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Application: Integrating Renewable Energy

@ Example: wind power.

o Positive: low generation cost and environmentally friendly.

o Negative: intermittent nature.

» 20% day-ahead prediction MAE for a single wind farm. [NREL, 2015]

United States - Annual Average Wind Speed at 30 m
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Application: Integrating Renewable Energy

@ Random wind power = random transmission line flow.

@ Risk of line overflow.

(a) Wind to Grid
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Application: Integrating Renewable Energy

@ Random wind power = random transmission line flow.
@ Risk of line overflow.
e DC approximation: line flow = Affine(x, &)
» x: generation scheduling decisions.
» &: wind prediction errors.
@ How to control the risk of overflow, i.e.,
Affine(x,&) > Capacity?
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Constraints under Uncertainty

a(x) "€ < b(x)
@ Xx: decision variables.
@ a(x), b(x): affine functions of x.

@ &: random vector.

o Constraints under uncertainty in other applications, e.g.,
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Constraints under Uncertainty

a(x)"¢ < b(x)
@ x: decision variables.
@ a(x), b(x): affine functions of x.

@ &: random vector.

o Constraints under uncertainty in other applications, e.g.,

» (Inventory control) End inventory > 0.
» (Appointment scheduling) Overtime < T.
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Risk Constraints

P{a(X)T§ < b(x)} > 1—¢
@ x: decision variables.
@ a(x), b(x): affine functions of x.

@ ¢&: random vector.

@ Chance constraints:
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Risk Constraints

P{a(x)Tg < b(x)} > 1—¢
@ x: decision variables.
@ a(x), b(x): affine functions of x.

@ ¢&: random vector.

@ Chance constraints:

> Probability of violation < € (e.g., € = 0.05).
» Dating back to [Charnes et al., 1958], [Miller and Wagner, 1965].
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Risk Constraints

P{a(x)Tf < b(x)} > 1—¢
@ x: decision variables.
@ a(x), b(x): affine functions of x.

@ ¢&: random vector.

@ Chance constraints:

> Probability of violation < € (e.g., € = 0.05).
» Dating back to [Charnes et al., 1958], [Miller and Wagner, 1965].
* Production Planning: [Gade and Kii¢iikyavuz, 2013].
* Chemical Processing: [Henrion and Méller, 2003].
* Power System Operations: [Ozturk et al., 2004].
*

P{Line Overflow} = Fraction of Time of Line Overflow. [Bienstock et al.,
2014]
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Risk Constraints

@ Violation magnitude?
» a(x) "¢ — b(x), given that a(x) "¢ > b(x).
» Chance constraints offer no guarantees on the magnitude.

» Conditional Value-at-Risk (CVaR) is a natural alternative.
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Risk Constraints

@ Violation magnitude?
» a(x) "¢ — b(x), given that a(x) "¢ > b(x).
» Chance constraints offer no guarantees on the magnitude.

» Conditional Value-at-Risk (CVaR) is a natural alternative.

* Seminal work: [Artzner et al., 1999], [Rockafellar and Uryasev,
2000], [Nemirovski and Shapiro, 2006].

* Conditional expectation on the upper-¢ tail.
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An lllustration of the CVaR

n e-Tall
gl I
g
A
CVaRg(a(x)"§)
h_hﬂTI |_|—|‘1"I—rrm My

a(x)"¢

@ CVaR = upper e-tail conditional expectation.
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An Application on Integrating Renewable Energy

@ How to control the risk of
Random Transmissoin line Flow > Capacity?
@ Chance constraint:
P {Affine(x, &) < Capacity} > 1 —e.
@ CVaR constraint:

CVaRp (Affine(x,&)) < Capacity.
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Challenges on Modeling: Imperfect Distributional Info

@ [P may not be accurately estimated
» Multiple plausible choices.
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Challenges on Modeling: Imperfect Distributional Info

@ [P may not be accurately estimated.
» Multiple plausible choices.
@ Example: wind prediction errors.

» Normal. [Doherty and O'Malley, 2005]
» Weibull. [Dietrich et al., 2009]

» Cauchy. [Hodge and Milligan, 2011]

» Hyperbolic. [Hodge et al., 2012]
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Ambiguous Risk Constraints

@ Addressing the distributional ambiguity.

> A reviving area:

» Origin (TBMK): [Scarf, 1958]

» 2000-2010:
[Shapiro and Kleywegt, 2002], [Nemirovski and Shapiro, 2006], [Goh
and Sim, 2010], [Bertsimas et al., 2010], [Delage and Ye, 2010], and
more.

