Liftings of BV-maps and lower semicontinuity

Filip Rindler
(joint with G. Shaw)
F.Rindler@warwick.ac.uk
www.ercsingularity.org

WARWICK
 THE UNIVERSITY OF WARWICK
 erc SINGUL/RITY
 The
 Alan Turing Institute EPSRC
 Engineering and Physical Sciences Research Council

Rate-independent systems (Mielke-Theil, Mielke-Rossi-Savaré)

Prototypical equation:

$$
\frac{\dot{u}(t)}{|\dot{u}(t)|}-\Delta u(t)+D W_{0}(u(t))=f(t) \quad \text { in } \Omega \times[0, T]
$$

where $W_{0}=$ double well potential:

Rate-independent systems (Mielke-Theil, Mielke-Rossi-Savaré)

Prototypical equation:

$$
\frac{\dot{u}(t)}{|\dot{u}(t)|}-\Delta u(t)+D W_{0}(u(t))=f(t) \quad \text { in } \Omega \times[0, T]
$$

where $W_{0}=$ double well potential:

Interpretation:

$$
\frac{\dot{u}(t)}{|\dot{u}(t)|}:=\operatorname{Sgn}(\dot{u}(t)), \quad \text { where } \quad \operatorname{Sgn}(s):= \begin{cases}\{-1\} & \text { if } s<0, \\ {[-1,1]} & \text { if } s=0, \\ \{1\} & \text { if } s>0\end{cases}
$$

Rate-independent systems (Mielke-Theil, Mielke-Rossi-Savaré)

Prototypical equation:

$$
\frac{\dot{u}(t)}{|\dot{u}(t)|}-\Delta u(t)+D W_{0}(u(t))=f(t) \quad \text { in } \Omega \times[0, T]
$$

where $W_{0}=$ double well potential:

Interpretation:

$$
\frac{\dot{u}(t)}{|\dot{u}(t)|}:=\operatorname{Sgn}(\dot{u}(t)), \quad \text { where } \quad \operatorname{Sgn}(s):= \begin{cases}\{-1\} & \text { if } s<0 \\ {[-1,1]} & \text { if } s=0 \\ \{1\} & \text { if } s>0\end{cases}
$$

Features:

- Rate-independence: Dissipation does not depend on rate (speed) of movement \rightsquigarrow idealization!

Rate-independent systems (Mielke-Theil, Mielke-Rossi-Savaré)

Prototypical equation:

$$
\frac{\dot{u}(t)}{|\dot{u}(t)|}-\Delta u(t)+D W_{0}(u(t))=f(t) \quad \text { in } \Omega \times[0, T]
$$

where $W_{0}=$ double well potential:

Interpretation:

$$
\frac{\dot{u}(t)}{|\dot{u}(t)|}:=\operatorname{Sgn}(\dot{u}(t)), \quad \text { where } \quad \operatorname{Sgn}(s):= \begin{cases}\{-1\} & \text { if } s<0 \\ {[-1,1]} & \text { if } s=0 \\ \{1\} & \text { if } s>0\end{cases}
$$

Features:

- Rate-independence: Dissipation does not depend on rate (speed) of movement \rightsquigarrow idealization!
■ Can only expect BV-regularity \rightsquigarrow jumps

Rate-independent systems (Mielke-Theil, Mielke-Rossi-Savaré)

Prototypical equation:

$$
\frac{\dot{u}(t)}{|\dot{u}(t)|}-\Delta u(t)+D W_{0}(u(t))=f(t) \quad \text { in } \Omega \times[0, T]
$$

where $W_{0}=$ double well potential:

Interpretation:

$$
\frac{\dot{u}(t)}{|\dot{u}(t)|}:=\operatorname{Sgn}(\dot{u}(t)), \quad \text { where } \quad \operatorname{Sgn}(s):= \begin{cases}\{-1\} & \text { if } s<0 \\ {[-1,1]} & \text { if } s=0 \\ \{1\} & \text { if } s>0\end{cases}
$$

Features:

- Rate-independence: Dissipation does not depend on rate (speed) of movement \rightsquigarrow idealization!
- Can only expect BV-regularity \rightsquigarrow jumps

■ The above equation says nothing about the behavior on jump transients!

Jump parametrization?

Jump parametrization?

Two-speed solutions (R., Schwarzacher, Süli, Velázquez, 2017-):

- Strong solutions as long as possible

■ Late jumps (similar to Mielke-Rossi-Savaré "Balanced Viscosity" theory)

- Jump resolution (viscous PDE on jump transients)

BV-maps with jumps: Relaxation

Let $\Omega \subset \mathbb{R}^{d}$ bounded Lipschitz domain, $d, m>1$, and

$$
\mathscr{F}[u]:=\int_{\Omega} f(x, u(x), \nabla u(x)) \mathrm{d} x, \quad u \in \mathrm{~W}^{1,1}\left(\Omega ; \mathbb{R}^{m}\right)
$$

where $f: \Omega \times \mathbb{R}^{m} \times \mathbb{R}^{m \times d} \rightarrow[0, \infty)$ with

$$
0 \leq f(x, y, A) \leq C\left(1+|y|^{d /(d-1)}+|A|\right)
$$

BV-maps with jumps: Relaxation

Let $\Omega \subset \mathbb{R}^{d}$ bounded Lipschitz domain, $d, m>1$, and

$$
\mathscr{F}[u]:=\int_{\Omega} f(x, u(x), \nabla u(x)) \mathrm{d} x, \quad u \in \mathrm{~W}^{1,1}\left(\Omega ; \mathbb{R}^{m}\right)
$$

