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Based on joint works with M. Arnaudon, X. Chen, J.-C. Zambrini

Extensions of (some) results, with applications to fluids: with T. Ratiu,
C. Léonard



Optimal transport problem

Recalling the Monge-Kantorovich (MK) optimal transport problem (flat
case)

: 1
Infﬂeﬂ(u,a) E /]RdX]Rd HX - y||2d7T(X7.y)

where M(u, o) = { joint distributions s.t. the marginals along x and y
coordinates are p and o resp. }.
Since “the cost"

1 .
Ix — y|[? = infx /0 1X(1)] 2t

X € {C([0,1];RY) : X(0) = x, X(1) = y}, the MK problem is equivalent
to



Optimal transport problem

inf._ (//01 IX(t) ot dPy ) dn(x.y)

T 2 RI xRA

or, by desintegration, to

1 -
infp// %||X(t)|]2dth
0

with P prob. measure on C'([0, 1]; RY) with marginals i and o at
t=0,t=1and Py, the one with initial and final marginals é, and J,.
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Optimal transport problem

Eulerian (control) version of this problem:

;
inf, 1// v, x¥ (1)) |2dtaP
2J Jo
v continuous, xY(t) = v(t,x"(t)) a.s., law of x¥(0) = p, law of

x'(1) =o.
If du = podx, do = pidx given, law of x¥(t) = p;dx, then

op
5 = —div (pv)

(continuity equation)



Optimal transport problem

If 1) solves the Hamilton-Jacobi equation

o 1 2

and %7 = —div (pV), with p(0, x) = po(x), p(1, x) = p1(x),
then v = Vi solves the problem. Moreover

ov

E:—(V-V)V



The Schrddinger problem

On C([0, 1]; R9) consider the laws (Q) of diffusions

adX(t) = Ve dW(t) + Y(t)dt, law of X(0) = dx
Entropy functional of Q w.r.t. P:

H(Q; P) = /log(zlc__f)do

Choose for P the law of the Wiener process

H(Q: P) = H(Qy: Py) + // 1Y(1)|2dtdQ,

where Q, Py are the marginals of Q and P at time 0. This is a
consequence of Girsanov’s Theorem.



The Schrddinger problem

Schrédinger problem: minimise the entropy functional, subject to given
Qo and Q1.

If Y(t) = v(t, X(1)), the density p; of X at time ¢ satisfies the
Fokker-Planck equation

g/; = —div (pv) + %Ap
If, moreover, v = V satisfies Hamilton-Jacobi-Bellman equation,
Jp 1 €
f —EHV@HZ + §A90
then v = Vy. So
ov €
— =—(v-V)v+ -Avy
ot ~ W VIvig

(Burgers equation)



The Schrédinger problem

Remarks:

1. With the change of variable v = Vo, ¢ = —log n, % = 5An (heat

equation)

2. When € — 0 formally Schrodinger problem converges to the optimal
transport problem (C. Léonard, etc)
(delicate problem)



Brownian motion on Lie groups

G Lie group with

< > right (left) invariant metric

V Levi-Civita connection

e identity element

G ~ Te(G) Lie algebra

{H;} o.n. basis of G, right invariant, (we suppose finite dimensional),
VH,-Hi =0

Brownian motion on G with generator = Laplace-Beltrami operator:

dgo(l‘) — TeRgo(t)(Z Hi o dW’(t)) = TeRgo(i)(Z H,- . dW’(t))

where TRy : TaG — Tyg1)G is the differential of the right translation

Rgty(x) := xg(t), Vx € G at the point x = a € G.



Brownian motion on Lie groups

General diffusion processes:
dg(t) = TeRg(n (D Hio dW'(t) + u(t)at)
i

DVg(t)

dt
where, by definition, DV is the (mean) derivative defined as:
for £(t) = J3 Toes 0 dg(s), where T g : Ty)G — Ty)Gis the
stochastic parallel transport associated to V, define

De(t) 1
—a = Im —E|g(t+ ) — (1))
and
DVg(t) Dg(t)
R



Girsanov Theorem and entropy

From Girsanov’s Theorem the law Q of g on C([0, 1]; G) is absolutely
continuous w.r.t. the law P of g° (same initial distributions) with density

given by

dQ ! DVg(t) ’
= exp{/0 Z < TgRg1 =5, HidW'(1) >

1/ DYg(?) 2
5 | 1ToRg =g et

Therefore the entropy is

1 1 DVg(t
mamzz/éng%q imwwm




Csiszar Theorem

Denote by « the invariant measure on G, Py law of the Brownian
motion g° on G starting at x, Py(x, a(dy)) its transition semigroup.

