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Moment-based DRO

A moment-based DRO can be generally formulated as

max
x∈D

inf
Fξ∈M

EFξ
[h(x ,ξ )],

where
M :=

{
Fξ : ℜ

n→ℜ≥0

∣∣∣ EFξ
[G(ξ )] ∈K ⊆ℜ

m
}
.

h(x ,ξ ): some form of perceived benefit
x : a decision variable vector
ξ : a random parameter vector with distribution Fξ



Example: Robust Mean-Covariance Solutions

In the case that only mean and covariance are available, Popescu (2007)
consider the following DRO problem

max
x∈D

inf
Fξ∈M

EFξ
[u(ξ

>x)],

where

G(ξ ) :=

(
ξ

ξ ξ>

)
, K :=

(
µ

Σ + µµ>

)
.

Popescu (2007) shows that for a large family of utility functions u(·),
the above problem can be reduced to a parametric quadratic program.

If u(·) is piecewise linear, several others (Bertsimas et al., Natarajan
et al., and Delage et al. (2010)) show that the problem can be solved
as a conic program.
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Worst-Case Distributions

Worst-case distributions with finite supports
Popescu (2007) exploits the structure of worst-case distributions Fξ>x
supported by at most three points.
For general moment-based DRO, worst-case distributions have been
identified as discrete distributions with at most m+1 supports
(Rogosinsky (1958)).

This structure of worst-case distributions follows the fact that
moment-based DRO is linear in the distribution (e.g. Smith (1995)).

Drawback
Such worst-case distributions appear implausible as descriptions of
real worst-case scenarios
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DRO based on Law Invariant Risk Measures

W.l.o.g., we now consider h(x ,ξ ) represents some form of loss and replace
the expectation in DRO by a law invariant risk measure ρ

min
x∈D

sup
Fξ∈M

ρFξ
(h(x ,ξ )).

A risk measure ρ is law invariant (or distribution-based) if
ρ(Z1) = ρ(Z2) holds for any Z1,Z2 that satisfy FZ1 ≡ FZ2 .

This comprises all risk measures that one would encounter in DRO.

The above DRO, in general, is non-linear in Fξ .
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Example: DRO based on Value-at-Risk (VaR) and
Conditional Value-at-Risk (CVaR)

El Ghaoui et al. (2003) studied the case where ρFξ
is VaR.

Many others have addressed the case where ρFξ
is CVaR, e.g. Delage

et al., Natarajan et al. (2010), Chen et al. (2011).



On the Family of Coherent Risk Measures

Our interest is to study DRO based on a more general family of risk
measures, since

VaR and CVaR do not well represent one’s true risk preference,

there is growing interest to seek an alternative framework other than
expected utility (as studied in Popescu (2007)) to address risk

In particular, we only assume ρFξ
is coherent (Artzner et al. (1999)), i.e.

it satisfies
monotonicity
convexity
translation invariance
scale invariance
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Examples of Coherent Risk Measures

1 Expectation: ρ(Z ) := E[Z ]

2 Conditional Value-at-Risk (CVaR): ρ(Z ) := 1
1−α

∫ 1
α
F−1

Z (p)dp
3 Wang Transform (WT): ρ(Z ) :=

∫ 1
0 F−1

Z (p)dH(p), where
H(p) =−Φ[Φ−1(1−p) + λ ]

4 Gini Measure: ρ(Z ) := E[Z ] + rE(|Z −Z ′|) (Z ′ : ind. copy of Z )
5 Deviation from the Median: ρ(Z ) := E[Z ] +aE[|Z −F−1

Z (0.5)|]
6 Higher order risk measures: ρ(Z ) := inft{t + c · ||(Z − t)+||p},

c ≥ 1,p ≥ 1
7 Higher order semideviation: ρ(Z ) := E[Z ] + λ ||(Z −E[Z ])+||p,

p ≥ 1,0≤ λ ≤ 1
8 Many others...



Spectral (Distortion) Risk Measures

Examples 1-5 are also known as spectral (distortion) risk measures.

Definition
A risk measure ρ is called a spectral risk measure if it admits the form

ρφ (Z ) :=
∫ 1

0
φ(p)F−1

Z (p)dp,

where φ is a right-continuous, monotonically nondecreasing density
function.
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Worst-Case Risk Measures

How tractable is it to evaluate supFZ∈M ρ(FZ ) in general?

Given that
I M (µ,σ) is specified only based on the mean µ and standard deviation

σ ,
I the Kusuoka representation (Kusuoka (2001)) of a risk measure, i.e.

ρ(FZ ) = supφ∈Φ ρφ (FZ ), is available

Theorem
(Li (2018)) The worst-case counterpart of a coherent risk measure ρ

admits the closed-form

sup
FZ∈M (µ,σ)

ρ(FZ ) = µ + κ ·σ ,

where κ :=
√

supφ∈Φ ||φ ||22−1.
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Example 1: Higher-order risk measures

Consider higher-order risk measures, i.e.

ρ(Z ) := inf
t
{t + c · ||(Z − t)+||p},c ≥ 1,p ≥ 1

We have Φ := {φ | ||φ ||q ≤ c, φ ∈A }
We can derive ||φ ||22 ≤ cp,∀φ ∈ Φ based on Holder’s interpolation
inequality
We can show that there exists a φ that attains the upper bound

Corollary

sup
FZ∈M (µ,σ)

ρ(FZ ) = µ + σ
√
cp−1

when 1≤ p ≤ 2 and is infinite otherwise.
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Example 2: Higher-order semideviation

Consider higher-order semideviation, i.e.

