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introduction and

background



the stage

In this talk, we consider only time-symmetric initial data slices.

Some notation:

Σ is diffeomorphic to the two-sphere and throughout g will denote a

metric on Σ.

We will consider 3-manifolds M (usually asymptotically hyperbolic)

equipped with metrics γ.

The mean curvature H of a closed surface in an asymptotically

hyperbolic manifold will always be with respect to the normal pointing

towards infinity in the manifold.

Bartnik data refers to a triple (Σ, g ,H), where H is a non-negative

function (that we will take to be constant usually).
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quasi-local mass

There are well known definitions for the total mass of an asymptotically

flat, or asymptotically hyperbolic manifold.

There is no energy density of the gravitational field in general relativity

Can we determine the total mass or energy contained in a bounded

domain? This is the problem of quasi-local mass.

The Hawking mass is a well-known example of such a definition

mH(Σ, g ,H) =
1

2

(
|Σ|
4π

)1/2(
1− 1

16π

∫
Σ

H2 dµ

)
, (1)

and its asymptotically hyperbolic counterpart

mAH
H (Σ, g ,H) =

1

2

(
|Σ|
4π

)1/2(
1− 1

16π

∫
Σ

(H2 − 4) dµ

)
(2)
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the bartnik mass

Bartnik’s quasi-local mass functional is usually given by

mB(Σ, g ,H) := inf{mADM(M, γ) : (M, γ) is an ‘admissible extension’.},

where an admissible extension (M, γ) is an asymptotically flat manifold

with non-negative scalar curvature, boundary isometric to (Σ, g) with

mean curvature H, satisfying a certain non-degeneracy condition.

This non-degeneracy condition is usually taken to be either that (M, γ)

contains no closed minimal surfaces (except possibly the boundary), or

that the boundary is outer minimising. Without such a condition the

Bartnik mass would always trivially be zero.
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computing the bartnik mass

By Huisken and Ilmanen’s proof of the Riemannian Penrose inequality, we

have that the Hawking mass bounds the Bartnik mass by below:

mH(Σ, g ,H) ≤ mB(Σ, g ,H),

provided we take the degeneracy condition to be such that the boundary

of an admissible extension is outer minimising.

If g is a round metric and H is constant, then an exterior portion of the

Schwarzschild manifold with mass parameter m = mH(Σ, g ,H) provides

an admissible extension of (Σ, g ,H) and therefore we have equality,

mH(Σ, g ,H) = mB(Σ, g ,H).

However, in general equality should not hold.
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computing the bartnik mass

In the case where the data (Σ, g ,H) corresponds to a stable minimal

surface in an initial data set (H = 0 and g satisfies a stability condition),

we also have equality between these two masses (Mantoulidis–Schoen,

2015).
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estimates for the bartnik mass

Following similar ideas as Mantoulidis and Schoen, similar estimates can

be obtained for H being some positive constant (Cabrera Pacheco,

Cederbaum, MCC., Miao).

Since we can’t expect equality between the Hawking mass and the

Bartnik mass in general, we obtain an upper bound for the Bartnik mass

that is larger than the Hawking mass in general.

Note: Qualitatively similar, but slightly different, estimates for the

Bartnik mass were obtained also by Lin and Sormani using different ideas.
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hyperbolic analogue of bartnik’s mass

To define any mass, an appropriate reference should be fixed. In the case

of the usual Bartnik mass, the reference space is Euclidean space – we

consider asymptotically flat extensions.

In the presence of a negative cosmological constant, it is natural to

consider asymptotically hyperbolic extensions in the definition of the

Bartnik mass.

We take the ‘hyperbolic Bartnik mass’ to be the infimum of the total

hyperbolic mass* over an analogous space of admissible extensions (with

scalar curvature R ≥ −6).
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main result

Theorem (Cabrera Pacheco, Cederbaum, MCC.)

Let (Σ, g ,H) be Bartnik data satisfying K (g) > −3 and H is a

non-negative constant. Then the asymptotically hyperbolic Bartnik mass

satisfies

mAH
B (Σ, g ,H) ≤ mAH

H + Err(H
√
α), (3)

where Err(y) is an error term that goes to zero as y goes to zero, and α

is a parameter measures how much g deviates from being round.

In particular, for Bartnik data close to being round or a minimal surface,

then the AH Bartnik mass is close to the AH Hawking mass.