where $f: \Omega \times \mathbb{R}^{m} \times \mathbb{R}^{m \times d} \rightarrow[0, \infty)$ with

$$
0 \leq f(x, y, A) \leq C\left(1+|y|^{d /(d-1)}+|A|\right)
$$

Relaxation of \mathscr{F} at $u \in \operatorname{BV}\left(\Omega ; \mathbb{R}^{m}\right)$:

$$
\mathscr{F}_{* *}[u]:=\inf \left\{\liminf _{j \rightarrow \infty} \mathscr{F}\left[u_{j}\right]:\left(u_{j}\right)_{j} \subset \mathrm{~W}^{1,1}\left(\Omega ; \mathbb{R}^{m}\right), u_{j} \rightsquigarrow u\right\}
$$

with " $u_{j} \rightsquigarrow u$ " meaning BV-weak* or L^{1}-strong convergence.
Q: What is $\mathscr{F}_{* *}$? Does it have an integral representation?

BV-maps with jumps: Relaxation

Let $\Omega \subset \mathbb{R}^{d}$ bounded Lipschitz domain, $d, m>1$, and

$$
\mathscr{F}[u]:=\int_{\Omega} f(x, u(x), \nabla u(x)) \mathrm{d} x, \quad u \in \mathrm{~W}^{1,1}\left(\Omega ; \mathbb{R}^{m}\right),
$$

where $f: \Omega \times \mathbb{R}^{m} \times \mathbb{R}^{m \times d} \rightarrow[0, \infty)$ with

$$
0 \leq f(x, y, A) \leq C\left(1+|y|^{d /(d-1)}+|A|\right) .
$$

Relaxation of \mathscr{F} at $u \in \operatorname{BV}\left(\Omega ; \mathbb{R}^{m}\right)$:

$$
\mathscr{F}_{* *}[u]:=\inf \left\{\liminf _{j \rightarrow \infty} \mathscr{F}\left[u_{j}\right]:\left(u_{j}\right)_{j} \subset \mathrm{~W}^{1,1}\left(\Omega ; \mathbb{R}^{m}\right), u_{j} \rightsquigarrow u\right\}
$$

with " $u_{j} \rightsquigarrow u^{\prime}$ " meaning BV-weak* or L^{1}-strong convergence.
Q: What is $\mathscr{F}_{* *}$? Does it have an integral representation? Jump paths matter!

Previous work: Fonseca-Müller '93, Ambrosio-Dal Maso '92 and many other works (Leoni, Bouchitté, Mascarenhas, ...).

Relaxation theorem with respect to BV-weak* convergence

Theorem (R. \& Shaw 2017)

Let $f: \bar{\Omega} \times \mathbb{R}^{m} \times \mathbb{R}^{m \times d} \rightarrow[0, \infty)$ where $d \geq 2$ and $m \geq 1$ be such that
(i) f is a Carathéodory function whose recession function f^{∞} exists as a limit,

$$
f^{\infty}(x, y, A)=\lim _{\substack{\left(x, y_{k}, A_{k}\right) \rightarrow(x, y, A) \\ t_{k} \rightarrow \infty}} \frac{f\left(x_{k}, y_{k}, t_{k} A_{k}\right)}{t_{k}}
$$

(ii) $0 \leq f(x, y, A) \leq C\left(1+|y|^{d /(d-1)}+|A|\right)$;
(iii) $f(x, y, \cdot)$ is quasiconvex for every $(x, y) \in \bar{\Omega} \times \mathbb{R}^{m}$.

Then the sequential weak* relaxation $\mathscr{F}_{* *}$ of \mathscr{F} to $u \in \operatorname{BV}\left(\Omega ; \mathbb{R}^{m}\right)$ is

$$
\mathscr{F}_{* *}^{w *}[u]=\int_{\Omega} f(x, u, \nabla u) \mathrm{d} x+\int_{\Omega} f^{\infty}\left(x, u, \frac{\mathrm{~d} D^{c} u}{\mathrm{~d}\left|D^{c} u\right|}\right) \mathrm{d}\left|D^{c} u\right|+\int_{J} K_{f}[u] \mathrm{d} \mathscr{H}^{d-1}
$$

where J is the jump set of u and

$$
\begin{aligned}
& K_{f}[u](x):=\inf \left\{\frac{1}{\omega_{d-1}} \int_{\mathbb{B}^{d}} f^{\infty}(x, \varphi(y), \nabla \varphi(y)) \mathrm{d} y:\right. \\
&\left.\varphi \in \mathbb{C}^{\infty}\left(\mathbb{B}^{d} ; \mathbb{R}^{m}\right),\left.\varphi\right|_{\partial \mathbb{B}^{d}}=u^{ \pm}(x) \text { if } y \cdot n_{u}(x) \gtrless 0\right\}
\end{aligned}
$$

Toward L ${ }^{1}$-relaxation

Task: Compute the Γ-limit of the sequence of functionals as $\varepsilon \downarrow 0$:

$$
\mathscr{E}_{\varepsilon}[u]:=\frac{1}{\varepsilon} \int_{\Omega} g(x, u)^{2} \mathrm{~d} x+\varepsilon \int_{\Omega} h(x, u, \nabla u)^{2} \mathrm{~d} x .
$$

\rightsquigarrow liquid crystals, fluid mixtures, phase transitions in solids, reaction-diffusion

Toward L ${ }^{1}$-relaxation

Task: Compute the Γ-limit of the sequence of functionals as $\varepsilon \downarrow 0$:

$$
\mathscr{E}_{\varepsilon}[u]:=\frac{1}{\varepsilon} \int_{\Omega} g(x, u)^{2} \mathrm{~d} x+\varepsilon \int_{\Omega} h(x, u, \nabla u)^{2} \mathrm{~d} x .
$$

