
LLNL-PRES-763462

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Carol S. Woodward, Daniel R. Reynolds, David J. Gardner,
Cody J. Balos, and Slaven Peles

Designing Integrators for User Flexibility:

Interface Design in the SUNDIALS Suite of

Nonlinear and Differential/Algebraic Solvers

Integrating the Integrators Workshop, Banff, Canada

Dec. 3, 2018

2
LLNL-PRES-763462

As we look toward the future, we expect greater
capability along with disruptive changes in high
performance computing systems

▪ Extreme levels of concurrency

— Very high node and core counts

— Increasingly deep memory hierarchies

▪ Additional complexities

— Hybrid architectures

— Manycore, GPUs, multithreading

— Relatively poor memory latency and

bandwidth

— Challenges with fault resilience

— Must conserve power – limit data movement

— New (not yet stabilized) programming

models

— Etc.

ORNL: IBM/NVidia P9/Volta, 2018

LLNL: IBM/Nvidia P9/Volta, 2018

LBNL: Cray/Intel Xeon/KNL, 2016

Cori

Summit

Sierra

3
LLNL-PRES-763462

New capabilities will enable new computational
science opportunities

Enough computational power to enable

▪ Multirate, multiscale, multicomponent, multiphysics simulations

▪ Uncertainty quantification and sensitivities for all simulations

▪ Simulations involving stochastic quantities

▪ Optimization over full-featured simulations

▪ Coupling of simulations and data analytics

Beyond interpretive simulations …

working toward predictive science

4
LLNL-PRES-763462

Increasing complexity of future computational science
problems leads to increasing complexity of software

problem
complexity,
number of
developers

co
m

p
u

te
r

si
ze

,
p

ro
b

le
m

 s
iz

e

software
lifetime

1 core

small
cluster

extreme-scale

petsascale

years

months

decades

Slide courtesy of L. McInnes (ANL)

5
LLNL-PRES-763462

Scientific software development encounters challenges
from both the technical and sociological arenas

Technical

▪ All parts of the cycle can be under
research

▪ Requirements change throughout the
lifecycle as knowledge grows

▪ Importance of reproducibility

▪ Verification complicated by floating
point representation

▪ The real world is messy, so is the
software

Sociological

• Competing priorities and
incentives

• Limited resources

• Perception of overhead with
deferred benefit

• Need for interdisciplinary
interactions

Science through computing is only as good as the software that produces it!

Slide courtesy of L. McInnes (ANL)

6
LLNL-PRES-763462

Despite challenges, opportunities abound for CSE
software development improvements

▪ Better design, software practices, and tools are available

▪ Better software architectures: toolkits, libraries, frameworks

▪ Open-source software, community collaboration

Working toward: community software ecosystems for high-
performance CSE

Slide courtesy of L. McInnes (ANL)

7
LLNL-PRES-763462

Software libraries facilitate progress in
computational science and engineering

▪ Software library: a high-quality,
encapsulated, documented, tested, and
multiuse software collection that
provides functionality commonly
needed by application developers

— Organized for the purpose of being
reused by independent
(sub)programs

— User needs to know only

• Library interface (not internal
details)

• When and how to use library
functionality appropriately

• Key advantages of software libraries

– Contain complexity

– Leverage library developer expertise

– Reduce application coding effort

– Encourage sharing of code, ease
distribution of code

• References:

• https://en.wikipedia.org/wiki/Library_(c
omputing)

• What are Interoperable Software
Libraries? Introducing the xSDK

Slide courtesy of L. McInnes (ANL)

https://en.wikipedia.org/wiki/Library_(computing)
https://ideas-productivity.org/wordpress/wp-content/uploads/2016/12/IDEAS-InteroperabilityWhatAreInteroperableSoftwareLibraries-V0.2.pdf

8
LLNL-PRES-763462

Why is reusable scientific software important
for you?

