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Rate-independent systems (Mielke–Theil, Mielke–Rossi–Savaré)

Prototypical equation:

u̇(t)

|u̇(t)| −∆u(t) + DW0(u(t)) = f (t) in Ω× [0,T ],

where W0 = double well potential:

Interpretation:

u̇(t)

|u̇(t)| := Sgn(u̇(t)), where Sgn(s) :=


{−1} if s < 0,

[−1, 1] if s = 0,

{1} if s > 0.

Features:
Rate-independence: Dissipation does not depend on rate (speed) of
movement  idealization!
Can only expect BV-regularity  jumps
The above equation says nothing about the behavior on jump transients!
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Jump parametrization?

Two-speed solutions (R., Schwarzacher, Süli, Velázquez, 2017–):

Strong solutions as long as possible

Late jumps (similar to Mielke–Rossi–Savaré “Balanced Viscosity” theory)

Jump resolution (viscous PDE on jump transients)
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BV-maps with jumps: Relaxation

Let Ω ⊂ Rd bounded Lipschitz domain, d ,m > 1, and

F [u] :=

∫
Ω

f (x , u(x),∇u(x)) dx , u ∈W1,1(Ω;Rm),

where f : Ω× Rm × Rm×d → [0,∞) with

0 ≤ f (x , y ,A) ≤ C(1 + |y |d/(d−1) + |A|).

Relaxation of F at u ∈ BV(Ω;Rm):

F∗∗[u] := inf

{
lim inf
j→∞

F [uj ] : (uj)j ⊂W1,1(Ω;Rm), uj  u

}
with “uj  u” meaning BV-weak* or L1-strong convergence.

Q: What is F∗∗? Does it have an integral representation? Jump paths matter!

6=

Previous work: Fonseca–Müller ’93, Ambrosio–Dal Maso ’92 and many other
works (Leoni, Bouchitté, Mascarenhas, . . . ).
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Relaxation theorem with respect to BV-weak* convergence

Theorem (R. & Shaw 2017)

Let f : Ω× Rm × Rm×d → [0,∞) where d ≥ 2 and m ≥ 1 be such that

(i) f is a Carathéodory function whose recession function f∞ exists as a limit,

f∞ (x , y ,A) = lim
(x,yk ,Ak )→(x,y,A)

tk→∞

f (xk , yk , tkAk)

tk
;

(ii) 0 ≤ f (x , y ,A) ≤ C(1 + |y |d/(d−1) + |A|);

(iii) f (x , y , q) is quasiconvex for every (x , y) ∈ Ω× Rm.

Then the sequential weak* relaxation F∗∗ of F to u ∈ BV(Ω;Rm) is

Fw∗
∗∗ [u] =

∫
Ω

f (x , u,∇u) dx +

∫
Ω

f∞
(
x , u,

dDcu

d|Dcu|

)
d|Dcu|+

∫
J

Kf [u] dH d−1

where J is the jump set of u and

Kf [u](x) := inf

{
1

ωd−1

∫
Bd

f∞(x , ϕ(y),∇ϕ(y)) dy :

ϕ ∈ C∞(Bd ;Rm), ϕ|∂Bd = u±(x) if y · nu(x) ≷ 0

}



Toward L1-relaxation

Task: Compute the Γ-limit of the sequence of functionals as ε ↓ 0:

Eε[u] :=
1

ε

∫
Ω

g(x , u)2 dx + ε

∫
Ω

h(x , u,∇u)2 dx .

 liquid crystals, fluid mixtures, phase transitions in solids, reaction–diffusion

For f (x , y ,A) := g(x , y)h(x , y ,A), by the Cauchy–Schwarz inequality:

F [u] :=

∫
Ω

f (x , u,∇u) dx =

∫
Ω

g(x , u)√
ε
·
√
εh(x , u,∇u) dx ≤ Eε[u].

A relaxation of F gives lower bound for Γ-limε→0 Eε (often optimal!)

Main difficulty: g may have zeroes  need L1-relaxation F 1
∗∗ of F

Dal Maso ’79 example: there exists a continuous, convex (!), positively
1-homogeneous integrand f : Ω× Rd → [0,∞) for which F is not equal
to F 1

∗∗ over W1,1(Ω;R).
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The story so far

Main works: Fonseca & Müller ’92, Fonseca & Leoni ’01.

(a) Need g bounded.

(b) Need fairly strong continuity assumptions in x .

(c) Need joint lower semicontinuity in (x , y).

Interesting integrands that are not covered:

Models of chemical reactions (Rubinstein–Sternberg–Keller 1989,
Lin–Pan–Wang 2012) or harmonic maps (Chen–Struwe 1989) lead to

g(x , y) := dist(y ,K)p, h(x , u,A) := |A|

with K = compact Riemannian manifold.

Inhomogeneity, e.g.

g(x , y) := |y |1−|x|, h(x , u,A) := |A|.