\rightsquigarrow liquid crystals, fluid mixtures, phase transitions in solids, reaction-diffusion

For $f(x, y, A):=g(x, y) h(x, y, A)$, by the Cauchy-Schwarz inequality:

$$
\mathscr{F}[u]:=\int_{\Omega} f(x, u, \nabla u) \mathrm{d} x=\int_{\Omega} \frac{g(x, u)}{\sqrt{\varepsilon}} \cdot \sqrt{\varepsilon} h(x, u, \nabla u) \mathrm{d} x \leq \mathscr{E}_{\varepsilon}[u] .
$$

Toward L ${ }^{1}$-relaxation

Task: Compute the Γ-limit of the sequence of functionals as $\varepsilon \downarrow 0$:

$$
\mathscr{E}_{\varepsilon}[u]:=\frac{1}{\varepsilon} \int_{\Omega} g(x, u)^{2} \mathrm{~d} x+\varepsilon \int_{\Omega} h(x, u, \nabla u)^{2} \mathrm{~d} x .
$$

\rightsquigarrow liquid crystals, fluid mixtures, phase transitions in solids, reaction-diffusion

For $f(x, y, A):=g(x, y) h(x, y, A)$, by the Cauchy-Schwarz inequality:

$$
\mathscr{F}[u]:=\int_{\Omega} f(x, u, \nabla u) \mathrm{d} x=\int_{\Omega} \frac{g(x, u)}{\sqrt{\varepsilon}} \cdot \sqrt{\varepsilon} h(x, u, \nabla u) \mathrm{d} x \leq \mathscr{E}_{\varepsilon}[u] .
$$

- A relaxation of \mathscr{F} gives lower bound for Γ - $\lim _{\varepsilon \rightarrow 0} \mathscr{E}_{\varepsilon}$ (often optimal!)

Toward L ${ }^{1}$-relaxation

Task: Compute the Γ-limit of the sequence of functionals as $\varepsilon \downarrow 0$:

$$
\mathscr{E}_{\varepsilon}[u]:=\frac{1}{\varepsilon} \int_{\Omega} g(x, u)^{2} \mathrm{~d} x+\varepsilon \int_{\Omega} h(x, u, \nabla u)^{2} \mathrm{~d} x
$$

\rightsquigarrow liquid crystals, fluid mixtures, phase transitions in solids, reaction-diffusion

For $f(x, y, A):=g(x, y) h(x, y, A)$, by the Cauchy-Schwarz inequality:

$$
\mathscr{F}[u]:=\int_{\Omega} f(x, u, \nabla u) \mathrm{d} x=\int_{\Omega} \frac{g(x, u)}{\sqrt{\varepsilon}} \cdot \sqrt{\varepsilon} h(x, u, \nabla u) \mathrm{d} x \leq \mathscr{E}_{\varepsilon}[u] .
$$

- A relaxation of \mathscr{F} gives lower bound for Γ - $\lim _{\varepsilon \rightarrow 0} \mathscr{E}_{\varepsilon}$ (often optimal!)
- Main difficulty: g may have zeroes \rightsquigarrow need L^{1}-relaxation $\mathscr{F}_{* *}^{1}$ of \mathscr{F}

Toward L ${ }^{1}$-relaxation

Task: Compute the Γ-limit of the sequence of functionals as $\varepsilon \downarrow 0$:

$$
\mathscr{E}_{\varepsilon}[u]:=\frac{1}{\varepsilon} \int_{\Omega} g(x, u)^{2} \mathrm{~d} x+\varepsilon \int_{\Omega} h(x, u, \nabla u)^{2} \mathrm{~d} x
$$

\rightsquigarrow liquid crystals, fluid mixtures, phase transitions in solids, reaction-diffusion

For $f(x, y, A):=g(x, y) h(x, y, A)$, by the Cauchy-Schwarz inequality:

$$
\mathscr{F}[u]:=\int_{\Omega} f(x, u, \nabla u) \mathrm{d} x=\int_{\Omega} \frac{g(x, u)}{\sqrt{\varepsilon}} \cdot \sqrt{\varepsilon} h(x, u, \nabla u) \mathrm{d} x \leq \mathscr{E}_{\varepsilon}[u]
$$

- A relaxation of \mathscr{F} gives lower bound for Γ - $\lim _{\varepsilon \rightarrow 0} \mathscr{E}_{\varepsilon}$ (often optimal!)
- Main difficulty: g may have zeroes \rightsquigarrow need L^{1}-relaxation $\mathscr{F}_{* *}^{1}$ of \mathscr{F}
- Dal Maso '79 example: there exists a continuous, convex (!), positively 1-homogeneous integrand $f: \Omega \times \mathbb{R}^{d} \rightarrow[0, \infty)$ for which \mathscr{F} is not equal to $\mathscr{F}_{* *}^{1}$ over $\mathrm{W}^{1,1}(\Omega ; \mathbb{R})$.

Main works: Fonseca \& Müller '92, Fonseca \& Leoni '01.
(a) Need g bounded.
(b) Need fairly strong continuity assumptions in x.
(c) Need joint lower semicontinuity in (x, y).