» 2010+:
[Xu and Mannor, 2012], [Ahmed and Papageorgiou, 2013], [Zymler et
al., 2013], [Toriello et al., 2014], [Wiesemann et al., 2014], [Zhao and
Guan, 2014], [Yu and Xu, 2015], [Esfahani and Kuhn, 2015], [Yang and
Xu, 2016], [Gao and Kleywegt, 2016], [Shapiro, 2016], [Xie and
Ahmed, 2016a], [Shapiro, 2017], and many more.
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Ambiguous Risk Constraints

@ Addressing the distributional ambiguity.

> A reviving area:

» Origin (TBMK): [Scarf, 1958]

» 2000-2010:
[Shapiro and Kleywegt, 2002], [Nemirovski and Shapiro, 2006], [Goh
and Sim, 2010], [Bertsimas et al., 2010], [Delage and Ye, 2010], and
more.

» 2010+:
[Xu and Mannor, 2012], [Ahmed and Papageorgiou, 2013], [Zymler et
al., 2013], [Toriello et al., 2014], [Wiesemann et al., 2014], [Zhao and
Guan, 2014], [Yu and Xu, 2015], [Esfahani and Kuhn, 2015], [Yang and
Xu, 2016], [Gao and Kleywegt, 2016], [Shapiro, 2016], [Xie and
Ahmed, 2016a], [Shapiro, 2017], and many more.

» A family of probability distributions.

» Moment-based ambiguity set:

D(n, %) = {P: Epl¢] = p, Epée’] = T}.
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» Log-concavity.

@ One step further: moment + structural information.
» Tail dominance.
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This Talk

@ One step further: moment + structural information.
» Log-concavity.
» Tail dominance.

@ New ambiguity set:
Ds(/J/,Z) = DS N D(ILL, Z)

@ Domain knowledge + data-driven.
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This Talk

@ One step further: moment + structural information.
» Log-concavity.
» Tail dominance.

New ambiguity set:

Ds(/l/,Z) = DS N D(ILL, Z)

Domain knowledge + data-driven.

Ambiguous chance constraints (ACC):

i Te< > 1—e.
IP’EDI?(fy,Z)P{a(X) §_b(x)} > 1—¢

Ambiguous CVaR constraints (AVC):

sup CVaRp <a(x)T§) < b(x).
PEDS(sz)
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Outline

© Log-Concavity
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Motivation

@ Example: Wind prediction errors.

Normal. [Doherty and O'Malley, 2005]
Weibull. [Dietrich et al., 2009]
Cauchy. [Hodge and Milligan, 2011]
Hyperbolic. [Hodge et al., 2012]
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Motivation

@ Example: Wind prediction errors.

Normal. [Doherty and O’Malley, 2005] (log-concave)

Weibull. [Dietrich et al., 2009] (log-concave if shape parameter > 1)
Cauchy. [Hodge and Milligan, 2011] (NOT log-concave)

Hyperbolic. [Hodge et al., 2012] (log-concave)
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@ Most of the above candidates are log-concave.
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Motivation

@ Example: Wind prediction errors.

Normal. [Doherty and O’Malley, 2005] (log-concave)

Weibull. [Dietrich et al., 2009] (log-concave if shape parameter > 1)
Cauchy. [Hodge and Milligan, 2011] (NOT log-concave)

Hyperbolic. [Hodge et al., 2012] (log-concave)

@ Most of the above candidates are log-concave.
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Ambiguity Set with Log-Concave Information

@ Log-concave: the log-density function is concave.
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Ambiguity Set with Log-Concave Information

@ Log-concave: the log-density function is concave.
> In this example,

Ds(u,X) := {]P’ o Eplé] = p,
[[Z7Y2(& — p)|]2 < r almost surely,

Pis Iog—concave}.

» Mean, support, and log-concave structural information.
» We consider log-concave density.

Log-Concavity Density = CDF Log-Concavity
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Related Work

o Classical results on the convexity of (non-ambiguous) chance
constraints
IP’{ch—i-dSO} > 1—e

@ Uncertainty quantification of remaining lifetime in reliability literature:

P{X > t}.
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Related Work

o Classical results on the convexity of (non-ambiguous) chance
constraints
P{c'x+d<0} > 1-e

» (c",d) Gaussian = SOC representation. [van de Panne and Popp,
1963].

» ¢ deterministic, d log-concave = convex. [Prékopa, 1995].

» (c",d) log-concave and symmetric = convex. [Lagoa et al., 2001].

@ Uncertainty quantification of remaining lifetime in reliability literature:

P{X > t}.
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Related Work

o Classical results on the convexity of (non-ambiguous) chance
constraints
P{c'x+d<0} > 1-e

» (c",d) Gaussian = SOC representation. [van de Panne and Popp,
1963].

