
Applications of the delta method with the least concave
majorant operator

Brendan K. Beare

Department of Economics, University of California – San Diego

Banff International Research Station, January 30, 2018

Based on work with Zheng Fang (Texas A&M) and Jong-Myun Moon (PIMCO).

B. K. Beare Applications of the delta method with the least concave majorant operator 1/ 26



Overview

• The asymptotic behavior of statistics constructed from a least concave majorant
(LCM) can sometimes be studied using the delta method.

• The LCM operator is not Hadamard differentiable but satisfies a weaker notion of
smoothness sufficient to apply the delta method.

• The delta method for the bootstrap does not apply (Dümbgen, 1993).
• Application #1: We study a test of the null hypothesis that the ratio of two PDFs is

monotone.
• Application #2: We study the behavior of the antiderivative of the Grenander

estimator and associated resampling methods.
• Application #3: We briefly consider the application of our results to isotonic

regression.
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The least concave majorant

Definition
The least concave majorant is the operator

M : `∞(R+)→ `∞(R+)

that maps each θ ∈ `∞(R+) to the function

Mθ(x) = inf{g(x) : g ∈ `∞(R+), g is concave, and θ ≤ g}, x ∈ R+.

Note that θ ≤Mθ ≤ supx∈R+ θ(x), so we may take `∞(R+) to be the codomain ofM.
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The least concave majorant

Definition
The least concave majorant over a nonempty convex set T⊆ R+ is the operator

MT : `∞(R+)→ `∞(T)

that maps each θ ∈ `∞(R+) to the function

MTθ(x) = inf{g(x) : g ∈ `∞(T), g is concave, and θ ≤ g on T}, x ∈ T.

Note that θ ≤MTθ ≤ supx∈T θ(x), so we may take `∞(T) to be the codomain ofMT .
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Hadamard directional differentiability

Definition
Let D and E be Banach spaces. A map φ : D→ E is said to be Hadamard directionally
differentiable at θ ∈ D tangentially to a set D0 ⊂ D if there is a map φ′θ : D0 → E such
that ∥∥∥∥φ(θ + tnhn)− φ(θ)

tn
− φ′θ(h)

∥∥∥∥
E
→ 0

for all h ∈ D0 and all h1, h2, . . . ∈ D and t1, t2, . . . ∈ R+ such that tn ↓ 0 and
‖hn − h‖D → 0.

• Concept originates with Shapiro (1990,1991) and also used by Dümbgen (1993).
• Distinct from Hadamard differentiability because the approximating map φ′θ need

not be linear.
• The approximating map φ′θ is always continuous and positive homogeneous of

degree one.
• Hadamard directional differentiability is sufficient to apply the delta method

(Shapiro, 1991, 1992) but not the delta method for the bootstrap (Dümbgen, 1993).
See also Fang and Santos (2016).
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Directional derivative of the least concave majorant

• Let C0(R+) ⊂ `∞(R+) be the continuous real functions on R+ vanishing at
infinity, equipped with the uniform metric.

Theorem
The LCM operatorM : `∞(R+)→ `∞(R+) is Hadamard directionally differentiable at
any concave θ ∈ `∞(R+) tangentially to C0(R+). Its directional derivative
M′

θ : C0(R+)→ `∞(R+) is uniquely determined as follows: for any h ∈ C0(R+) and
x ∈ R+, we haveM′

θh(x) =MTθ,x h(x), where Tθ,x = {x} ∪Uθ,x, and Uθ,x is the
union of all open intervals A ⊂ R+ such that (1) x ∈ A, and (2) θ is affine on A.

• The directional derivativeM′
θ is linear if and only if θ is strictly concave, in which

caseM′
θ is the identity on C0(R+).

