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Optimal transport problem

Recalling the Monge-Kantorovich (MK) optimal transport problem (flat
case)

infπ∈Π(µ,σ)
1
2

∫
Rd×Rd

‖x − y‖2dπ(x , y)

where Π(µ, σ) = { joint distributions s.t. the marginals along x and y
coordinates are µ and σ resp. }.
Since “the cost"

‖x − y‖2 = infX
∫ 1

0
‖Ẋ (t)‖2dt

X ∈ {C([0,1];Rd ) : X (0) = x ,X (1) = y}, the MK problem is equivalent
to
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Optimal transport problem

infπ
1
2

∫
Rd×Rd

(∫ ∫ 1

0
‖Ẋ (t)‖2dt dPx ,y

)
dπ(x , y)

or, by desintegration, to

infP
∫ ∫ 1

0

1
2
‖Ẋ (t)‖2dt dP

with P prob. measure on C1([0,1];Rd ) with marginals µ and σ at
t = 0, t = 1 and Px ,y the one with initial and final marginals δx and δy .
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Optimal transport problem

Eulerian (control) version of this problem:

infv
1
2

∫ ∫ 1

0
‖v(t , xv (t))‖2dtdP

v continuous, ẋv (t) = v(t , xv (t)) a.s., law of xv (0) = µ, law of
xv (1) = σ.
If dµ = ρ0dx ,dσ = ρ1dx given, law of xv (t) = ρtdx , then

∂ρ

∂t
= −div (ρv)

(continuity equation)
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Optimal transport problem

If ψ solves the Hamilton-Jacobi equation

∂ψ

∂t
= −1

2
‖∇ψ‖2

and ∂ρ
∂t = −div (ρ∇ψ), with ρ(0, x) = ρ0(x), ρ(1, x) = ρ1(x),

then v = ∇ψ solves the problem. Moreover

∂v
∂t

= −(v · ∇)v
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The Schrödinger problem

On C([0,1];Rd ) consider the laws (Q) of diffusions

dX (t) =
√
ε dW (t) + Y (t)dt , law of X (0) = dx

Entropy functional of Q w.r.t. P:

H(Q; P) =

∫
log
(dQ

dP

)
dQ

Choose for P the law of the Wiener process

H(Q; P) = H(Q0; P0) +
1
2

∫ ∫ 1

0
‖Y (t)‖2dtdQ,

where Q0, P0 are the marginals of Q and P at time 0. This is a
consequence of Girsanov’s Theorem.
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The Schrödinger problem

Schrödinger problem: minimise the entropy functional, subject to given
Q0 and Q1.

If Y (t) = v(t ,X (t)), the density ρt of X at time t satisfies the
Fokker-Planck equation

∂ρ

∂t
= −div (ρv) +

ε

2
∆ρ

If, moreover, v = ∇ϕ satisfies Hamilton-Jacobi-Bellman equation,

∂ϕ

∂t
= −1

2
‖∇ϕ‖2 +

ε

2
∆ϕ

then v = ∇ϕ. So
∂v
∂t

= −(v · ∇)v +
ε

2
∆v

(Burgers equation)
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The Schrödinger problem

Remarks:

1. With the change of variable v = ∇ϕ, ϕ = −log η, ∂η∂t = ε
2∆η (heat

equation)

2. When ε→ 0 formally Schrödinger problem converges to the optimal
transport problem (C. Léonard, etc)
(delicate problem)
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Brownian motion on Lie groups

G Lie group with
< > right (left) invariant metric
∇ Levi-Civita connection
e identity element
G ' Te(G) Lie algebra
{Hi} o.n. basis of G, right invariant, (we suppose finite dimensional),
∇Hi Hi = 0
Brownian motion on G with generator = Laplace-Beltrami operator:

dg0(t) = TeRg0(t)
(∑

i

Hi ◦ dW i(t)
)

= TeRg0(t)
(∑

i

Hi · dW i(t)
)

where TaRg(t) : TaG→ Tag(t)G is the differential of the right translation
Rg(t)(x) := xg(t), ∀x ∈ G at the point x = a ∈ G.
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Brownian motion on Lie groups

General diffusion processes:

dg(t) = TeRg(t)
(∑

i

Hi ◦ dW i(t) + u(t)dt
)

TeRg(t)u(t) =
D∇g(t)

dt

where, by definition, D∇ is the (mean) derivative defined as:
for ξ(t) =

∫ t
0 T0←s ◦ dg(s), where T·←0 : Tg(0)G→ Tg(·)G is the

stochastic parallel transport associated to ∇, define

Dξ(t)
dt

= lim
ε→0

1
ε

E
[
ξ(t + ε)− ξ(t)|Pt

]
and

D∇g(t)
dt

:= Tt←0
Dξ(t)

dt
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Girsanov Theorem and entropy

From Girsanov’s Theorem the law Q of g on C([0,1]; G) is absolutely
continuous w.r.t. the law P of g0 (same initial distributions) with density
given by

dQ
dP

= exp{
∫ 1

0

∑
i

< TgRg−1
D∇g(t)

dt
,HidW i(t) >

−1
2

∫ 1

0
‖TgRg−1

D∇g(t)
dt

‖2dt}

Therefore the entropy is

H(Q; P) =
1
2

∫ ∫ 1

0
‖TgRg−1

D∇g(t)
dt

‖2dtdQ

12 / 20



Csiszär Theorem

Denote by α the invariant measure on G, Px law of the Brownian
motion g0 on G starting at x , Pt (x , α(dy)) its transition semigroup.