» ¢ deterministic, d log-concave = convex. [Prékopa, 1995].

» (c",d) log-concave and symmetric = convex. [Lagoa et al., 2001].

@ Uncertainty quantification of remaining lifetime in reliability literature:

P{X > t}.

» Sharp upper bound if the CDF of X is log-concave and Ep[X"] is
known. [Sengupta and Nanda, 1998]

Jiang (UM) ARC: Moment + Structure Mar. 2018 17 / 39



Related Work

o Classical results on the convexity of (non-ambiguous) chance
constraints
P{c'x+d<0} > 1-e

» (c",d) Gaussian = SOC representation. [van de Panne and Popp,
1963].

» ¢ deterministic, d log-concave = convex. [Prékopa, 1995].

» (c",d) log-concave and symmetric = convex. [Lagoa et al., 2001].

@ Uncertainty quantification of remaining lifetime in reliability literature:

P{X > t}.

» Sharp upper bound if the CDF of X is log-concave and Ep[X"] is
known. [Sengupta and Nanda, 1998]

@ Our focus: DRO among all log-concave densities.
@ Results: SOC conservative approximations of ACC and AVC.
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Main Results — ACC Approximation |

Theorem: SOC Conservative Approximation for ACC

Under moment and log-concavity information, and if e < 1/4, then ACC
inf P Te<b > 1-—
st P{a)TE< b)) > 1
is implied by the SOC constraint:

pla(x)+r [1 - %} Hzl/za(x)H2 < b(x),

where d* represents the unique root of function e? — d/2 — 1 on the
interval (—o0,0).

@ Obtained by relaxing the (PDF) log-concavity to the CDF
log-concavity of P.
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Main Results — ACC Approximation |l

Theorem: SOC Conservative Approximation for ACC
Under moment and log-concavity information, and if ¢ < 1/4, then ACC

i Te< > 1-—
IP’EDT({:M,Z)P{Q(X) f_b(x)} > 1l—c¢

is implied by the SOC constraint:

(1—e)r

.
poalx) +

zl/2a(x)H2 < b(x).

@ Obtained by relaxing the (PDF) log-concavity to the unimodality of P.
o Existing results on ACC with moment and unimodality information.?

@ Tighter approximation than the CDF-log-concave one.

1Li, B., Jiang, R., Mathieu, J. L., “Ambiguous Risk Constraints with Moment and
Unimodality Information,” Mathematical Programming, 2018.
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Main Results — ACC Approximation Il

Theorem: SOC Relaxing Approximation for ACC

Under moment and log-concavity information, ACC

inf P Te < > 11—
. {a0Te< b} = 1-

implies the SOC constraint:

p'a(x) + r(1 - 2¢)

’Zl/2a(x)H2 < b(x).

@ Obtained by assuming that IP is uniform.

Jiang (UM) ARC: Moment + Structure Mar. 2018
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Main Results — AVC Reformulation

Theorem: SOC Reformulation for AVC

Under moment and log-concavity information, AVC

sup CVaR (a(X)Tf) < b(x)
PEDS(“’X)

is equivalent to the SOC constraint:

1T a(x) +r(l— ) H):1/2a(x)H2 < b(x).

@ Relaxing the (PDF) log-concavity to the unimodality of P.
@ Conservative approximation.

@ But the worst-case CVaR is attained when P is uniform!
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Extension — Incorporating Covariance |

@ Incorporating the covariance information:

Dy(u,T) = {P: Erle] =,
Eplé¢'] =%,

Pis Iog—concave}.

@ Mean, covariance, and log-concave structural information.
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Extension — Incorporating Covariance Il

Theorem: SOC Conservative Approximation for ACC

Under moment and log-concavity information, ACC

inf P Te < > 1
st {a0Te< b} = 1-

is implied by the SOC constraint:

p'a(x) +7(c)

<Z - #MT>1/23(X)
where 7(e) = max{\/g, \/& - 1}.

@ Obtained by relaxing the (PDF) log-concavity to the unimodality of P.
@ Existing results on ACC with moment and unimodality information.

< b(x),
2
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Extension — Incorporating Covariance Il|

o Actually, already known as the one-sided VysochanskijPetunin
inequality.
@ See also [Roald et al. 2015].
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Extension

Incorporating Covariance Il

o Actually, already known as the one-sided VysochanskijPetunin

inequality.

@ See also [Roald et al. 2015].
@ An independent proof (in English)...

