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Distributionally robust optimization

(DRO) min
x∈X

max
F∈D

EF [f (x, ξ)]

• f (x, ξ) is a cost function in x that depends on a random
vector ξ

• ξ ∈ S ⊂ Rm with a distribution F

• D is an ambiguity set of F that encompasses the partial
information on F .
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Literature review

• Moment-based ambiguity sets
• Ambiguity sets with first and second moments (see e.g.,

Delage and Ye ’10)
• Higher-order moment ambiguity sets (see e.g., Mehrotra and

Papp ’14)

• Metric-based ambiguity sets: Distance from reference
(nominal) distribution (such as empirical distribution obtained
from data):

• Kullback-Leibler divergence (see e.g., Jiang and Guan ’15)
• Wasserstein Distance (see e.g., Gao and Kleywegt ’16,

Esfahani and Kuhn ’15)

• We consider the moment-based ambiguity sets.
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Distributionally robust optimization

Assumption 1

D(S, µ,Σ) =

F

∣∣∣∣∣∣
P(ξ ∈ S) = 1
EF [ξ] = µ
EF [(ξ − µ)(ξ − µ)T ] � Σ


Remark: An extension to a more general moment-based
ambiguity set
– For instance, the mean of ξ lies in an ellipsoid with the center µ
is straightforward and is omitted to simplify the introduction of
the proposed method.
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Theorem (Delage and Ye ’10)

Under Assumption 1, the target problem has the same optimal
value as the following semi-infinite problem:

f ∗ := minimize
x,s,q,Q

s + µTq + (Σ + µµT ) •Q

(DRO-ORI) S .t. s + ξTq + ξTQξ ≥ f (x, ξ) , ∀ ξ ∈ S
Q � 0, x ∈ X .

• s ∈ R, q ∈ Rm, Q ∈ Rm×m: m is the size of ξ

• “•” is the inner product defined by A • B =
∑

i ,j AijBij
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Low-rank approximation

We introduce a linear combination of a lower-dimensional random
vector ξr ∈ Rm1 (m1 ≤ m) to approximate the ξ:

ξ ≈ Arξr + µ

• Ar ∈ Rm×m1

•

Dr (Sr , µr ,Σr ) =

Fr

∣∣∣∣∣∣
P(ξr ∈ Sr ) = 1
EFr [ξr ] = 0
EFr [(ξr )(ξr )T ] � Im1

 .

• Sr := {ξr ∈ Rm1 : Arξr + µ ∈ S}
• Im1 is an identity matrix of size m1
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PCA approximation

• Arξr + µ ∈ S for any ξr ∈ Sr –Support

• Arξr + µ has the same mean as ξ –First Moment

• The covariance of Arξr + µ is ArEF [(ξr )(ξr )T ]AT
r � ArA

T
r

–Second Moment

• The closer ArA
T
r is to Σ; the better the approximation is.

• How to choose the best Ar?
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PCA approximation

Eigendecomposition of Σ

Σ = UΛUT = UΛ
1
2 (UΛ

1
2 )T

• U ∈ Rm×m, Λ ∈ Rm×m is a diagonal matrix of eigenvalues.

• Λ
1
2 replaces diagonal entries of Λ with their square roots.

• WLOG, the diagonal elements of Λ are arranged in
decreasing order.

J.Cheng et al. DRO with PCA DRO 2018 9 / 34



Introduction
DRO with Moment-based ambiguity sets

PCA approximation for DRO
Numerical study

Summary
References

PCA approximation

Principal component analysis (PCA) as one of dimensionality
reduction techniques:

• Employ a linear transformation to project the data to lower
dimensional space

• Capture the largest variance (variability)

• Ar = Um×m1Λ
1
2
m1 which projects m-dimensional space to

m1-dimensional space.
where Um×m1 ∈ Rm×m1 is the m ×m1 upper-left submatrix of

U and Λ
1
2
m1 is the m1 ×m1 upper-left submatrix of Λ

1
2 .