P̃µ =

∫
G

Pxµ(dx)

Assume µ and σ prob. measures, to be abs. cont. w.r.t. α.

M(µ, σ) := {π prob. measures on G ×G : π(g0(0) ∈ ·) =
µ(·), π(g0(1) ∈ ·) = σ(·), π abs. cont. w.r.t. µ⊗ P1}

For π ∈M(µ, σ), define

Pπ(dω) =

∫
G×G

π(dx ,dy)P(dω|0, x ; 1, y)

prob. measure on C([0,1]; G).
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Csiszär Theorem

By Csiszär’s Theorem, if ∃π0 ∈M(µ, σ) : H(π0, µ⊗ P1) <∞,
then ∃1Q on C([0,1]; G] attaining the

infQ: Q((g(0),g(1)∈·)∈M(µ,σ)H(Q; P̃µ)

with Q = Pπ, π attaining

infπ H(π;µ⊗ P1)

Moreover Q is the law of a Markov process.
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Csiszär Theorem

Combining with Girsanov’s result, we have

H(Q; P̃µ) =
1
2

∫ ∫ 1

0
‖TgRg−1

D∇g(t)
dt

‖2dtdQ

:= A[g]
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Stochastic Euler-Poincaré reduction

Stochastic Euler-Poincaré reduction theorem

Theorem. The G-valued semi-martingale

dg(t) = TeRg(t)
(∑

i

Hi ◦ dW i(t) + u(t)dt
)

is a critical point of A if and only if the time-dependent vector field u(·)
satisfies the equation,

d
dt

u(t) = −ad∗u(t)u(t)− K (u(t)),

where
for u ∈ G, ad∗u : G → G is the adjoint of adu : G → G with respect to the
metric < >,
and the operator K : G → G is defined as

K (u) = −1
2

∑
i

(
∇Hi∇Hi u + R(u,Hi)Hi

)
= −1

2
�(u)

(de Rham-Hodge Laplacian)
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Stochastic Euler-Poincaré reduction

(Left) variations:

∂LA[ξ(·)] =
d
dε
|ε=0A[ξε,v (·)]

with ξε,v (t) = eε,v (t)ξ(t){
d
dt eε,v (t) = εTeReε,v (t)v̇(t),
eε,v (0) = e

(1)

for v(·) ∈ C1([0,T ];G), v(0) = v(T ) = 0

We differentiate in the direction of v ( d
dε

∣∣
ε=0eε,v = v )
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Stochastic Euler-Poincaré reduction

"Proof" of the Theorem:

For gε(t) = eε,v (t)g(t), by Itô’s formula ,

dgε(t) =
∑

i

TeRgε(t)Ade−1
ε (t)Hi ◦ dW i

t

+ TeRgε(t)

(
Ade−1

ε (t)

(
u(t)

)
+ Teε(t)Re−1

ε (t)ėε(t)
)
dt ,

(2)

(no contraction term)

We have Teε(t)Re−1
ε (t)ėε(t) = εv̇(t), d

dε

∣∣
ε=0Ade−1

ε (t)u(t) = −adv(t)u(t)

and d
dε

∣∣
ε=0Ade−1

ε (t)Hi
= adv(t)Hi
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Stochastic Euler-Poincaré reduction

dA[gε(·)]

dε
∣∣
ε=0 = E

∫ 1

0
<

d
dε

(Tgε(t)Rg−1
ε (t)

D∇gε(t)
dt

)
∣∣
ε=0,u(t) > dt

=

∫ 1

0
< u(t), v̇(t)− ad(u(t))v(t)

+
1
2

∑
i

(∇adv(t)Hi Hi +∇Hi (adv(t)Hi)) > dt

=

∫ 1

0
< −u̇(t)− ad∗u(t)u(t)− K (u(t)), v(t) > dt

(3)

Remark : When Hi = 0 we recover the deterministic Euler-Poncaré
reduction theorem.
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Hamilton-Jacobi-Bellman equation

The change of variables u(t) = ∇ϕ(t) gives the
Hamilton-Jacobi-Bellman equation

∂ϕ

∂t
= −1

2
‖∇ϕ‖2 +

1
2

∆LB(ϕ)

Extra remarks:
In the assumptions of Csiszär’s theorem
(∃π0 ∈M(µ, σ) : H(π0, µ⊗P1) <∞), if π0 is abs. cont. w.r.t. µ⊗P1, then
the minimiser is of the form

π(dx ,dy) = ψ(x)φ(y)α(dx)P1(x , α(dy))

and
dµ
dα

= ψP1φ,
dν
dα

= φP∗1ψ a.e.

which allows to transform initial and final conditions µ, σ in φ, ψ, initial and
final conditions for the equations satisfied by the drift and the one of its time
reversed.
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