Interesting integrands that are not covered:

- Models of chemical reactions (Rubinstein-Sternberg-Keller 1989, Lin-Pan-Wang 2012) or harmonic maps (Chen-Struwe 1989) lead to

$$
g(x, y):=\operatorname{dist}(y, K)^{p}, \quad h(x, u, A):=|A|
$$

with $K=$ compact Riemannian manifold.
■ Inhomogeneity, e.g.

$$
g(x, y):=|y|^{1-|x|}, \quad h(x, u, A):=|A| .
$$

Partial coercivity

Assume that $g: \bar{\Omega} \times \mathbb{R}^{m} \rightarrow[0, \infty)$ is continuous and:
(a) partial coercivity:

$$
g(x, y)|A| \leq f(x, y, A) \leq C g(x, y)(1+|A|)
$$

(b) there exists $R>0$ and $M>1$ for which

$$
g(x, y) \leq M g(x, \text { ty }) \quad \text { for all } x \in \Omega, \quad|y| \geq R \text { and } t \geq 1
$$

(c) for every compact $K \subset \mathbb{R}^{m}$ and $\varepsilon>0$, there exists $R_{\varepsilon}>0$ such that

$$
\left|\left(f-f^{\infty}\right)(x, y, A)\right| \leq \varepsilon g(x, y)(1+|A|)
$$

for $(x, y, A) \in \bar{\Omega} \times K \times \mathbb{R}^{m \times d}$ with $|A| \geq R_{\varepsilon}$.

Relaxation theorem with respect to L^{1}-convergence

Theorem (R. \& Shaw 2018)

Let $f: \bar{\Omega} \times \mathbb{R}^{m} \times \mathbb{R}^{m \times d} \rightarrow[0, \infty)$ where $d \geq 2$ and $m \geq 1$ be such that
(i) f is a Carathéodory function whose recession function f^{∞} exists as a limit;
(ii) f is partially coercive via $g(g(x, y)|A| \leq f(x, y, A) \leq C g(x, y)(1+|A|))$;
(iii) $f(x, y, \cdot)$ is quasiconvex for every $(x, y) \in \bar{\Omega} \times \mathbb{R}^{m}$.

Define

$$
\mathscr{G}:=\left\{u \in \mathrm{~L}^{1}\left(\Omega ; \mathbb{R}^{m}\right): \int_{\Omega} g(x, u(x)) \mathrm{d} x<\infty\right\} .
$$

Then, the L^{1}-relaxation of \mathscr{F} from $\mathrm{W}^{1,1}\left(\Omega ; \mathbb{R}^{m}\right) \cap \mathscr{G}$ to $\mathrm{BV}\left(\Omega ; \mathbb{R}^{m}\right) \cap \mathscr{G}$ is

$$
\mathscr{F}_{* *}^{1}[u]=\int_{\Omega} f(x, u, \nabla u) \mathrm{d} x+\int_{\Omega} f^{\infty}\left(x, u, \frac{\mathrm{~d} D^{c} u}{\mathrm{~d}\left|D^{c} u\right|}\right) \mathrm{d}\left|D^{c} u\right|+\int_{J} H_{f}[u] \mathrm{d} \mathscr{H}^{d-1}
$$

where $H_{f}[u]$ is given on the next slide.

Surface densities

Given $u \in \operatorname{BV}\left(\Omega ; \mathbb{R}^{m}\right)$ and $x \in J=J_{u}$, let $\mathscr{A}_{u}(x)$ by

$$
\mathscr{A}_{u}(x):=\left\{\varphi \in\left(\mathbb{C}^{\infty} \cap \mathrm{L}^{\infty}\right)\left(\mathbb{B}^{d} ; \mathbb{R}^{m}\right): \varphi=u_{x}^{ \pm} \text {on } \partial \mathbb{B}^{d}\right\},
$$

Define
$K_{f}[u](x):=\inf \left\{\omega_{d-1}^{-1} \int_{\mathbb{B}^{d}} f^{\infty}(x, \varphi(z), \nabla \varphi(z)) \mathrm{d} z: \varphi \in \mathscr{A}_{u}(x)\right\}$,
$H_{f}^{r}[u](x):=\inf \left\{\omega_{d-1}^{-1} \int_{\mathbb{B}^{d}} f^{\infty}(x+r z, \varphi(z), \nabla \varphi(z)) \mathrm{d} z: \varphi \in \mathscr{A}_{u}(x)\right.$,

$$
\left.\|\varphi\|_{\mathrm{L}^{1}} \leq 2\left\|u_{x}^{ \pm}\right\|_{\mathrm{L}^{1}}\right\}
$$

$H_{f}[u](x):=\liminf _{r \rightarrow 0} H_{f}^{r}[u](x)$.
Example in paper: In general, $K_{f} \neq H_{f}$, hence $\mathscr{F}_{* *}^{w *}$ and $\mathscr{F}_{* *}^{1}$ differ
In previous works (Fonseca, Müller, Leoni, Bouchitté, Mascarenhas ...):
technical assumptions are strong enough to force $K_{f}=H_{f}$.

Proof ideas

- Very (very) careful truncation.

Proof ideas

- Very (very) careful truncation.
- Partial coercivity implies that \mathscr{F} is coercive in small boxes $B^{d}(x, r) \times B^{m}(y, R)$ about every pair $(x, y) \subset \Omega \times \mathbb{R}^{m}$ which "matters from the perspective of computing $\mathscr{F}_{* *}^{1 "}$.

Proof ideas

- Very (very) careful truncation.
- Partial coercivity implies that \mathscr{F} is coercive in small boxes $B^{d}(x, r) \times B^{m}(y, R)$ about every pair $(x, y) \subset \Omega \times \mathbb{R}^{m}$ which "matters from the perspective of computing $\mathscr{F}_{* *}^{1 "}$.
- Liftings.