ρ(Z ) := E[Z ] + λ ||(Z −E[Z ])+||p, p ≥ 1,0≤ λ ≤ 1

We have Φ := {φ | φ = (1− λ

||η ||q ) + λ

||η ||q η , η ∈A }

We can derive ||φ ||22 ≤maxc≥1 1+ λ ( cp−1
c2 ), ∀φ ∈ Φ

There always exists a φ that attains the bound

Corollary

sup
FZ∈M (µ,σ)

ρ(FZ ) = µ + σλ (
p1/2

21/p )(
(2−p)1/p

(2−p)1/2 )

when 1≤ p < 2, by µ + σλ when p = 2, and is infinite otherwise.
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Deriving the Closed-Form

We start from the special case of worst-case spectral risk measures
(WCSRM)

sup
FZ∈M (µ,σ)

ρφ (FZ ).

We reformulate ρφ in terms of a minimization problem and arrive at

sup
FZ∈M (µ,σ)

min
Ψ

G(FZ ,ψ),

G(FZ ,ψ) := EFZ [φ(0)Z +
∫ 1

0
[(1−α)ψ(α) + (Z −ψ(α))+]dφ(α)].

We establish the equivalency between

sup
FZ∈M

min
ψ

G(FZ ,ψ) = min
ψ∈Ψ↑

sup
FZ∈M

G(FZ ,ψ),

where Ψ↑ denotes the set of non-decreasing functions.
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Deriving the Closed-Form

We apply duality theory for the inner moment problem and after a
few additional simplification steps we arrive at

min
ψ∈Ψ↑,λ0,λ1,λ2

λ0 + λ1µ + λ2(µ
2 + σ

2) +
∫ 1

0
(1−α)ψ(α)dα

subject to (λ0 +
∫

β

0
ψ(α)dφ(α)) + (λ1−φ(β ))z + λ2z2 ≥ 0, ∀z ,∀β ∈ (0,1)



Deriving the Closed-Form

We further reduce the problem into

min
ψ∈Ψ↑,q,r ,s,t

s + t +
∫ 1

0 (1−α)ψ(α)dφ(α)

subject to s +
∫ β

0 ψ(α)dφ(α)−φ(β )2r −φ(β )q ≥ 0, ∀β ∈ (0,1)
q−µ

σ

r − t
r + t

 ∈Q4, r ≥ 0

We identify a pair of primal-dual optimal solutions in closed-form for
the above problem.

We obtain supFZ∈M (µ,σ) ρφ (FZ ) = µ + κ ·σ , where κ :=
√
||φ ||22−1,

and the general result immediately follows.
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Worst-Case Distributions for WCSRM

Theorem
The worst-case distribution F can be fully characterized by

F−1(β ) = (µ− σ√
||φ ||22−1

) +
σ√

||φ ||22−1
φ(β

−), β ∈ (0,1),

where φ(β−) := limα→β− φ(α) and F−1(β ) = µ if κ = 0 (i.e. ||φ ||22 = 1).
In the case of CVaR, we have

F−1(β ) =

µ−σ

√
ε

1−ε
,0< β ≤ 1− ε

µ + σ

√
1−ε

ε
,1− ε < β < 1

.



As φ−1 Location-Scale Distributions

For any ||φ ||22 > 1, the worst-case distribution can be any distribution
bounded from below by the threshold µ− σ√

||φ ||22−1
.

The worst-case distribution is unimodal if φ has at most one inflection
point, which is the case for most existing spectral risk measures.
The limiting distribution, limn:||φn||22→1Fφn , depends on the sequence
φn.



Worst-Case Distributions for Wang Transform (WT)
WT is a popular spectral (distortion) risk measure, particularly in
insurance (Wang (2000)).
We can derive φ(p) = exp(−λ Φ−1(1−p)−λ 2/2) and identify that
limλ→0Fφλ

∼ N(µ,σ2).
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Tightness of WCSRM
Consider an investor using the power risk spectrum

φ(p) = kpk−1, k ≥ 1,

who is uncertain about which of the following processes will be
realized in the coming two years (Lo (1987)):

St = S0eri (t) (St : the price at time t),

(Geometric Brownian Motion) r1(t) = µ1t + σ1
√
tZ ,

(Merton’s jump diffusion) r2(t) = µ2t + σ2
√
tZb +

N(t)

∑
i=0

Zi ,

where Z (Zb)∼N (0,1), Zi ∼N (β ,δ 2), N(t)∼ Poisson(λ t).
We perform a grid search over all the above processes with
E[r1(t)(j)] = E[r2(t)(j)], j = 1,2.



Tightness of WCSRM
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DRO with Worst-Case Risk Measures
Consider now again the mean-covariance DRO formulation which now
employees certain coherent risk measure

min
x∈D

sup
Fξ∈M

ρFξ
(−ξ

>x),

G(ξ ) :=

(
ξ

ξ ξ>

)
, K :=

(
µ

Σ + µµ>

)
.

Applying the same projection property in Popescu (2007), we have
the following equivalent formulation

min
x∈D

sup
FZ∼(−µ>x ,x>Σx)

ρFξ
(Z )

⇒min
x∈D
−µ
>x +

√
sup
φ∈Φ
||φ ||22−1

√
x>Σx ,

which is a second order-conic program if D is a polyhedron.
Like Popescu (2007), the solutions here are mean-variance efficient
but require no further computation to identify the tradeoff coefficient.
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Conclusion & Future Work

We demonstrate in the mean-covariance setting that
DRO based on coherent risk measures can be simpler to solve than
DRO based on utility functions while providing more plausible
worst-case distributions;
moment-based DRO has not to be overly conservative and worst-case
distributions can be richly interpreted
nonlinear DRO is not necessarily harder to solve than linear DRO

Extensions

We can also identify the worst-case distributions in the case of
higher-order moments but not in completed closed-form

Future Work
Can similar insights be found in other DRO settings? e.g. Pflug et al.
(2012) on Wasserstein metric.
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