Recall, the AH Hawking mass is given by

mAH
H :=

(
|Σ|g
16π

)1/2(
1− 1

16π

∫
Σ

(H2 − 4) dS

)
. (4)
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overview of proof



“sketch”

10



proof idea

1. Construct a collar manifold ([0, 1]× Σ, γc) such that Σ0 = {0} × Σ

realises the given Bartnik data (Σ, g ,H) and Σ1 = {1} × Σ is round

with AH Hawking mass close to that of the given Bartnik data. We

also must ensure that the collar has scalar curvature bound below by

−6 and satisfies the non-degeneracy condition.

2. Smoothly glue the collar to an AdS–Schwarzschild manifold with

mass parameter m close to the AH Hawking mass at the end of the

collar.
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“sketch”
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collars and paths of metrics



collar metric

Consider the manifold [0, 1]× Σ equipped with a metric γ of the form

γ = A2ds2 + E (s)2g(s), (5)

where g(s) is a one-parameter family of metrics on Σ.

Under the assumption that trg(s)(ġ(s)) = 0, the mean curvature of

s =constant slices is easily computed as

H(s) =
2E ′(s)

AE (s)
(6)

and the scalar curvature R(γ) is

R(γ) = 2K (g(s)) + A−2 [...] (7)
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stretching the collar metric

γ = A2ds2 + E (s)2g(s), (8)

where g(s) is a one-parameter family of metrics on Σ.

H(s) =
2E ′(s)

AE (s)
(9)

R(γ) = 2K (g(s)) + A−2 [...] (10)

In the case where H = 0, we can construct a collar with scalar curvature

R(γ) ≥ −6, mean curvature of the cross-sections small, and with the

area of Σ1 = {1} × Σ close to that of Σ0. This is by choosing A large, E

close to constant, and K (g(s)) > −3.

By choosing g(1) to be round, we can glue on a Schwarzschild-AdS

manifold near the horizon with mass m ≈ mAH
H (Σ, g , 0).
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path of metrics

The key to constructing such a collar (and therefore also extensions) is

the path g(s) of metrics on Σ. The path must satisfy

(i) trg(s)ġ(s) = 0 (area form preserved),

(ii) the Gauss curvature satisfies K (g(t)) > −3,

(iii) ġ(s) = 0 in a neighbourhood of s = 1,

(iv) and g(1) is a round metric.

In the paper of Mantoulidis and Schoen, it was shown that given a path

of metrics with constant total area, it is possible to modify the path to

ensure that in fact (i) is satisfied.

It is also straightforward to approximate any given path with a path

satisfying (iii), by making a suitable modification near s = 1.
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area-preserving path of metrics

So we seek to find a path of metrics g(s), connecting a given metric go
to a round metric, while preserving the area and maintaining a (negative)

Gauss curvature lower bound.

We can do this with normalised Ricci flow:

∂tg(t) = 2
(
r−1
o − K (g(t))

)
g(t), (11)

where ro =
√
|Σ|go

4π is the area radius of go . Now well-known results of

Hamilton and Chow imply that the solution exists for all time and

converges exponentially fast to a sphere.

The Gauss curvature satisfies a parabolic equation, and by a maximum

principle argument, we know that if K (go) > −3 then K (g(t)) > −3 for

all time.

Reparametrising gives the desired path.
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constructing the collars



recall: stretching the collar metric

γ = A2ds2 + E (s)2g(s), (12)

where g(s) is a one-parameter family of metrics on Σ.

H(s) =
2E ′(s)

AE (s)
(13)

R(γ) = 2K (g(s)) + A−2 [...] (14)

In the case where H = 0, we can construct a collar with scalar curvature

R(γ) ≥ −6, mean curvature of the cross-sections small, and with the

area of Σ1 = {1} × Σ close to that of Σ0. This is by choosing A large, E

close to constant, and K (g(s) > −3.

By choosing g(1) to be round, we can glue on a Schwarzschild-AdS

manifold near the horizon with mass m ≈ mAH
H (Σ, g , 0).
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the case Ho 6= 0

We saw that if the Bartnik data (Σ, go ,Ho) satisfies Ho = 0 then we can

construct a cylinder connecting the data to a round metric with nearly

the same area, and with small mean curvature. Ie. the end of the collar

has close to the same AH Hawking mass as that of the given data.

In the case Ho > 0, the area increases along the collar so we cannot

stretch it out too much if we hope to control the AH Hawking mass

along it.

Remember: we would like to glue on a Schwarzschild-AdS exterior with

the smallest possible mass. So we need to keep the AH Hawking mass at

the end of our collars, as small as possible.
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ads-schwarzschild, a model collar

The standard AdS-Schwarzschild manifold of mass m can be expressed as

ds2 + um,1(s)2g∗ (15)

where g∗ is the standard round metric of area 4π and um,1 is a positive

function satisfying

u′m,1(s) =

√
1 + um,1(s)2 − 2m

um,1(s)
. (16)

Notably, the AH Hawking mass is constant, equalling m on each

s =constant slice.

