University of Nottingham

UK | CHINA | MALAYSIA

Challenges in ion channel model calibration, selection and discrepancy

Gary Mirams School of Mathematical Sciences University of Nottingham

Modelling ion channels

University of Nottingham Biology Background – ion channels

- Ion channels are fundamental for your cells maintaining ion gradients, but also for muscle contraction, and via nerve activity pain, taste, etc. etc.
- Ionic currents flow through proteins ('ion channels') in the cell membrane.
- Many ion channels are 'voltage gated':

Figure adapted from: Sanguinetti & Tristani-Firouzi.

"hERG potassium channels and cardiac arrhythmia." Nature 440 (2006): 463-469

- "Current is proportional to:
 - i) maximum current that can flow through a single channel;
 - ii) number of channels;
 - iii) probability a channel is open;
 - iv) driving voltage"
- In equation form: $I = g * P(Open) * (V E_{Na})$
- Complicated bit is the open probability. The proportion of channels in open state:

• Work with probability of being in Closed (C) or Open (O) states.

<u>University o</u>

- Each transition rate/arrow has two parameters to be fitted.
- We can then write down differential equations for the state occupancies over time...

General form of transition rates (how fast the arrows go!)

 $\alpha = \theta_1 \exp(\theta_2 V(t))$

(from Eyring rate theory)

 $\begin{array}{c} \alpha \\ C \rightleftharpoons O \\ \beta \end{array}$

UK | CHINA | MALAYSIA

What's uncertain?

Different models of a particular potassium channel (hERG, I_{Kr}) that have been published.

Model structure is a big bone of contention!

University of Nottingham

I = inactivated

Different models, very different predictions

University of

Nottinaham

Model inputs (voltage)

- Some of this is to be expected (different temperatures, cell types, species)
- But many of the wildly different predictions are for the same setting

Model Fitting with Funky Protocols

Possible Model Structures and Parameterisations

- My office whiteboard at the moment
- At least 30 possible models
- Equally plausible(?)

$V \ge F$	No or ODES in black.	* = rate by mi	on this transition see icroscopic reversibility	t Ne of Knotic Params in green.
/ L _K	Fall HH	HH mact. MM act.	MH act	Full. Marhow. all interendent rates
Structure A	model () 4,1	nla	Some as O	save as O.
	nla.	n/a.	model (2) 8,2	Same as D.
()C -0-1	Model 3 (kglies) 8,2 [model (1) is this with 3 Ann opes]		The series of th	IC= I all independent 14 x 11 11 6 removality 3 C=0
D C2-C1-0-I	N/a.	nla.	CZC TO TO IN I	C = C = O = I 123
$ \begin{array}{c} $	nodel 9 8,2	12 TI TI a) No a) No a) No same rides c		IC = IC = I II = IC = I II = II = II S = C = C = 0
F) C3-C2-C-O-I	nla	nla.	$C_{\overline{p}}^{3} C_{2\overline{p}}^{2} C_{3\overline{p}}^{4} O_{-\overline{J}}$	rodel (5) 16,4 and 14,9
$ (I) (-(-C-0))^{I} $	nla	n/a.	C= C= C= C= C= C= C=	lang (no voltage dep $C, = C_2 \setminus K$) $C = C^{2/2} M P del (18) = 18, 4$
$(H) = \begin{pmatrix} z_{1} & z_{2} & z_{1} & z_{2} & z_{1} & z_{1} \\ (H) & z_{1} & z_{2} & z_{1} & z_{1} & z_{1} \\ (z_{1} & z_{2} & z_{1} & z_{1} & z_{1} & z_{1} \\ (z_{1} & z_{2} & z_{1} & z_{1} & z_{1} & z_{1} & z_{1} \\ (z_{1} & z_{1} &$	Mobel (17) 8,2	I(=IC = IC = I all all all all all C = C = C = O Services $[6, 4]$	JC 第JC 第JC 第J " リード・ドレート リー C 第C 第C 第 C 第 U 14-7	model (3) 34,7
$\begin{array}{c} C_{4} - C_{3} - C_{4} - C_{7} - O_{7} \\ IC_{4} - IC_{5} - IC_{7} - IC_{7} \\ IC_{4} - IC_{5} - IC_{7} - IC_{7} \\ IC_{4} - C_{3} - C_{7} - C_{7} \\ IC_{4} - C_{5} - C_{7} - C_{7} \\ IC_{4} - C_{5} - C_{7} - C_{7} \\ IC_{5} - C_{7} - C_{7} \\ IC_{7} \\ IC_{7} - C_{7} \\ IC_{7} \\ IC_{7$	-I n/a -I model 26 -1 8,2	differents rate. 2 (2) Source rates als als 12 al 4 al 20,5 al al al 4 al 4 al 20,5 al your rates al al al al 4 al 20,5 al your rates al al al al al al 20,5 al your rates al al a	$C_{\mu}^{4\mu}C_{\mu}^{3\mu}C_{\mu}^{2\mu}C_{\mu}^{2\mu}C_{\mu\mu}^{2\mu}C_$	model. 25 20,5