Liftings (R. \& Shaw 2017 based on special case by Jung \& Jerrard '04)

$$
\operatorname{BV}_{\#}\left(\Omega ; \mathbb{R}^{m}\right):=\left\{u \in \operatorname{BV}\left(\Omega ; \mathbb{R}^{m}\right): f_{\Omega} u(x) \mathrm{d} x=0\right\}
$$

Liftings (R. \& Shaw 2017 based on special case by Jung \& Jerrard '04)

$\operatorname{BV} \#\left(\Omega ; \mathbb{R}^{m}\right):=\left\{u \in \operatorname{BV}\left(\Omega ; \mathbb{R}^{m}\right): f_{\Omega} u(x) \mathrm{d} x=0\right\}$.

Definition

A lifting $\gamma \in \operatorname{Lift}\left(\Omega \times \mathbb{R}^{m}\right)$ is a measure $\gamma \in \mathbf{M}\left(\Omega \times \mathbb{R}^{m} ; \mathbb{R}^{m \times d}\right)$ for which there exists a (unique) $u \in \operatorname{BV} \#\left(\Omega ; \mathbb{R}^{m}\right)$ such that the chain rule holds:
$\int_{\Omega} \nabla_{x} \varphi(x, u(x)) \mathrm{d} x+\int_{\Omega \times \mathbb{R}^{m}} \nabla_{y} \varphi(x, y) \mathrm{d} \gamma(x, y)=0 \quad$ for all $\varphi \in \mathrm{C}_{0}^{1}\left(\Omega \times \mathbb{R}^{m}\right)$.
This u is called the barycenter $[\gamma]$ of γ.
Weak* convergence of liftings means weak* convergence in $M\left(\Omega \times \mathbb{R}^{m} ; \mathbb{R}^{m \times d}\right)$.

Liftings (R. \& Shaw 2017 based on special case by Jung \& Jerrard '04)

$\operatorname{BV}_{\#}\left(\Omega ; \mathbb{R}^{m}\right):=\left\{u \in \operatorname{BV}\left(\Omega ; \mathbb{R}^{m}\right): f_{\Omega} u(x) \mathrm{d} x=0\right\}$.

Definition

A lifting $\gamma \in \operatorname{Lift}\left(\Omega \times \mathbb{R}^{m}\right)$ is a measure $\gamma \in \mathbf{M}\left(\Omega \times \mathbb{R}^{m} ; \mathbb{R}^{m \times d}\right)$ for which there exists a (unique) $u \in \operatorname{BV} \#\left(\Omega ; \mathbb{R}^{m}\right)$ such that the chain rule holds:
$\int_{\Omega} \nabla_{x} \varphi(x, u(x)) \mathrm{d} x+\int_{\Omega \times \mathbb{R}^{m}} \nabla_{y} \varphi(x, y) \mathrm{d} \gamma(x, y)=0 \quad$ for all $\varphi \in \mathrm{C}_{0}^{1}\left(\Omega \times \mathbb{R}^{m}\right)$.
This u is called the barycenter $[\gamma]$ of γ.
Weak* convergence of liftings means weak* convergence in $\mathbf{M}\left(\Omega \times \mathbb{R}^{m} ; \mathbb{R}^{m \times d}\right)$.

Liftings (R. \& Shaw 2017 based on special case by Jung \& Jerrard '04)

$\operatorname{BV}_{\#}\left(\Omega ; \mathbb{R}^{m}\right):=\left\{u \in \operatorname{BV}\left(\Omega ; \mathbb{R}^{m}\right): f_{\Omega} u(x) \mathrm{d} x=0\right\}$.

Definition

A lifting $\gamma \in \operatorname{Lift}\left(\Omega \times \mathbb{R}^{m}\right)$ is a measure $\gamma \in \mathbf{M}\left(\Omega \times \mathbb{R}^{m} ; \mathbb{R}^{m \times d}\right)$ for which there exists a (unique) $u \in \mathrm{BV}_{\#}\left(\Omega ; \mathbb{R}^{m}\right)$ such that the chain rule holds:
$\int_{\Omega} \nabla_{x} \varphi(x, u(x)) \mathrm{d} x+\int_{\Omega \times \mathbb{R}^{m}} \nabla_{y} \varphi(x, y) \mathrm{d} \gamma(x, y)=0 \quad$ for all $\varphi \in \mathrm{C}_{0}^{1}\left(\Omega \times \mathbb{R}^{m}\right)$.
This u is called the barycenter $[\gamma]$ of γ.
Weak* convergence of liftings means weak* convergence in $\mathbf{M}\left(\Omega \times \mathbb{R}^{m} ; \mathbb{R}^{m \times d}\right)$.

Lemma

$\pi_{\#} \gamma=D u$ in $\mathbf{M}\left(\Omega ; \mathbb{R}^{m \times d}\right)$ and $\pi_{\#}|\gamma| \geq|D u|$ in $\mathbf{M}^{+}(\Omega)$.