This motivates us to consider the collar

γ = A2ds2 + um,1(Aks)2r−2
o g(s) (17)
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ads-schwarzschild, a model collar

We also introduce an additional parameter b as follows. The metric

ds2 + um,b(s)2g∗ (18)

where um,b is a positive function satisfying

u′m,b(s) =

√
1 + bum,b(s)2 − 2m

um,b(s)
. (19)

can be viewed as the AdS-Schwarzschild manifold in the case of a

cosmological constant Λ = −3b and has scalar curvature equal to −6b.

This motivates us to instead consider the collar

γm,b = A2ds2 + um,b(Aks)2r−2
o g(s) (20)
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H > 0 collars

By choosing k in terms of the parameters m and b, the mean curvature

at s = 0 can be prescribed to be Ho . We then have freedom in m and b

to ensure the scalar curvature satisfies R(γm,b) > −6, without increasing

the AH hawking mass of the end of the collar too much.

Note that R(γm,b) depends on the path g(s), and therefore so must the

parameters, and also the Hawking mass at the end of the collar, Σ1. In

particular, it depends on the Gauss curvature along the path and the

parameter

α :=
1

4
max

Σ,s∈[0,1]
|ġ(s)|g(s). (21)
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H > 0 collars

There is no obvious choice for free parameters, but qualitatively many

choices are similar and give a Hawking mass of Σ1 as

mAH
H (Σ0, go ,Ho) = mAH

H (Σ1) + Err(
√
αHo). (22)

In particular, the Hawking mass at the end of the collar becomes close to

the Hawking mass of the given data if the data is close to round or H is

small.
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H > 0 collars

That is, for given Bartnik data (Σ, go ,Ho) with Ho ≥ 0 and K (go) > −3,

we construct collar metrics, γ on [0, 1]× Σ satisfying:

• γs=0 = go , Hs=0 = Ho , R(γ) > −6

• Σ0 minimises area among homologous competitors

• mAH
H (Σ1) = mH(Σ0) + Err(

√
αHo)
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gluing collars to

ads-schwarzschild



gluing lemma

Lemma

Let fi : [ai , bi ]→ R+, i = 1, 2, be two smooth positive functions, g∗ be

the standard metric on Sn, and τ ∈ (−∞, 0]. Suppose

(i) the metric γi := ds2 + fi (s)2g∗ has scalar curvature R(γi ) > τ ,

(ii) f1(b1) < f2(a2),

(iii) 0 < f ′1 (b1) <
√

1− τ
n(n−1) f1(b1)2, and

(iv) −
√

1− τ
n(n−1) f2(a2)2 < f ′2 (a2) ≤ f ′1 (b1).

Then, after translating [ai , bi ] appropriately, there is f such that
(I) f ≡ f1 on [a1,

a1+b1
2

] and f ≡ f2 on [ a2+b2
2
, b2] and

(II) the metric γ := dt2 + f (s)2g∗ has scalar curvature R(γb) > τ on

[a1, b2]× Sn.

In addition, if f ′i > 0 on [ai , bi ] then ([a1, b2]× Sn, γ) is foliated by mean

convex CMC spheres.

Lemma

state gluing lemma

AdS-Schwarzschild has scalar curvature equal to −6, so we must ‘bump’

it up a little.
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bending ads-schwarzschild

The gluing lemma can be easily proved following the AF case

(Mantoulidis–Schoen). As can a lemma for beinging the

AdS-Schwarzschild manifold where we would like to glue it to the collars,

to bump up the scalar curvature to strictly > −6 near where we would

like to glue
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putting it together
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main result

Theorem (Cabrera Pacheco, Cederbaum, MCC.)

Let (Σ, g ,H) be Bartnik data satisfying K (g) > −3 and H is a

non-negative constant. Then the asymptotically hyperbolic Bartnik mass

satisfies

mAH
B (Σ, g ,H) ≤ mAH

H + Err(H
√
α), (23)

where Err(y) is an error term that goes to zero as y goes to zero, and α

is a parameter measures how much g deviates from being round.

In particular, for Bartnik data close to being round or a minimal surface,

then the AH Bartnik mass is close to the AH Hawking mass.
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one final remark

The estimates depend on a quantity α associated to paths of metrics on

Σ, which relates to the ‘roundness’ of the given go .

Miao and Xie used a similar path construction and were able to make this

statement more precise. They proved that the path can be chosen so

that if g is sufficiently close to the round metric g∗ in C 2,τ then α for

this path satisfies α ≤ C‖g − go‖2
C 0,τ .

28



Thanks for listening
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