User perspective:

Focus on primary interests

▪ Reuse algorithms and data
structures developed by experts

▪ Customize and extend to exploit
application-specific knowledge

▪ Cope with complexity and changes
over time

Provider perspective:

Share your capabilities

• Broader impact of your work

• Motivate new directions of
research

• More efficient, robust, reliable, sustainable software

• Improve developer productivity

• Better science

Software
user

Software
provider

9
LLNL-PRES-763462

▪ SUNDIALS is a software library consisting of ODE and DAE integrators and
nonlinear solvers

— 6 packages: CVODE(S), IDA(S), ARKode, and KINSOL

▪ Written in C with interfaces to Fortran

▪ Designed to be incorporated into existing codes

▪ Data use is fully encapsulated into vectors (and optionally matrices) which
can be user-supplied

▪ Freely available released with BSD license (>17,000 downloads in 2017)

▪ Active user community supported by sundials-users email list

▪ Detailed user manuals are included with each package

We are developing the SUNDIALS
SUite of Nonlinear and DIfferential-
ALgebraic Solvers

https://computation.llnl.gov/casc/sundials

10
LLNL-PRES-763462

▪ CVODE solves ODEs, ሶ𝑦 = f(t, y)

▪ IDA solves 𝐹(𝑡, 𝑦, ሶ𝑦) = 0

— Targets: implicit ODEs, index-1 DAEs, and Hessenberg index-2 DAEs

— Optional routine solves for consistent values of y0 and ሶ𝑦0 for some cases

▪ Variable order and variable step size Linear Multistep Methods

▪ Both packages include stiff BDF; K1 = k, K2 = 0, k =1,…,5

▪ CVODE includes nonstiff: Adams-Moulton; K1 = 1, K2 = k, k = 1,…,12

▪ CVODES and IDAS include both forward and adjoint (user supplies the adjoint
operator) sensitivity analysis

CVODE(S) and IDA(S) employ variable order and step
BDF methods for integration

11
LLNL-PRES-763462

KINSOL solves systems of nonlinear algebraic
equations, F(u) = 0

▪ Newton Solvers: update iterate via

— Get update by solving:

— Inexact method approximately solves this equation

▪ Dynamic linear tolerance selection for use with iterative linear solvers

▪ Can separately scale equations and unknowns

▪ Backtracking and line search options for robustness

▪ KINSOL also solves fixed point and Picard iterations with acceleration

12
LLNL-PRES-763462

ARKode is the newest package in SUNDIALS

▪ Multistage embedded methods (as opposed to multistep):
— High order without solution history (enables spatial adaptivity)
— Sharp estimates of solution error even for stiff problems
— But, implicit and additive multistage methods require multiple implicit

solves per step

▪ ARKODE supports up to two split components with explicit and implicit
methods

▪ Split system into stiff, fI, and nonstiff, fE, components

▪ ARKODE includes the capability for multirate integration, currently two-

rate explicit/explicit (more to come very soon)

▪ M may be the identity or any nonsingular mass matrix (e.g. FEM)

See presentation by Dan Reynolds on Tuesday

13
LLNL-PRES-763462

Many time integrators and nonlinear solvers can be
implemented in ways that allow for very flexible
software

▪ Most methods can be written in terms of operations on data, rather than
assuming exactly what the data looks like and how it is laid out in memory

▪ Implicit time integrators can be made more efficient through control of properties
of the nonlinear and linear solver, but these properties can be encapsulated away
from the integrator

▪ Nonlinear solvers can be made more efficient through control of properties of the
subsidiary linear solver, but these properties can be encapsulated

▪ Linear solvers may require detailed data information:
— Iterative: only needs action of the linear operator on a matrix rather than the

full matrix
— Direct: Requires the matrix in specific formats

14
LLNL-PRES-763462

SUNDIALS uses Control Inversion to interoperate
with other solvers and applications

No

No

No

Converged?

Final time?

Converged?