• The result above is from Beare and Fang (2017). Similar result appears in Beare
and Moon (2015) but with θ a continuously differentiable concave CDF on [0, 1].
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Application #1: Testing for a monotone density ratio

• Let F and G be continuous CDFs with common support.
• Let R = F ◦G−1, the associated ordinal dominance curve (ODC). Assume R is

continuously differentiable on [0, 1].
• We want to test the null hypothesis that R is concave.
• When F and G admit PDFs f and g, concavity of R is equivalent to

nonincreasing-ness of the ratio f /g.
• We observe independent iid samples X1, . . . , Xn and Y1, . . . , Yn drawn from F and

G, and compute the empirical CDFs Fn and Gn.
• The empirical ODC is Rn = Fn ◦G−1

n .
• Carolan and Tebbs (2005) suggest basing a test of the concavity of R on the test

statistic
Tn =

√
n‖MRn − Rn‖p,

with p ∈ [1, ∞].
• We can use the delta method to study the behavior of their statistic.
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Application #1: Testing for a monotone density ratio

• A standard application of the delta method reveals that
√

n(Rn − R) GR := B1 ◦ R + R′ · B2 in `∞([0, 1]),

where B1 and B2 are independent standard Brownian bridges.
• Let D =M−I , where I is the identity.
• When R is concave, another application of the delta method gives

√
nDRn =

√
n(DRn −DR) D′RGR =M′

RGR −GR in `∞([0, 1]).

• Thus from the continuous mapping theorem we have

Tn =
√

n‖DRn‖p  ‖D′RGR‖p in R.

• What does ‖D′RGR‖p look like?
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Application #1: Testing for a monotone density ratio

 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

i = 0

i = 40

i = 80

i = 120

i = 160

Ordinal dominance curves used to compute quartiles of ‖D′RGR‖p. We plot the curves
corresponding to δ = 0, 0.2, 0.4, 0.6, 0.8. The curves shift upward as δ increases.
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Application #1: Testing for a monotone density ratio
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Quartiles of ‖D′RGR‖p, with p = 1, 2, ∞. The horizontal axes track the parameter δ indexing R.
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Application #1: Testing for a monotone density ratio

‖D′RGR‖p =

(
∑
k∈K

(
λhkd2/p

k + (1− λ)h2
kd(2−p)/p

k

)p/2
‖DBk‖

p
p

)1/p
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Application #1: Testing for a monotone density ratio

• We show that:
• When p ≤ 2, the distribution of ‖D′RGR‖p is maximal (in the sense of FOSD)

when R is the 45◦ line. In this case it may be written as ‖
√

2DB‖p.
• When p > 2, the distribution of ‖D′RGR‖p diverges to infinity along a suitably

chosen sequence of concave R’s.
• Conclusion:

• Don’t use p > 2. Use p ≤ 2.
• Reject concavity if Tn exceeds the (1− α)-quantile of ‖

√
2DB‖p.
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Application #2: Bootstrapping the LCM of an empirical CDF

• Let F : R+ → R be a concave CDF.
• Let Fn : R+ → R be the empirical CDF of n iid draws from F.
• Let G = B ◦ F, so that √

n(Fn − F) G.

• We can obtain the weak limit of
√

n(MFn − F) by applying the delta method:
√

n(MFn − F) M′
FG.

• This extends a similar result of Carolan (2002).
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Application #2: Bootstrapping the LCM of an empirical CDF

• Now let F∗n be a bootstrap version of Fn, so that conditional on the data we have
√

n(F∗n −Fn) G.

• It would be nice if we could apply the delta method for the bootstrap to obtain
√

n(MF∗n −MFn) M′
FG

conditional on the data. However, Dümbgen (1993) showed that the delta method
cannot be applied in this way when we only have directional differentiability.

• Instead, we have (unconditionally)
√

n(MF∗n −MFn) M′
F(G + G′)−M′

F(G
′),

where G′ is an independent copy of G. Thus the bootstrap fails.
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Bootstrapping the least concave majorant of a distribution function

• Consistent inference may be achieved by applying the rescaled bootstrap
proposed (but not recommended) by Dümbgen (1993).

• Let M̂′
n be given by

M̂′
nh =

M(Fn + tnh)−M(Fn)

tn
, h ∈ `∞(R+),

where tn → 0 and
√

ntn → ∞.
• Then M̂′

n(F∗n −Fn) M′
FG conditional on the data.