Better

$$\begin{array}{c} | \mathbf{C} \xleftarrow{k_{1}} | \mathbf{O} \\ k_{2} & \downarrow \\ k_{3} \\ \downarrow \\ k_{4} \\ \mathbf{C} & \xleftarrow{k_{3}} \\ \mathbf{C} & \xleftarrow{k_{1}} \\ \mathbf{C} & \xleftarrow{k_{1}} \\ \mathbf{C} & \xleftarrow{k_{2}} \\ \mathbf{O} \end{array} \begin{array}{c} k_{1} = P_{1} \exp(P_{2}V) \\ k_{2} = P_{3} \exp(-P_{4}V) \\ k_{2} = P_{3} \exp(-P_{4}V) \\ k_{3} = P_{5} \exp(P_{6}V) \\ k_{4} = P_{7} \exp(-P_{8}V) \end{array}$$

i.i.d. Gaussian noise model.

There are a lot of traps to fall into, but done correctly MCMC provides a nice 'Brute force' practical identifiability assessment.

Time trace is so rich (almost appears continuous, >10,000 data points). Hence very very narrow posteriors...

Validation & Model Selection

Training

- Fit to data
- AIC
- BIC
- WAIC
- Bayes' Factors
- ...

University of Nottingham LK CHINA MALAYSIA Fitting loads of models

Because likelihood values are very negative and large (due to i.i.d. noise assumption across 80k points) information criteria look completely identical to this.

Not quite sure what will happen with Bayes Factors...?

Some predictions (data from same cell)

Getting Somewhere...

Not bad for a 1952 model structure!

17

University of Nottingham UK I CHINA I MALAYSIA One of the best: C-C-C-O-I

Fit Quality versus Prediction Quality

Model Selection Criteria

Validation • Predictive Power

Seems a lot safer!

How to design best validation experiments?

- We designed more sine-wave based voltage protocols to provide information about all the transitions within hERG channel models.
 - **1.** For identifiability / parameterisation: so the channel spends an equal proportion of time in each state (in one leading model) over the duration of the protocol.
 - **2. For model selection**: maximise the difference between predictions from two of the 'best' models.
 - **3.** For both, with an ad-hoc design...

 $V(t) = A \sin(2\pi f_1 t) + B \sin(2\pi f_2 t) + C \sin(2\pi f_3 t)$

Protocol parameters optimised to maximise difference in predicted current output from Mazhari and Wang models

0.2 seconds of protocol:

Model Discrepancy: the related next big challenge

- If I can prove bigger discrepancy then I presumably have a better criterion for model selection?
- Perfect model would get same parameters back from any experiment (that had sufficient information in it)
- We get back different parameter sets from different experiments because of model discrepancy I think.
- What can this tell us about model discrepancy?

My burning question for all of you...

- How do I predict *model discrepancy* in new situations?
- Could I train something to learn it from validation experiments?

University of

Nottina

 How should I optimally design these validation experiments?

Model discrepancy with added biophysics?

$$I = g * P(Open) * (V - E_{Na})$$

Happy with these bits of the model – low discrepancy

Not so happy about this bit – higher discrepancy

But will the bit we aren't happy with have knock-on effects?

University of Nottingham UK I CHINA I MALAYSIA Bringing it all together?

10

• With more arrows...

University of

What next?

- But we need to investigate more formal ways to link Optimal Experimental Design to sensitivity / identifiability (A-optimal, Doptimal etc.), but also model selection and model discrepancy assessment?
- A plea: please share all the data, fitting algorithms, training and validation protocols, not just model equations and parameters!
- Time for databases of simulate-able experiment descriptions stored together with the data that were generated in the lab: <u>https://chaste.cs.ox.ac.uk/WebLab</u> need to make model development a science and not an art!
- See <u>www.github.com/pints-team/pints</u> for our software

- Kylie Beattie
- Martin Fink

University of Nottingham

• Denis Noble

- David Gavaghan, Ross Johnstone, Chon Lok Lei, Sanmitra Ghosh, Michael Clerx – Oxford
- John Walmsley, Simon Preston, Theo Kypraios Nottingham

The original idea

- Remi Bardenet Lille
- Yi Cui, Jim Louttit GlaxoSmithKline
- Teun de Boer UMC Utrecht
- Adam Hill & Jamie Vandenberg Victor Chang Cardiac Research Institute, Sydney

EPSRC

Engineering and Physical Sciences Research Council

GlaxoSmithKline