“Teopema. Hexait Uj — Kkiac OLHOBEPIIMHHO PO3NOAIICHHX BHIAJKO-
BHX BENHUMH £ 3 CKiHUCHHHMH MaTeMaTHUHHMH crofiBaunsMu ME i guc-
nepcismu DE=d, ne d — aesike dikcopane uncno. Toxi pis Beix e>0 BH-
KOHyeThbCsl PiBHiCTD

3d—e?)[3(d + €3] " npu €2 5d-37",

Mo P 6> M5 + o)) O - IBE LA o S5 @
4d[9(d + €)]”" npu €2>5d-3

ﬂoncueunﬂ 1. 3adikcyeMo posnofin moBinbHOI BUNAAKOBOI BeJH-

xu ae myaboBe MaTematnuie coginanns. Toxi, s orasizy
al[2] i [6, c. 64], npu Beix MER 117 BUIALKOBOI BEJMUHHA

E=%+m @)

cnpaBejuBa HepiBHICTB

P (§ > ME - &) T max {4(,”1 +(i2 o SZ ==Ly 49({:,2:32 =fm, (&

y aisifi wactruisikoi fimosipuicts P(E>ME+-€) =P (§, -m>m +e)=
=PE>¢ (aus. [ 1)- [Tomy ymER: P(§n>a)<[(m), Zie #ivoBipmicTe He

3aJIeKHTD BIAL —O
P& > o)</ (de™). ©®)
O6uncauvo npasy yacTHry HepisHocti (5). I3 piBuocri (4) maemo

F(de™) = max {[4g (de™") — 11-37", dg(de™-97"}, ©)

Figure: (Screenshot) D. Vysochanskij and Y. Petunin, “Improvement of the unilateral 3o-rule

for unimodal distributions,” Dokl. Akad. Nauk. Ukr. SSR, Ser. A, vol
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An Application to Risk-Constrained OPF

Optimal power flow with wind power.

IEEE 9-bus system.

Electricity loads increased by 50%.

2 wind farms at buses 2 and 8, respectively.
Forecasted wind power = 66.8MW.

Mean and support of forecast errors from historical data.

ACC on transmission line capacity, upward/downward reserves, and
lower /upper bounds of generation amounts.
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Optimal Value
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@ Gaussian: P assumed to be Gaussian.

@ RA: relaxing approximation.

o CA: conservative approximation.

@ BM: benchmark with mean and support information but without

log-concavity.
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Out-of-Sample Reliability as € varies

Table: Out-of-Sample Reliability (%) with Data Size 500

1—c¢ Gaussian RA CA BM
min 81.2 93.1 93.3 955
95% avg 82.3 947 949 96.7
max 84.2 96.1 96.1 97.4
min 50.2 705 79.7 955
75% avg 52.3 722 81.0 96.7
max 54.1 740 831 974

@ Gaussian not very reliable.

@ RA less conservative than BM.

@ Further reducing conservatism: incorporating the covariance info.
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Outline

© Tail Dominance
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Motivation
@ One may have more distributional info than the first 2 moments:

» Directly incorporated into Ds: challenging.
> Implies Markov-like inequalities.
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Motivation

@ One may have more distributional info than the first 2 moments:

» Directly incorporated into Ds: challenging.
> Implies Markov-like inequalities.

@ Higher moments.

Ep[|X — pl“]

PUX 21} < 2

, Vt>0.
@ Sub-Gaussian.
P{X —p| >t} < P{N(n,7°) —p| > t}, Vt>0.
@ Sub-exponential.
P{X —pu| >t} < e 2 Vt>0.

@ Random vector: Hanson-Wright inequalities. [Hanson and Wright, 1971]
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Motivation

@ In this example,
Dy(,T) = {P: Eele] = p,
]P){Hz_l/z(g - IU’)H > r} S e(r), vr € [rL’ rU]a
|Z7Y2(¢ — p)|] < 7 almost surely}.
@ Mean, support, and dominance information.

Examples of ¢(r):
» Higher moments: Ep[|X — u|¥]/r.
» Sub-Gaussian: cP{|N (i, 7%) — p| > r}.
» Sub-exponential: cie™ ",

@ Extensions:

» Incorporate covariance matrix.
» Replace ||[X~/2(¢ — p)|| with a general distance d(&, u).
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Main Results — Worst-Case Expectation

Theorem: Upper Bound
For a general function f(x,§),

sup  Ep[f(x,£)] < min Eg[H(p,(¢)],
PEDs(1,X) i

where

- _pl(g—
Hp. Q)= max {706 = pT(E -0}

and ( represents a random variable and Q represents its CDF:

0, if x <n,
1—e(x if n <x<n
Qesx) = { 1T Hasxsgn
1—e(n), ifrn<x<T,
1, if x>T.
.
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Main Results — Worst-Case Expectation

Theorem: Tightness

If £(x,&) can be written as the maximum of functions concave in ¢, i.e.,
there exist fi(x,&), Vi € [I], concave in § such that

f(x,&) = max{ fk(x,f)},

then

sup
PeDS(l”az)

ie[l]

Erlf(x.)] = min Eo[H(p,()]

@ Most relevant case in applications: 7(x,¢) = max,-e[,]{a,-(x)Tg— b,-(x)}.
» Newsvendor, AVC, two-stage DR stochastic linear programming.

