\Omega; \mathbb{R}^m)$, then $P\gamma_j \to P\gamma$ strictly.