Remark: m1 is the number of principal components in PCA.
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Distance functions

Least square error

minimize
Ar

∑
i

∑
j

((ArA
T
r )i ,j − Σi ,j)

2

S .t. Ar ∈ Rm×m1

Spectral norm

minimize
Ar

||Σ− ArA
T
r ||

S .t. ArA
T
r � Σ

where ||A|| =
√
ρ(AAT ) where A is a real square matrix and ρ(A)

is the largest eigenvalues of A.
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Proposition

Ar = Um×m1Λ
1
2
m1 is an optimal solution of both the least square

error and spectral norm problems.
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PCA approximation for DRO

Then we have the PCA approximation:

minimize
x∈X

maximize
Fr∈Dr

EFr f (x,Um×m1Λ
1
2
m1ξr + µ)

where

Dr (Sr , µr ,Σr ) =

F

∣∣∣∣∣∣
P(ξr ∈ Sr ) = 1
EF [ξr ] = 0
EF [(ξr )(ξr )T ] � Im1

 .
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Theorem: Main results of PCA approximation

The PCA approximation has the same optimal value as the
following semi-infinite problem:

f ∗(m1) := minimize
x,s,qr ,Qr

s + Im1 •Qr

(DRO-PCA) S .t. s + ξTr q + ξTr Qrξr ≥ f (x ,Um×m1 Λ
1
2
m1ξr + µ), ∀ ξr ∈ Sr

Qr � 0, x ∈ X

where s ∈ R, qr ∈ Rm1 and Qr ∈ Rm1×m1 .

• DRO-PCA is a relaxation problem of the original problem
and f ∗(m1) is a lower bound, i.e., f ∗(m1) ≤ f ∗

• f ∗(m1) is a nondecreasing function of m1, i.e., f ∗(m1) ≤ f ∗(m2) if
m2 ≥ m1.

• If m1 = m, then problem DRO-PCA has the same optimal value
as problem DRO-ORI. Thus, f ∗(m) = f ∗.
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Comparison

f ∗(m1) := minimize
x,s,qr ,Qr

s + Im1 •Qr

(DRO-PCA) S .t. s + ξTr q + ξTr Qrξr ≥ f (x ,Um×m1 Λ
1
2
m1ξr + µ), ∀ ξr ∈ Sr

Qr � 0, x ∈ X

s ∈ R, qr ∈ Rm1 and Qr ∈ Rm1×m1 → 1 + m1 + m2
1

f ∗ := minimize
x,s,q,Q

s + µTq + (Σ + µµT ) •Q

(DRO-ORI) S .t. s + ξTq + ξTQξ ≥ f (x, ξ) , ∀ ξ ∈ S
Q � 0, x ∈ X .

s ∈ R, q ∈ Rm and Q ∈ Rm×m → 1 + m + m2

• DRO-PCA is easier to solve than DRO-ORI.
J.Cheng et al. DRO with PCA DRO 2018 15 / 34
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Piecewise linear f (x, ξ) and polyhedra S

• Support is polyhedral: S = {ξ|Aξ ≤ b} with A ∈ Rn1×m and
b ∈ Rn1

• f (x, ξ) is a convex piecewise linear function in ξ:
f (x, ξ) = maxKk=1(y0

k (x) + yk(x)T ξ)

• yk(x) = [y1
k (x), . . . , ym

k (x)]T and y0
k (x) are affine in x
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Corollary: simplification of two reformulations
DRO-ORI

f ∗ = minimize
x,s,q,λ,Q

s + µTq + (Σ + µµT ) •Q

S .t.

[
s − y0

k (x)− λTk b
(q−yk (x)+ATλk )T

2
(q−yk (x)+ATλk )

2 Q

]
� 0,∀k ∈ {1, . . . ,K}

Q � 0, λ ∈ Rn1
+ , x ∈ X .