@ Uncertainty quantification sup P{3i e [/]: a;i(x)"¢ > bi(x)}:
PEDg

f(x,

Jiang (UM)

§) = cg?’i({x[ai(X)T&bi(X)](5)}'

ARC: Moment + Structure

Mar. 2018

32 /39




Main Results — Worst-Case Expectation

Theorem: Most Relevant Case

If f(x,§):= max,-e[,]{a,-(x)T§ - b,-(x)}, then

sup _ Eplf(x,€)] = min Eg [max{||zl/2(a,-(x)—p)||*4+ﬂa,-(x)—b,-(x>}].
PEDg(1,%) P i€ll]

@ Conclusion valid for Q being continuous or discrete.
@ Worst-case distributions available.

e Reformulation jointly convex in (x, p).
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Main Results — Worst-Case Expectation

Theorem: Special Case

If f(x,&) is concave in &, then

sup EP[f(Xaé.)] = f(Xa:U’)‘
]P)EDS(/*L7Z)

@ Worst-case distribution is supported at .
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Main Results — Worst-Case Expectation

Theorem: What if f(x, &) is convex in £?

Ep[(¢ — )€ — 1)"] = EQ[¢’]E, VP € Ds(y,X).

Furthermore, the upper bound E@[g2]z is sharp in the sense that, for any

symmetric matrix A, Ep[(¢ — pu)(€ — )] < A for all P € Dg(p, X)
implies that A = Eg[¢?]Z.

e Dominance information implies the covariance if Eg[¢?] < 1.
o Check Eg[¢?] before adding in covariance info.
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An Application to DR Appointment Scheduling

Single server, 10 Appointments with random duration.

Fixed sequence of arrival and scheduling arriving times.

Mean, support, and dominance information estimated from
Log-Normal samples.
» 1 — ¢(r) obtained by fitting power and exponential curves of r.
» Tested the fitted curve and the 95% lower envelope.

Two objectives considered:
» Objective 1: minimizing the total waiting time. (Efficiency)
» Objective 2: minimizing the maximal waiting time. (Fairness)

Il -1]: || - |lco = LP reformulations.
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Out-of-Sample Total Waiting Time

time

2000 T

1800 [

1600 [

1400 [

1200 [

1000 [

800 1
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200

Out-of-Sample Test: Total Waiting Time
T T T

power 1

[ regression
[ regression lower bound

power 2 power 3
method

exp

moment

PowerK: regression to E,’({ZO ark K=1,2,3.

Exp: regression to c;e™ %",

Moment: with mean and support info but without dominance info.

Error bar: standard deviation.
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Out-of-Sample Maximal Waiting Time

time

450

400

350

300

250

200
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100

50 [

Out-of-Sample Test: Maximal Waiting Time
T T T

[ regression
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PowerK: regression to E,’({ZO ark K=1,2,3.

Exp: regression to c;e™ %",

Moment: with mean and support info but without dominance info.

Error bar: standard deviation.
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Takeaways

@ DRO approach can help address modeling and computational
challenges of risk constraints.
@ Structural information can...
» make risk constraints much less conservative.
» be incorporated without big computational burden.
@ Manuscripts this talk is based on:
> Li, B., Jiang, R., Mathieu, J.L., “Ambiguous Risk Constraints with Moment and
Unimodality Information,” Mathematical Programming, 2018.
> Li, B., Jiang, R., Mathieu, J.L., "Distributionally Robust Chance-Constrained
Optimal Power Flow Assuming Log-Concave Distributions,” PSCC, 2018.
> Guo, Y., Jiang, R., "“Distributionally Robust Expectation Using Dominance

i

Information,” soon available, 2018.

@ ruiwei@umich.edu

Thank you!

Jiang (UM) ARC: Moment + Structure Mar. 2018 39 /39



	Background and Motivation
	Log-Concavity
	Ambiguous Chance Constraints
	Ambiguous CVaR Constraints

	Tail Dominance
	Worst-Case Expectation