Elementary liftings

Definition (Elementary/Minimal Liftings)

Given $u \in \operatorname{BV}_{\#}\left(\Omega ; \mathbb{R}^{m}\right)$, the associated elementary lifting $\gamma[u] \in \operatorname{Lift}\left(\Omega \times \mathbb{R}^{m}\right)$ is

$$
\gamma[u]:=|D u| \otimes\left(\frac{\mathrm{d} D u}{\mathrm{~d}|D u|} \int_{0}^{1} \delta_{u^{\theta}} \mathrm{d} \theta\right),
$$

where u^{θ} is the jump interpolant,

$$
u^{\theta}(x):= \begin{cases}\theta u^{-}(x)+(1-\theta) u^{+}(x) & \text { if } x \in J_{u} \\ \widetilde{u}(x) & \text { otherwise. }\end{cases}
$$

that is,

$$
\langle\varphi, \gamma[u]\rangle=\int_{\Omega} \int_{0}^{1} \varphi\left(x, u^{\theta}(x)\right) \mathrm{d} \theta \mathrm{~d} D u(x) \quad \text { for all } \varphi \in \mathrm{C}_{0}\left(\Omega \times \mathbb{R}^{m}\right)
$$

Chain rule

The liftings chain rule for the elementary lifting

$$
\gamma[u](\mathrm{d} x, \mathrm{~d} y):=D u(\mathrm{~d} x) \otimes \int_{0}^{1} \delta_{u^{\theta}(x)}(\mathrm{d} y) \mathrm{d} \theta
$$

follows from usual BV-chain rule:

Chain rule

The liftings chain rule for the elementary lifting

$$
\gamma[u](\mathrm{d} x, \mathrm{~d} y):=D u(\mathrm{~d} x) \otimes \int_{0}^{1} \delta_{u^{\theta}(x)}(\mathrm{d} y) \mathrm{d} \theta
$$

follows from usual BV-chain rule:
For $\varphi \in \mathrm{C}_{0}^{1}\left(\Omega \times \mathbb{R}^{m}\right)$:

$$
\begin{aligned}
& \int_{\Omega} \nabla_{x} \varphi(x, u(x)) \mathrm{d} x+\int_{\Omega \times \mathbb{R}^{m}} \nabla_{y} \varphi(x, y) \mathrm{d} \gamma(x, y) \\
&=\int_{\Omega} \nabla_{x} \varphi(x, u(x)) \mathrm{d} x+\int_{\Omega} \int_{0}^{1} \nabla_{y} \varphi\left(x, u^{\theta}(x)\right) \mathrm{d} \theta \mathrm{~d} D u(x) \\
&=\int_{\Omega} \nabla_{x}[\varphi(x, u(x))] \mathrm{d} x \\
&=0
\end{aligned}
$$

Non-elementary liftings

Non-elementary liftings

Example:

$\gamma\left[u_{j}\right] \stackrel{*}{\sim} \gamma \neq \gamma[u]$ for some $\gamma \in \operatorname{Lift}\left((-1,1) \times \mathbb{R}^{2}\right)$.

Non-elementary liftings

Example:

$\gamma\left[u_{j}\right] \stackrel{*}{\sim} \gamma \neq \gamma[u]$ for some $\gamma \in \operatorname{Lift}\left((-1,1) \times \mathbb{R}^{2}\right)$.

Lemma

Every lifting $\gamma \in \operatorname{Lift}(\Omega \times \mathbb{R})$ is elementary: $\gamma=\gamma[u]$ for some $u \in \operatorname{BV} \#(\Omega ; \mathbb{R})$.

Compactness for liftings

Lemma (Compactness)

Let $\left(\gamma_{j}\right)_{j} \subset \operatorname{Lift}\left(\Omega \times \mathbb{R}^{m}\right)$ be such that $\sup _{j}\left|\gamma_{j}\right|\left(\Omega \times \mathbb{R}^{m}\right)<\infty$. Then there exists a subsequence $\left(\gamma_{j_{k}}\right)_{k} \subset\left(\gamma_{j}\right)_{j}$ and a limit $\gamma \in \operatorname{Lift}\left(\Omega \times \mathbb{R}^{m}\right)$ such that

$$
\gamma_{j_{k}} \stackrel{*}{\rightarrow} \gamma \text { in } \mathbf{M}\left(\Omega \times \mathbb{R}^{m} ; \mathbb{R}^{m \times d}\right) \text { and }\left[\gamma_{j_{k}}\right] \stackrel{*}{\longrightarrow}[\gamma] \text { in } \mathrm{BV}_{\#}\left(\Omega ; \mathbb{R}^{m}\right)
$$

Compactness for liftings

Lemma (Compactness)

Let $\left(\gamma_{j}\right)_{j} \subset \operatorname{Lift}\left(\Omega \times \mathbb{R}^{m}\right)$ be such that $\sup _{j}\left|\gamma_{j}\right|\left(\Omega \times \mathbb{R}^{m}\right)<\infty$. Then there exists a subsequence $\left(\gamma_{j_{k}}\right)_{k} \subset\left(\gamma_{j}\right)_{j}$ and a limit $\gamma \in \operatorname{Lift}\left(\Omega \times \mathbb{R}^{m}\right)$ such that

$$
\gamma_{j_{k}} \xrightarrow{*} \gamma \text { in } \mathbf{M}\left(\Omega \times \mathbb{R}^{m} ; \mathbb{R}^{m \times d}\right) \text { and }\left[\gamma_{j_{k}}\right] \stackrel{*}{\hookrightarrow}[\gamma] \text { in } \mathrm{BV}_{\#}\left(\Omega ; \mathbb{R}^{m}\right)
$$

Corollary (Lifting generation from BV)

Let $\left(u_{j}\right)_{j} \subset \mathrm{BV}_{\#}\left(\Omega ; \mathbb{R}^{m}\right)$ be a bounded sequence with $u_{j} \xrightarrow{*} u$ in $\mathrm{BV}_{\#}\left(\Omega ; \mathbb{R}^{m}\right)$. Then there exists a (non-relabelled) subsequence and a limit $\gamma \in \operatorname{Lift}\left(\Omega \times \mathbb{R}^{m}\right)$ with $[\gamma]=u$ such that

$$
\gamma\left[u_{j}\right] \stackrel{*}{\rightarrow} \gamma \text { in } \operatorname{Lift}\left(\Omega \times \mathbb{R}^{m}\right) .
$$