• Finite sample performance seems to be quite poor.
• The rescaled bootstrap has been rediscovered in econometrics and is going by the

name “numerical bootstrap”.
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Application #2: Bootstrapping the LCM of an empirical CDF

• Suppose that instead we resample from the Grenander estimator. That is, let F∗n be
the empirical CDF of n draws fromMFn.

• Results of Sen, Banerjee and Woodroofe (2010) suggest that this is a bad idea.
• Indeed, we apply results of Kosorok (2008) to show that (unconditionally)

√
n(MF∗n −MFn) M′

F(G +M′
F(G

′))−M′
F(G

′),

where G′ is an independent copy of G. We do not achieve the desired limitM′
FG.

• Exception: Bootstrapping from the Grenander estimator can be used to
approximate the upper quantiles of ‖M′

FG‖∞. Numerically, the upper quantiles
of ‖M′

FG‖∞ and ‖M′
F(G +M′

F(G
′))−M′

F(G
′)‖∞ appear to be identical.
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Application #2: Bootstrapping the LCM of an empirical CDF
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Application #2: Bootstrapping the LCM of an empirical CDF
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Scatterplots of ‖M′

F(G)‖∞ versus ‖M′
F(G +M′

F(G
′))−M′

F(G
′)‖∞ .
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Application #3: Isotonic regression

• Let (X1, Y1), . . . , (Xn, Yn) be n iid pairs of random variables satisfying

Yi = m(Xi) + εi, i = 1, . . . , n,

where m : R→ R is nondecreasing and ε1, . . . , εn are iid centered random
variables independent of X1, . . . , Xn.

• Let the Xi’s arranged in ascending order be denoted by X(1), . . . , X(n), and the
corresponding Yi’s and εi’s by Y(1), . . . , Y(n) and ε(1), . . . , ε(n).

• The isotonic regression estimator of m can be obtained from the left-derivative of
the greatest convex minorant (GCM) of the cumulative sum diagram (CSD).

• Let’s formulate the CSD as an element of `∞([0, 1]):

Sn(u) =
1
n

[nu]

∑
i=0

Y(i) +
nu− [nu]

n
Y([nu]+1).

Here, we set Y(0) = Y(n+1) = 0.
• Can we use the delta method to study the behavior of the GCM of Sn?
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Application #3: Isotonic regression

• Under some regularity conditions we can show that

Sn(u) =
1
n

[nu]

∑
i=0

m(X(i)) +
1
n

[nu]

∑
i=0

ε(i) + oP(n−1/2)

=
∫ u

0
m(Qn(t))dt +

1
n

[nu]

∑
i=0

ε(i) + oP(n−1/2),

where Qn is the empirical quantile function of the Xi’s.
• This suggests setting

S(u) =
∫ u

0
m(Q(t))dt.

• It is now straightforward to show using the delta method that

√
n (Sn(u)− S(u)) −

∫ u

0

m′(Q(t))
f (Q(t))

B(t)dt + σW(u),

where B is a Brownian bridge and W an independent Brownian motion. Also, f is
the PDF of the Xi’s and σ2 is the variance of the εi’s.
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Application #3: Isotonic regression

• Let Ŝn = −M(−Sn), the GCM of Sn.
• Another application of the delta method can be used to determine the weak limit

of
√

n
(
Ŝn − S

)
in terms of the directional derivative ofM.

• In particular, if m is flat then we have
√

n
(
Ŝn − S

)
 −M(−σW).

• Similarly, if m is flat then we can use the delta method to show that
√

n
(
Ŝn − Sn

)
 σDW,

whereas if m is strictly increasing then we have
√

n
(
Ŝn − Sn

)
 0.

• This suggests the possibility of testing the null hypothesis that m is flat by
comparing a statistic Tn =

√
n‖Ŝn − Sn‖p/σ̂ to the lower quantiles of ‖DW‖p.
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