Linear solver step

Time integrator
step

Nonlinear solver
step

Finite elements tools:
Function and Jacobian

evaluation

Updated solution vector x

Preconditioner P

dx

x

SUNDIALS

Linear solver

Application code

Updated residual vector f and Jacobian J

Time integrator
and nonlinear
solver are agnostic
of vector data
layout

Numerical
integrators and
nonlinear solvers
may invoke fairly
complex step size
control logic

f, J

Nonlinear Solver

Use case: implicit
integration with
iterative linear
solver and finite
element (FEM)
application

Control passes between the integrator, the
solvers, and the application code as the
integration progresses

15
LLNL-PRES-763462

In developing SUNDIALS we adhered to basic guiding
principles in setting up interfaces between integrators
and solvers and between the packages and the user

▪ Application Program Interfaces (APIs) for vectors, matrices, linear solvers,
nonlinear solvers, and time integrators are based on the minimal required
functionality; these encapsulate all parallelism
— Although written in C, set up like C++ classes with a content structure and a

set of operations
— SUNDIALS allows users to supply custom versions of data structures and

solvers

▪ Allow for the user to control as much as possible about the integrators and solvers
— Ensure the user controls specifics of third party solvers
— Assume as little information about parallelism as possible

▪ Keep the SUNDIALS packages easy to use
— Intuitive interfaces
— Detailed user documentation
— User-friendly build system
— Simple example programs

16
LLNL-PRES-763462

The SUNDIALS vector interface encapsulates
interaction with application data

▪ Content is the vector data and information on
its layout – depends on parallelism

▪ Ops includes
— 3 constructors/destructors
— 3 utility functions
— 9 streaming operators (adding vectors,

scaling, …)
— 10 reduction operators (norms, dot

products, etc.)
— Several optional operators for efficiency

▪ Parallelism is reflected in the vector structure,
not in SUNDIALS

▪ All ops are like level-1 BLAS operators

▪ Individual SUNDIALS packages require subsets
of these

Vector Modules

Serial
Parallel
(MPI)

PThreadsOpenMP

CUDA RAJA

Hypre PETSC

NVECTOR API

MPI+CUDA MPI+RAJA

OpenMP4.5

17
LLNL-PRES-763462

The SUNDIALS matrix interface encapsulates
interaction with optionally used linear system matrices

▪ Content is the matrix data and information
on its layout – depends on parallelism

▪ Ops includes

— Constructor / Destructor

— Scale

— Copy

— Add Identity

— MatVec (when using a mass matrix)

▪ Matrices are needed with a direct linear
solve is used

▪ Individual modules require subsets of these

MATRIX MODULES

SUNMATRIX API

DENSE

BAND

SPARSE

18
LLNL-PRES-763462

SUNDIALS time integration packages and nonlinear
solvers are written in terms of generic linear solver
operations

▪ Optional operations with linear solvers:

— Solver setup

— Set scaling

— Preconditioner Set/Solve

— Numerous iteration and solver
statistics “Get” routines

▪ Content is the solver data
(iteration counters, needed work
space, ptr to MatVec)

▪ Ops includes

— Constructor / Destructor

— Type identifier (direct,
iterative, matrix-iterative)

— Solve function

▪ Parallelism is reflected in

— Vectors

— How the matrix is handled

Linear Solver Modules

Iterative

SPTFQMR

SPBCG

SPFGMR

PCG

SPGMR

SUNLINEARSOLVER API

Direct

DENSE

SUPERLU_MT

BAND

KLU

LAPACK
DENSE

LAPACK
BAND

Trilinos PETSc HypreMAGMA SuperLU_DIST

19
LLNL-PRES-763462

SUNDIALS time integration packages are written in
terms of generic nonlinear solver operations

▪ Optional operations:

— Wrap linear solver setup and solve

— User provided convergence tests

— Numerous iteration and solver
statistics “Get” routines

▪ Content is the solver data (counters,
update vectors, ptr to residual fcn)

▪ Ops includes
— Constructor / Destructor
— Type id (root-finding, fixed point)
— Solve function

▪ Using the application-supplied problem-
defining functions (f and optionally J),
SUNDIALS packages form the nonlinear
iteration function