Structure theorem

Graph map: $\mathrm{gr}^{u}: x \mapsto(x, u(x))$ for $u \in \operatorname{BV}\left(\Omega ; \mathbb{R}^{m}\right)$

Structure theorem

Graph map: $\mathrm{gr}^{u}: x \mapsto(x, u(x))$ for $u \in \operatorname{BV}\left(\Omega ; \mathbb{R}^{m}\right)$
Pushforward: If $\mu \in \mathbf{M}(\Omega)$ satisfying $|\mu| \ll \mathscr{H}^{d-1}$ and $|\mu|\left(J_{u}\right)=0$, then the pushforward $\operatorname{gr}_{\#}^{u} \mu$ of μ under gr^{u} is well-defined as a measure on $\Omega \times \mathbb{R}^{m}$.
(we will usually take $\mu=|D u| L\left(\Omega \backslash J_{u}\right)$

Structure theorem

Graph map: $\mathrm{gr}^{u}: x \mapsto(x, u(x))$ for $u \in \operatorname{BV}\left(\Omega ; \mathbb{R}^{m}\right)$
Pushforward: If $\mu \in \mathbf{M}(\Omega)$ satisfying $|\mu| \ll \mathscr{H}^{d-1}$ and $|\mu|\left(J_{u}\right)=0$, then the pushforward $\mathrm{gr}_{\#}^{u} \mu$ of μ under gr^{u} is well-defined as a measure on $\Omega \times \mathbb{R}^{m}$. (we will usually take $\mu=|D u| L\left(\Omega \backslash J_{u}\right)$

Theorem (Structure Theorem for Liftings, R. \& Shaw 2017)

If $\gamma \in \operatorname{Lift}\left(\Omega \times \mathbb{R}^{m}\right)$ with $u=[\gamma]$, then γ admits the following decomposition into mutually singular measures:

$$
\gamma=\gamma[u]\left\llcorner\left(\left(\Omega \backslash \mathscr{J}_{u}\right) \times \mathbb{R}^{m}\right)+\gamma^{\mathrm{gs}}\right.
$$

Moreover, $\gamma^{\text {gs }} \in \mathbf{M}\left(\Omega \times \mathbb{R}^{m} ; \mathbb{R}^{m \times d}\right)$ satisfies

$$
\operatorname{div}_{y} \gamma^{g s}=-\left|D^{j} u\right| \otimes \frac{n_{u}}{\left|u^{+}-u^{-}\right|}\left(\delta_{u^{+}}-\delta_{u^{-}}\right)
$$

and it is graph-singular with respect to u in the sense that γ^{gs} is singular with respect to all measures of the form $\mathrm{gr}_{\#}^{u} \lambda$ where $\lambda \in \mathbf{M}(\Omega)$ satisfies both $\lambda \ll \mathscr{H}^{d-1}$ and $\lambda\left(J_{u}\right)=0$.

Perspective functionals

Proposition

Let $\gamma \in \operatorname{Lift}\left(\Omega \times \mathbb{R}^{m}\right)$ with $u=[\gamma]$ be minimal in the sense that $|\gamma|\left(\Omega \times \mathbb{R}^{m}\right)=|D u|(\Omega)$. Then γ must be elementary, $\gamma=\gamma[u]$. In particular, if $u_{j} \rightarrow u$ in $\operatorname{BV}_{\#}\left(\Omega ; \mathbb{R}^{m}\right)$ strictly, then $\gamma\left[u_{j}\right] \rightarrow \gamma[u]$ strictly in $\operatorname{Lift}\left(\Omega \times \mathbb{R}^{m}\right)$.

Perspective functionals

Proposition

Let $\gamma \in \operatorname{Lift}\left(\Omega \times \mathbb{R}^{m}\right)$ with $u=[\gamma]$ be minimal in the sense that $|\gamma|\left(\Omega \times \mathbb{R}^{m}\right)=|D u|(\Omega)$. Then γ must be elementary, $\gamma=\gamma[u]$. In particular, if $u_{j} \rightarrow u$ in $\operatorname{BV}_{\#}\left(\Omega ; \mathbb{R}^{m}\right)$ strictly, then $\gamma\left[u_{j}\right] \rightarrow \gamma[u]$ strictly in $\operatorname{Lift}\left(\Omega \times \mathbb{R}^{m}\right)$.

Define $\mathscr{F}_{\mathrm{L}}: \operatorname{Lift}\left(\Omega \times \mathbb{R}^{m}\right) \rightarrow \mathbb{R}$ by

$$
\mathscr{F}_{\mathrm{L}}[\gamma]=\int_{\Omega} f(x,[\gamma](x), \nabla[\gamma](x)) \mathrm{d} x+\int_{\Omega \times \mathbb{R}^{m}} f^{\infty}\left(x, y, \gamma^{s}\right) .
$$

Perspective functionals

Proposition

Let $\gamma \in \operatorname{Lift}\left(\Omega \times \mathbb{R}^{m}\right)$ with $u=[\gamma]$ be minimal in the sense that $|\gamma|\left(\Omega \times \mathbb{R}^{m}\right)=|D u|(\Omega)$. Then γ must be elementary, $\gamma=\gamma[u]$. In particular, if $u_{j} \rightarrow u$ in $\operatorname{BV}_{\#}\left(\Omega ; \mathbb{R}^{m}\right)$ strictly, then $\gamma\left[u_{j}\right] \rightarrow \gamma[u]$ strictly in $\operatorname{Lift}\left(\Omega \times \mathbb{R}^{m}\right)$.