DRO-PCA
f ∗(m1) = minimize

x,s,qr ,λ,Qr

s + Im1 •Qr

S .t.

 s − y0
k (x)− λTk b − yk(x)Tµ+ λTk Aµ

(qr+(Um×m1
Λ

1
2
m1

)T (ATλk−yk (x)))T

2

qr+(Um×m1
Λ

1
2
m1

)T (ATλk−yk (x))

2 Qr

 � 0

∀k ∈ {1, 2, ...,K}
Qr � 0, λ ∈ Rn1

+ , x ∈ X .
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Quality of PCA Approximation

Proposition

When S is polyhedral and f (x , ξ) is convex piecewise linear, then

0 ≤ f ∗(m)− f ∗(m1) ≤
K∑

k=1

√√√√ m∑
i=m1+1

Λi ,i (yk(x∗)TUi )2,

where x∗ is an optimal solution of the PCA approximation

Remark: f ∗(m) = f ∗. The smaller Λi ,i , i = m1 + 1, . . . ,m is, the
better the PCA approximation is.
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Computational setup

• DRO Conditional Value-At-Risk (CVaR)

• A Risk-Averse Production-Transportation application

• All problems are solved using Mosek with their default
parameters on a computer equipped with a Quad-core Intel
Core i7 @ 2.2 GHz processor and 16 GB RAM.
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DRO for Conditional Value-At-Risk(CVaR)

DRO CVaR1−α of a cost function xT ξ can be formulated as the
following optimization problem (Rockafellar and Uryasev 02’):

minimize
x∈X ,t∈R

maximize
F∈D

t +
1

α
EF [xT ξ − t]+

• where α ∈ (0, 1) is a risk tolerance level

• function [·]+ := max{0, ·}.
• X = {x ∈ Rn

+|
∑n

i=1 xi = 1}.

J.Cheng et al. DRO with PCA DRO 2018 21 / 34
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Numerical Study Setup

• n = 200 and α = 0.05.

• Support S ∈ {[−2σ, 2σ], [−3σ, 3σ], [−4σ, 4σ]}
• µ ∼ U [5, 10]

• Σ is generated randomly using MATLAB function
“gallery(’randcorr’,n)”

• Numbers of principal components
m1 ∈ {200, 150, 100, 50, 20}.
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Randomly generated Σ

CVAR Orig. PCA (m1 = 200) PCA (m1 = 150) PCA (m1 = 100) PCA (m1 = 50) PCA (m1 = 20)
m=200 time time Gap Gap2 time Gap Gap2 time Gap Gap2 time Gap Gap2 time Gap Gap2
Support (secs) (secs) (%) (%) (secs) (%) (%) (secs) (%) (%) (secs) (%) (%) (secs) (% ) (%)

[−2σ, 2σ] 1019.5 654.5 0.00 0.00 219.4 0.26 8.37 41.1 1.55 9.10 3.1 3.57 12.93 2.0 5.24 18.45

[−3σ, 3σ] 1290.9 1078.3 0.00 0.00 334.2 2.46 7.40 40.8 4.20 9.93 2.7 6.45 14.85 1.1 8.49 19.50

[−4σ, 4σ] 1309.2 1362.0 0.00 0.00 324.1 3.06 7.42 42.9 5.49 10.19 3.1 8.37 14.18 1.7 10.56 19.13

Table: Average results of PCA method for ten instances.
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Randomly generated Σ

Orig. PCA (m1 = 300) PCA (m1 = 225) PCA (m1 = 150) PCA (m1 = 75) PCA (m1 = 30)
Size time time Gap time Gap time Gap time Gap time Gap

(h) (h) (%) (h) (%) (h) (%) (h) (%) (h) (%)

m = 300 9.416 8.605 0.00 0.867 1.56 0.088 3.71 0.004 5.89 0.000 7.55

Table: Average results of the PCA approximation on a 300-dimensional
problem with Support=[−3σ, 3σ].
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Specially structured Σ
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Average results of PCA method with structured Σ