Partial coercivity

Assume that g : Ω× Rm → [0,∞) is continuous and:

(a) partial coercivity:

g(x , y)|A| ≤ f (x , y ,A) ≤ Cg(x , y)(1 + |A|)

(b) there exists R > 0 and M > 1 for which

g(x , y) ≤ Mg(x , ty) for all x ∈ Ω, |y | ≥ R and t ≥ 1,

(c) for every compact K ⊂ Rm and ε > 0, there exists Rε > 0 such that

|(f − f∞)(x , y ,A)| ≤ εg(x , y)(1 + |A|)

for (x , y ,A) ∈ Ω× K × Rm×d with |A| ≥ Rε.



Relaxation theorem with respect to L1-convergence

Theorem (R. & Shaw 2018)

Let f : Ω× Rm × Rm×d → [0,∞) where d ≥ 2 and m ≥ 1 be such that

(i) f is a Carathéodory function whose recession function f∞ exists as a limit;

(ii) f is partially coercive via g (g(x , y)|A| ≤ f (x , y ,A) ≤ Cg(x , y)(1 + |A|));

(iii) f (x , y , q) is quasiconvex for every (x , y) ∈ Ω× Rm.

Define

G :=

{
u ∈ L1(Ω;Rm) :

∫
Ω

g(x , u(x)) dx <∞
}
.

Then, the L1-relaxation of F from W1,1(Ω;Rm) ∩ G to BV(Ω;Rm) ∩ G is

F 1
∗∗[u] =

∫
Ω

f (x , u,∇u) dx +

∫
Ω

f∞
(
x , u,

dDcu

d|Dcu|

)
d|Dcu|+

∫
J

Hf [u] dH d−1

where Hf [u] is given on the next slide.



Surface densities

Given u ∈ BV(Ω;Rm) and x ∈ J = Ju, let Au(x) by

Au(x) :=
{
ϕ ∈ (C∞ ∩ L∞) (Bd ;Rm) : ϕ = u±x on ∂Bd

}
,

Define

Kf [u](x) := inf

{
ω−1
d−1

∫
Bd

f∞(x , ϕ(z),∇ϕ(z)) dz : ϕ ∈ Au(x)

}
,

H r
f [u](x) := inf

{
ω−1
d−1

∫
Bd

f∞ (x + rz , ϕ(z),∇ϕ(z))dz : ϕ ∈ Au(x),

‖ϕ‖L1 ≤ 2‖u±x ‖L1

}
,

Hf [u](x) := lim inf
r→0

H r
f [u](x).

Example in paper: In general, Kf 6= Hf , hence Fw∗
∗∗ and F 1

∗∗ differ

In previous works (Fonseca, Müller, Leoni, Bouchitté, Mascarenhas . . . ):
technical assumptions are strong enough to force Kf = Hf .



Proof ideas

Very (very) careful truncation.

Partial coercivity implies that F is coercive in small boxes
Bd(x , r)× Bm(y ,R) about every pair (x , y) ⊂ Ω× Rm which “matters
from the perspective of computing F 1

∗∗”.

Liftings.
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Liftings (R. & Shaw 2017 based on special case by Jung & Jerrard ’04)

BV#(Ω;Rm) :=
{
u ∈ BV(Ω;Rm) : −

∫
Ω
u(x) dx = 0

}
.

Definition

A lifting γ ∈ Lift(Ω× Rm) is a measure γ ∈M(Ω× Rm;Rm×d) for which there
exists a (unique) u ∈ BV#(Ω;Rm) such that the chain rule holds:∫

Ω

∇xϕ(x , u(x)) dx +

∫
Ω×Rm

∇yϕ(x , y) dγ(x , y) = 0 for all ϕ ∈ C1
0(Ω× Rm).

This u is called the barycenter [γ ] of γ.
Weak* convergence of liftings means weak* convergence in M(Ω× Rm;Rm×d).

6=

Lemma

π#γ = Du in M(Ω;Rm×d) and π#|γ| ≥ |Du| in M+(Ω).
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Elementary liftings

Definition (Elementary/Minimal Liftings)

Given u ∈ BV#(Ω;Rm), the associated
elementary lifting γ[u ] ∈ Lift(Ω × Rm)
is

γ[u ] := |Du| ⊗
(

dDu

d|Du|

∫ 1

0

δuθ dθ

)
,

where uθ is the jump interpolant,

uθ(x) :=

{
θu−(x) + (1− θ)u+(x) if x ∈ Ju,

ũ(x) otherwise.

that is,

〈
ϕ, γ[u ]

〉
=

∫
Ω

∫ 1

0

ϕ(x , uθ(x)) dθ dDu(x) for all ϕ ∈ C0(Ω× Rm).



