SCENARIO OPTIMIZATION: THE PERFORMANCE-RISK TRADEOFF

Speaker: Simone Garatti

(Politecnico di Milano, Italy – email: <u>simone.garatti@polimi.it</u>)

in collaboration with: Marco C. Campi

(University of Brescia, Italy – email: <u>marco.campi@unibs.it</u>)

Scenario optimization

 $\min_{x} \quad c(x)$ s.t. $x \in \mathcal{X}_{\delta_i}$ $i = 1, \dots, N$

solution: x^*

scenarios (data)
$$\begin{cases} \delta_1 & \to & \mathcal{X}_{\delta_1} \\ \delta_2 & \to & \mathcal{X}_{\delta_2} \\ & \vdots \\ \delta_N & \to & \mathcal{X}_{\delta_N} \end{cases}$$

Problem ingredients

Cost function: c(x)

Family of constraint sets: \mathcal{X}_{δ}

 δ stochastic parameter $(\Delta, \mathcal{F}, \mathbb{P})$ unknown Cost function: c(x)

Family of constraint sets: \mathcal{X}_{δ} δ stochastic parameter $(\Delta, \mathcal{F}, \mathbb{P})$ unknown

For any given x in the optimization domain

performance c(x)

VS.

 $\mathsf{risk} \ V(x) = \mathbb{P}\left\{\delta \in \Delta : \ x \notin \mathcal{X}_{\delta}\right\}$

Cost function: c(x)

Family of constraint sets: \mathcal{X}_{δ} δ stochastic parameter $(\Delta, \mathcal{F}, \mathbb{P})$ unknown

For any given x in the optimization domain

performance
$$c(x) \longrightarrow$$
 accessible

VS.

 $\mathsf{risk} \ V(x) = \mathbb{P}\left\{\delta \in \Delta : \ x \notin \mathcal{X}_{\delta}\right\}$

Cost function: c(x)

Family of constraint sets: \mathcal{X}_{δ} δ stochastic parameter $(\Delta, \mathcal{F}, \mathbb{P})$ unknown

For any given x in the optimization domain

performance
$$c(x) \longrightarrow$$
 accessible vs.

risk $V(x) = \mathbb{P}\left\{\delta \in \Delta : x \notin \mathcal{X}_{\delta}\right\} \longrightarrow$ not accessible

 $\min_{x} \quad c(x)$ s.t. $x \in \mathcal{X}_{\delta_i}$ $i = 1, \dots, N$

solution: x^*

performance $c(x^*)$

risk $V(x^*)$

 $\min_{x} \quad c(x)$ s.t. $x \in \mathcal{X}_{\delta_i}$ $i = 1, \dots, N$

solution: x^*

performance $c(x^*)$ known

risk $V(x^*)$

performance $c(x^*)$ known

risk $V(x^*)$ can be tightly estimated from s^*

risk $V(x^*)$ can be tightly estimated from s^*

Quality ceritification

 $\min_{x} \quad c(x)$ s.t. $x \in \mathcal{X}_{\delta_i}$ $i = 1, \dots, N$

solution: x^*

Quality ceritification

 $\min_{x} \quad c(x)$ s.t. $x \in \mathcal{X}_{\delta_i}$ $i = 1, \dots, N$

solution: x^*

solution quality may be not satisfactory:

 $c(\boldsymbol{x}^*)$ is too big

- □ It is possible to introduce many alternative scenariobased schemes → several "solutions" $x_1^*, x_2^*, x_3^*, ...$ each attaining a different performance
- Scenario theory as a tool that allows one to evaluate the risk of each solution
- Quantitative comparison in terms of performance (known) and risk (estimated) select the "best" solution for the problem at hand

Mathematical tool: scenario decision-making (1/2)

uncertainty domain $(\Delta, \mathcal{F}, \mathbb{P})$

scenarios $(\delta_1, \delta_2, \ldots, \delta_N)$

decision space \mathcal{Z}

scenario-based decision $M_N: (\delta_1, \delta_2, \ldots, \delta_N) \to z^*$

support set: $(\delta_{i_1}, \delta_{i_2}, \dots, \delta_{i_k})$ such that i. $M_k(\delta_{i_1}, \delta_{i_2}, \dots, \delta_{i_k}) = M_N(\delta_1, \delta_2, \dots, \delta_N)$ ii. smallest

 s^* = size of the support set = complexity

Mathematical tool: scenario decision-making (2/2)

$$\delta \rightarrow \mathcal{Z}_{\delta} \subseteq \mathcal{Z} \qquad \longrightarrow \qquad V(z^*) = \mathbb{P}\big\{\delta \in \Delta : \ z^* \notin \mathcal{Z}_{\delta}\big\}$$
risk

scenario theory:

 $V(\boldsymbol{z}^*)$ can be estimated from \boldsymbol{s}^*

$$\begin{split} V(z^*) &\leq \widehat{V}(s^*) \text{ with confidence } 1 - \beta \text{ where} \\ \widehat{V}(k), \, k &= 0, 1, \dots \text{ , is the solution to equation} \\ &\frac{\beta}{N+1} \sum_{m=k}^{N} \binom{m}{k} (1-v)^{m-k} - \binom{N}{k} (1-v)^{N-k} = 0 \end{split}$$