Define $\mathscr{F}_{\mathrm{L}}: \operatorname{Lift}\left(\Omega \times \mathbb{R}^{m}\right) \rightarrow \mathbb{R}$ by

$$
\mathscr{F}_{\mathrm{L}}[\gamma]=\int_{\Omega} f(x,[\gamma](x), \nabla[\gamma](x)) \mathrm{d} x+\int_{\Omega \times \mathbb{R}^{m}} f^{\infty}\left(x, y, \gamma^{s}\right) .
$$

For $u \in \operatorname{BV}_{\#}\left(\Omega ; \mathbb{R}^{m}\right)$ we have by the structure theorem

$$
\mathscr{F}_{\mathrm{L}}[\gamma[u]]=\int_{\Omega} f(x, u, \nabla u) \mathrm{d} x+\int_{\Omega \times \mathbb{R}^{m}} f^{\infty}\left(x, u, D^{s} u\right)=\mathscr{F}[u] .
$$

Perspective functionals

Proposition

Let $\gamma \in \operatorname{Lift}\left(\Omega \times \mathbb{R}^{m}\right)$ with $u=[\gamma]$ be minimal in the sense that $|\gamma|\left(\Omega \times \mathbb{R}^{m}\right)=|D u|(\Omega)$. Then γ must be elementary, $\gamma=\gamma[u]$. In particular, if $u_{j} \rightarrow u$ in $\operatorname{BV}_{\#}\left(\Omega ; \mathbb{R}^{m}\right)$ strictly, then $\gamma\left[u_{j}\right] \rightarrow \gamma[u]$ strictly in $\operatorname{Lift}\left(\Omega \times \mathbb{R}^{m}\right)$.

Define $\mathscr{F}_{\mathrm{L}}: \operatorname{Lift}\left(\Omega \times \mathbb{R}^{m}\right) \rightarrow \mathbb{R}$ by

$$
\mathscr{F}_{\mathrm{L}}[\gamma]=\int_{\Omega} f(x,[\gamma](x), \nabla[\gamma](x)) \mathrm{d} x+\int_{\Omega \times \mathbb{R}^{m}} f^{\infty}\left(x, y, \gamma^{s}\right) .
$$

For $u \in \operatorname{BV}_{\#}\left(\Omega ; \mathbb{R}^{m}\right)$ we have by the structure theorem

$$
\mathscr{F}_{\mathrm{L}}[\gamma[u]]=\int_{\Omega} f(x, u, \nabla u) \mathrm{d} x+\int_{\Omega \times \mathbb{R}^{m}} f^{\infty}\left(x, u, D^{s} u\right)=\mathscr{F}[u] .
$$

Strategy: Study \mathscr{F} via \mathscr{F}_{L} (via blowups / Young measures for liftings ...).

Thank you for your attention!

Solution concepts for a motivating example

Zero-dimensional (ODE) setup:

$$
\mathscr{W}_{0}(z)=W_{0}(z):=\min \{z(z+2), z(z-2)\}, \quad \mathscr{R}_{1}(z)=R_{1}(z):=|z|
$$

$$
\left\{\begin{array}{c}
\operatorname{Sgn}(\dot{u}(t))+D W_{0} \ni f(t):=t \\
u(0)=-1
\end{array}\right.
$$

where

$$
\operatorname{Sgn}(s):= \begin{cases}\{-1\} & \text { if } s<0 \\ {[-1,1]} & \text { if } s=0 \\ \{1\} & \text { if } s>0\end{cases}
$$

Weak \& balanced viscosity / two-speed solution

Effective energy: $W_{0}(z)+|z-(-1)|-t \cdot z$

$t=0$

$t=3$

$$
t=1
$$

$t=4$

$$
t=2
$$

$t=1^{+}$(after jump)

Perspective integrands / measures

- For an integrand $f: \Omega \times \mathbb{R}^{m} \times \mathbb{R}^{m \times d} \rightarrow \mathbb{R}$, define the perspective integrand

$$
(P f)(x, y,(A, t)):= \begin{cases}|t| f\left(x, y,|t|^{-1} A\right) & \text { if }|t|>0 \\ f^{\infty}(x, y, A) & \text { if } t=0\end{cases}
$$

■ $P f$ is positively one-homogeneous in the (A, t)-argument.

- The perspective measure $P \gamma \in \mathbf{M}\left(\Omega \times \mathbb{R}^{m} ; \mathbb{R}^{m \times d} \times \mathbb{R}\right)$ of a lifting $\gamma \in \operatorname{Lift}\left(\Omega \times \mathbb{R}^{m}\right)$ is

$$
P \gamma:=\left(\gamma, \operatorname{gr}_{\#}^{[\gamma]}\left(\mathscr{L}^{d}\llcorner\Omega)\right)\right.
$$

■ By a (hard) Structure Theorem: $P \gamma$ admits the following decomposition with respect to $\operatorname{gr}_{\#}^{u}\left(\mathscr{L}^{d} L \Omega\right)$, where $u=[\gamma]$:

$$
P \gamma=(\nabla u, 1) \operatorname{gr}_{\#}^{u}\left(\mathscr{L}^{d}\llcorner\Omega)+\left(\gamma^{s}, 0\right)\right.
$$

■ If $u_{j} \rightarrow u$ area-strictly in $\operatorname{BV}_{\#}\left(\Omega ; \mathbb{R}^{m}\right)$, then $P \gamma_{j} \rightarrow P \gamma$ strictly.