Chain rule

The liftings chain rule for the elementary lifting

γ[u ](dx , dy) := Du(dx)⊗
∫ 1

0

δuθ(x)(dy) dθ,

follows from usual BV-chain rule:

For ϕ ∈ C1
0(Ω× Rm):∫

Ω

∇xϕ(x , u(x)) dx +

∫
Ω×Rm

∇yϕ(x , y) dγ(x , y)

=

∫
Ω

∇xϕ(x , u(x)) dx +

∫
Ω

∫ 1

0

∇yϕ(x , uθ(x)) dθ dDu(x)

=

∫
Ω

∇x

[
ϕ(x , u(x))

]
dx

= 0.
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Non-elementary liftings

6=

γ1 := |Du| ⊗
(

dDu
d|Du|

∫ 1

0
δuθ

affine
dθ
)

γ2 := |Du| ⊗
(

dDu
d|Du|

∫ 1

0
δuθ

squiggle
dθ
)

Example:

uj =

, ,

γ[uj ]
∗
⇁ γ 6= γ[u ] for some γ ∈ Lift((−1, 1)× R2).

Lemma

Every lifting γ ∈ Lift(Ω×R) is elementary: γ = γ[u ] for some u ∈ BV#(Ω;R).
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Compactness for liftings

Lemma (Compactness)

Let (γj)j ⊂ Lift(Ω× Rm) be such that supj |γj |(Ω× Rm) <∞. Then there
exists a subsequence (γjk )k ⊂ (γj)j and a limit γ ∈ Lift(Ω× Rm) such that

γjk
∗
⇁ γ in M(Ω× Rm;Rm×d) and [γjk ]

∗
⇁ [γ ] in BV#(Ω;Rm).

Corollary (Lifting generation from BV)

Let (uj)j ⊂ BV#(Ω;Rm) be a bounded sequence with uj
∗
⇁ u in BV#(Ω;Rm).

Then there exists a (non-relabelled) subsequence and a limit γ ∈ Lift(Ω× Rm)
with [γ ] = u such that

γ[uj ]
∗
⇁ γ in Lift(Ω× Rm).
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Structure theorem

Graph map: gru : x 7→ (x , u(x)) for u ∈ BV(Ω;Rm)

Pushforward: If µ ∈M(Ω) satisfying |µ| �H d−1 and |µ|(Ju) = 0, then the
pushforward gru# µ of µ under gru is well-defined as a measure on Ω× Rm.

(we will usually take µ = |Du| (Ω \ Ju)

Theorem (Structure Theorem for Liftings, R. & Shaw 2017)

If γ ∈ Lift(Ω× Rm) with u = [γ ], then γ admits the following decomposition
into mutually singular measures:

γ = γ[u ] ((Ω \Ju)× Rm) + γgs.

Moreover, γgs ∈M(Ω× Rm;Rm×d) satisfies

divy γ
gs = −|D ju| ⊗ nu

|u+ − u−| (δu
+ − δu−),

and it is graph-singular with respect to u in the sense that γgs is singular with
respect to all measures of the form gru# λ where λ ∈M(Ω) satisfies both

λ�H d−1 and λ(Ju) = 0.
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Perspective functionals

Proposition

Let γ ∈ Lift(Ω× Rm) with u = [γ ] be minimal in the sense that
|γ|(Ω×Rm) = |Du|(Ω). Then γ must be elementary, γ = γ[u ]. In particular, if
uj → u in BV#(Ω;Rm) strictly, then γ[uj ]→ γ[u ] strictly in Lift(Ω× Rm).

Define FL : Lift(Ω× Rm)→ R by

FL[γ] =

∫
Ω

f (x , [γ ](x),∇[γ ](x)) dx +

∫
Ω×Rm

f∞ (x , y , γs) .

For u ∈ BV#(Ω;Rm) we have by the structure theorem

FL[γ[u ]] =

∫
Ω

f (x , u,∇u) dx +

∫
Ω×Rm

f∞ (x , u,Dsu) = F [u].

Strategy: Study F via FL (via blowups / Young measures for liftings . . . ).
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Thank you for your attention!



Solution concepts for a motivating example

Zero-dimensional (ODE) setup:

W0(z) = W0(z) := min{z(z + 2), z(z − 2)}, R1(z) = R1(z) := |z |
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{
Sgn(u̇(t)) + DW0 3 f (t) := t

u(0) = −1

where

Sgn(s) :=


{−1} if s < 0,

[−1, 1] if s = 0,

{1} if s > 0.



Weak & balanced viscosity / two-speed solution

uweak(t) :=
1 2 3 4 5
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utwospeed(t) :=
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Effective energy: W0(z) + |z − (−1)| − t · z
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Perspective integrands / measures

For an integrand f : Ω× Rm × Rm×d → R, define the perspective
integrand

(Pf )(x , y , (A, t)) :=

{
|t|f (x , y , |t|−1A) if |t| > 0,

f∞(x , y ,A) if t = 0.

Pf is positively one-homogeneous in the (A, t)-argument.

The perspective measure Pγ ∈M(Ω× Rm;Rm×d × R) of a lifting
γ ∈ Lift(Ω× Rm) is

Pγ :=
(
γ, gr

[γ ]
# (L d Ω)

)
.

By a (hard) Structure Theorem: Pγ admits the following decomposition
with respect to gru#(L d Ω), where u = [γ ]:

Pγ = (∇u, 1) gru#(L d Ω) + (γs , 0).

If uj → u area-strictly in BV#(Ω;Rm), then Pγj → Pγ strictly.