Mathematical tool: scenario decision-making (2/2)

$$\delta \rightarrow \mathcal{Z}_{\delta} \subseteq \mathcal{Z} \qquad \longrightarrow \qquad V(z^*) = \mathbb{P}\big\{\delta \in \Delta : \ z^* \notin \mathcal{Z}_{\delta}\big\}$$
risk

scenario theory:

 $V(\boldsymbol{z}^*)$ can be estimated from \boldsymbol{s}^*

$$\min_{x \in \mathbb{R}^d} c(x)$$

s.t. $f(x, \delta_i) \le 0, i = 1, \dots, N$

solution: x^*

$$\min_{\substack{x \in \mathbb{R}^d, \xi \ge 0 \\ \text{s.t.}}} c(x) + \rho \sum_{i=1}^N \xi_i$$

s.t. $f(x, \delta_i) \le \xi_i, i = 1, \dots, N$

$$\min_{\substack{x \in \mathbb{R}^d, \xi \ge 0 \\ \text{s.t.}}} c(x) + \rho \sum_{i=1}^N \xi_i$$

s.t. $f(x, \delta_i) \le \xi_i, i = 1, \dots, N$

$$\min_{x \in \mathbb{R}^{d}, \xi \geq 0} \quad c(x) + \rho \sum_{i=1}^{N} \xi_{i}$$

s.t. $f(x, \delta_{i}) \leq \xi_{i}, i = 1, \dots, N$
decision: x_{ρ}^{*} , $\{\xi_{i}^{*}: \xi_{i}^{*} \neq 0\}$

complexity: s_{ρ}^{*} active

$$\min_{x \in \mathbb{R}^{d}, \xi \geq 0} c(x) + \rho \sum_{i=1}^{N} \xi_{i}$$
s.t. $f(x, \delta_{i}) \leq \xi_{i}, i = 1, \dots, N$

decision: x_{ρ}^{*} , $\{\xi_{i}^{*}: \xi_{i}^{*} \neq 0\}$

$$\sum_{x_{2}^{h}} \xi_{i} \neq 0$$

N = no. of scenarios

choose $\beta \in (0,1)$ (confidence parameter)

let $\widehat{V}(k)$, $k = 0, 1, \dots$, be the solution in (0,1) to equation $\frac{\beta}{N+1} \sum_{m=k}^{N} \binom{m}{k} (1-v)^{m-k} - \binom{N}{k} (1-v)^{N-k} = 0$

with confidence $1 - \beta$ it holds that $V(x_{\rho}^*) \leq \widehat{V}(s_{\rho}^*)$

N = no. of scenarios

choose $\beta \in (0,1)$ (confidence parameter)

let $\widehat{V}(k)$, k = 0, 1, ..., be the solution in (0,1) to equation $\frac{\beta}{N+1} \sum_{m=k}^{N} \binom{m}{k} (1-v)^{m-k} - \binom{N}{k} (1-v)^{N-k} = 0$

with confidence $1 - \beta$ it holds that $V(x_{\rho}^*) \leq \widehat{V}(s_{\rho}^*)$

For all problems in the world,

risk $V(x_{\rho}^{*})$ can be assessed through $\widehat{V}(s_{\rho}^{*})$

Main theorem (cont'd)

Main theorem (cont'd)

$$\min_{\substack{x \in \mathbb{R}^d, \xi \ge 0 \\ \text{s.t.}}} c(x) + \rho \sum_{i=1}^N \xi_i$$

s.t. $f(x, \delta_i) \le \xi_i, i = 1, \dots, N$

quantitative comparison

The other side of the coin

 $\min_{x} \quad c(x)$ s.t. $x \in \mathcal{X}_{\delta_i}$ $i = 1, \dots, N$

solution: x^*

solution quality may be not satisfactory:

 $\widehat{V}(s^*)\,$ is too big

The other side of the coin (example)

 $\min_{x} c(x)$ s.t. $x \in \mathcal{X}_{\delta_{i}}$ $i = 1, \dots, N$ $\left\| x - \bar{x} \right\| \leq \alpha$

solution: x^*_{α}

 $\min_{x} c(x)$ s.t. $x \in \mathcal{X}_{\delta_{i}}$ $i = 1, \dots, N$ $\|x - \bar{x}\| \leq \alpha$

solution: x^*_{α}

complexity: s^*_{α}

(support set)

 $\min_{x} c(x)$ s.t. $x \in \mathcal{X}_{\delta_{i}}$ $i = 1, \dots, N$ $\|x - \bar{x}\| \leq \alpha$

solution: x^*_{α}

complexity: s^*_{α}

(support set)

 $\min_{x} c(x)$ s.t. $x \in \mathcal{X}_{\delta_{i}}$ $i = 1, \dots, N$ $\|x - \bar{x}\| \leq \alpha$

solution: x^*_{α}

complexity: s^*_{lpha}

(support set)

as $\alpha \to 0$

cost $c(x_{\alpha}^*)$ increasing

risk $\widehat{V}(s^*_\alpha)$ decreasing

Conclusions

- Scenario optimization extended to scenario decision-making: a very general setup
- Alternative (tunable) schemes to obtain many alternative "solutions" (many other schemes exists, many others have to be discovered)
- Scenario theory: for each solution the risk (invisible) can be estimated from the complexity (visible)
- The risk estimate along with the performance allows the user to perform a quantitative comparison among the obtained solutions and to choose the one that is best suited for the problem at hand

Thank you !