Orig. PCA (m1 = 200) PCA (m1 = 150) PCA (m1 = 100) PCA (m1 = 50) PCA (m1 = 20)
Slope time time Gap time Gap time Gap time Gap time Gap

(secs) (secs) (%) (secs) (%) (secs) (%) (secs) (%) (secs) (%)

Identical 1234.2 1036.9 0.00 148.8 10.24 21.6 19.29 2.2 21.02 2.0 21.40

Linear 1344.8 1326.5 0.00 296.8 5.58 41.7 10.82 3.0 13.58 2.0 15.47

0.1 1401.0 1561.2 0.00 337.9 3.12 42.4 5.88 3.1 9.24 2.0 12.06

1 1643.7 1800.1 0.00 340.0 1.38 51.1 2.70 2.7 4.62 1.0 7.31

5 1731.4 1560.0 0.00 346.5 0.26 45.4 0.75 2.8 1.83 1.0 3.26

15 1503.1 1624.7 0.00 325.2 0.00 42.3 0.01 2.6 0.21 1.1 1.59
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Deterministic production-transportation problem
(Bertsimas et al ’10 )

minimize
x,y

m∑
i=1

cixi +
m∑
i=1

n∑
j=1

ξijyij

subject to

m∑
i=1

yij = dj , j = 1, . . . , n

n∑
j=1

yij = xi , i = 1, . . . ,m (11)

0 ≤ xi ≤ 1, i = 1, . . . ,m

yij ≥ 0, i = 1, . . . ,m, j = 1, . . . , n
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Two-stage risk averse production-transportation problem
(Bertsimas et al ’10 )

minimize
x

m∑
i=1

cixi + maximize
F∈D

EF [U(Q(x, ξ))]

subject to 0 ≤ xi ≤ 1, i = 1, . . . ,m (12)

Q(x, ξ) = minimize
y≥0

m∑
i=1

n∑
j=1

ξijyij

subject to

m∑
i=1

yij = dj , j = 1, . . . , n

n∑
j=1

yij = xi , i = 1, . . . ,m
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Piecewise linear convex nondecreasing disutility function
(Bertsimas et al ’10 )

The definition of disutility function U(·) is given as follows:

U(Q(x, ξ)) = max
k∈{1,2,...,K}

akQ(x, ξ) + bk , (13)

with nonnegative coefficients, i.e., ak ≥ 0 for all k .
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Orig. PCA (100%) PCA (75%) PCA (50%) PCA (25%) PCA (10%)
(m, n) time time Gap time Gap time Gap time Gap time Gap

(secs) (secs) (%) (secs) (%) (secs) (%) (secs) (%) (secs) (%)

(5, 20) 91.4 88.2 0.00 27.4 0.25 7.7 0.57 2.2 0.93 1.7 0.94

(8, 25) 2574.5 2392.1 0.00 609.6 0.06 99.0 0.11 9.2 0.12 2.5 0.12

(10, 30) – – – 4888.2 1.07* 705.2 1.44* 42.7 1.76* 5.3 2.35*

Table: “–” indicates no solution found and “*” indicates an upper bound
for the relative gap rather than the actual gap.
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Summary

• We propose a PCA approximation method for DRO problems
with moment-based ambiguity sets.

• We show that the PCA approximation is a relaxation and quantify
the impact of the number of principal components on solution
quality.

• The proposed approximation method provides decision makers more
flexibility to deal with uncertainty, allowing for direct control of the
trade-offs between solution quality and runtime.

• One future research direction is to apply more general matrix
decomposition other than eigen-decomposition in PCA.
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• The proposed approximation method provides decision makers more
flexibility to deal with uncertainty, allowing for direct control of the
trade-offs between solution quality and runtime.

• One future research direction is to apply more general matrix
decomposition other than eigen-decomposition in PCA.
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Thank you for your attention!
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