P, = / Py u(dx)
G
Assume i and o prob. measures, to be abs. cont. w.r.t. a.

M(p, o) := {m prob. measures on G x G: 7(g°(0) € ) =
u(-),m(g°(1) € -) = o(-), w abs. cont. w.rt. 4 ® Py}

For m € M(u, o), define
Pr(dw) = / m(dx, dy)P(dwl|0, x;1,y)
GxG

prob. measure on C([0, 1]; G).



Csiszar Theorem

By Csiszar’'s Theorem, if 379 € M(p, o) : H(mo, p @ P1) < o0,
then 3'Q on C([0, 1]; G] attaining the

infQ. a((g(0).9(1)e-)eMm (o) H(Q; P.)
with Q = P, m attaining

inf, H(m, u® Py)

Moreover Q is the law of a Markov process.



Csiszér Theorem

Combining with Girsanov’s result, we have

. 1 1 DVg(t
H(O;Pu)zz//o 1ToRe 299 2ata

= Ald]
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Stochastic Euler-Poincaré reduction

Stochastic Euler-Poincaré reduction theorem
Theorem. The G-valued semi-martingale

dg(t) = TeRg(t)(Z H; o dW'(t) + u(t)dt)

is a critical point of A if and only if the time-dependent vector field u(-)
satisfies the equation,

d "
au(t) = —adu(t)u(t) — K(u(t)),

where

for u € G, ad;; : G — @ is the adjoint of ad, : G — G with respect to the
metric < >,

and the operator K : G — G is defined as

K(u) = — ; (VHVHU-i- R(u, H)H) ;D(U)

(de Rham-Hodge Laplaman)
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Stochastic Euler-Poincaré reduction

(Left) variations:

O] = o oAl ()
with & (1) = e v (1)&(t)

ge-y(t) =eTeRs. V(1)
e-v(0)=e

for v(:) € C'([0, T]; G), v(0) = v(T) =0

We differentiate in the direction of v (&|__,6., = V)
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Stochastic Euler-Poincaré reduction

"Proof" of the Theorem:
For g-(t) = e v(1)g(t), by Ito’s formula ,

dge(t) = TeRy.(tyAdy-1 (4 Hi 0 aw;}
i

+ TeRy. (1 (Ades_1(t)(u(t)) + Teu( o1y :(D) 0,

(no contraction term)

We have Te (I)R 1t )ee(t) = <€V(l') e e OAd —1 ( ) —adv(,)u(t)

e '(b)
and gg‘ Ad —1 adv(t)H,'

e=0""Ye \()H; T
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Stochastic Euler-Poincaré reduction

dA[gs ] 1 d Dvgg(t)
oo /0<d5(TQE(t)Rgs1(t)dt”e:o’“(t)>df

.
1
"2 Z(Vadva, H; + Vi (adyn Hj)) > dt
1
0
Remark : When H; = 0 we recover the deterministic Euler-Poncaré

reduction theorem.
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Hamilton-Jacobi-Bellman equation

The change of variables u(t) = V(t) gives the
Hamilton-Jacobi-Bellman equation

— =—=||V =A

51 51 Vel” + 5808()

Extra remarks:

In the assumptions of Csiszér’s theorem

(Fmg € M(p,0) : H(mg, n® Py) < 00), if g is abs. cont. w.r.t. 4 ® Py, then
the minimiser is of the form

m(dx, dy) = (x)o(y)a(dx) P (x, a(dy))

and d d
12 v <
— =P — = ¢P a.e.
dOé w 1 ¢7 da ¢ 1 1/}
which allows to transform initial and final conditions p, o in ¢, 1, initial and
final conditions for the equations satisfied by the drift and the one of its time

reversed.
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