SUNNONLINEARSOLVER API

Nonlinear Solver Modules

Fixed Point

Newton

▪ When used with a direct linear solver, the
SUNDIALS Newton solver holds the
Jacobian matrix constant over many
iterations resulting in Modified Newton

▪ With a matrix-free iterative linear solver,
the iteration is an Inexact Newton
method

▪ The SUNDIALS fixed point has an optional
Anderson acceleration capability

20
LLNL-PRES-763462

SUNDIALS package use: first instantiate the subsidiary
structures and solvers then pass to the integrator

▪ Initialize parallelism if needed and Construct the initial state vector

▪ Call a Create function for the integrator – instantiates the integrator

▪ Call an Init function – specifies the problem (requires f fcn ptr) and initial state

▪ Set integration tolerances

▪ Create a matrix object if needed

▪ Create linear solver then set any linear solver optional inputs

▪ Attach the linear solver module to the integrator

▪ Create nonlinear solver

▪ Attach the nonlinear solver then set any nonlinear solver optional inputs

▪ Advance the solution in time – call to the integrator; this may be in a loop

▪ Get optional outputs

▪ Call relevant destructors for the solution vector, the integrator, the nonlinear solver,
and the linear solver

21
LLNL-PRES-763462

We are leveraging these interfaces to develop and
deploy SUNDIALS for exascale systems

▪ We are adding new vectors that make efficient use of new architectures
— OpenMP 4.5 + MPI
— Kokkos

▪ Nine new vector kernels that rely on fused operations for decreased kernel calls and
reduced communications

▪ We are adding interfaces to libraries that are optimized for fast linear solves on new
architectures: SuperLU_DIST, PETSc, cuSOLVE, Trilinos, hypre

▪ Multiphysics simulations – we are developing and adding multirate methods to
SUNDIALS

▪ Parallel bottleneck due to sequential time stepping – interfacing SUNDIALS
integrator technology with multigrid reduction in time methods through the LLNL
xBRAID software package

Lawrence Livermore National Laboratory LLNL-PRES-710379

XBraid: open source,

non-intrusive and flexible

§ Overlap communication and computation

• Consider relaxation over a processor’s portion of the time interval

• Start computation with right-most interval to overlap comm/comp

§ Code stores only C-points to minimize storage

• Ability to coarsen by large factors means fewer parallel resources

• Memory multiplier per processor
~O(log N) with time coarsening, O(1) with space-time coarsening

1) Post receive

3) Compute other points, moving right to left

2) Compute and send

22
LLNL-PRES-763462

▪ 9 new vector operations
▪ Greatest benefits when using long

vectors and when fusing results in
combined communication in parallel

We added optional fused vector operations to
the SUNDIALS vector API

Compute: z = c1 v1 + c2 v2 + …

LinearCombination

(n, C[0:n], V[0:n], z)

Unfused Fusedvs

Scale(0, z, z)

LinearSum(1, z, c1, v1, z)

LinearSum(1, z, c2, v2, z)

LinearSum(1, z, cn, vn, z)

…

23
LLNL-PRES-763462

Software libraries are not enough: the xSDK effort was
started to address challenges with using multiple
libraries at once

Next-generation scientific simulations
require combined use of packages

▪ Installing multiple independent
software packages is error prone

— Need consistency of compiler
(+version, options), 3rd-party
packages, etc.

— Namespace and version conflicts
make simultaneous build/link of
packages difficult

▪ Multilayer interoperability requires
careful design

xSDK history: Work began in ASCR/BER
partnership, IDEAS project (Sept 2014)

Needed for multiscale, multiphysics
integrated surface-subsurface hydrology
models

Program Managers:
Thomas Ndousse-Fetter (ASCR)

Paul Bayer & David Lesmes (BER)

Prior to the xSDK effort, could not build required libraries into a
single executable due to many incompatibilities

24
LLNL-PRES-763462

xSDK community policies: Help address challenges in
interoperability and sustainability of software developed
by diverse groups at different institutions

M1. Support xSDK community GNU Autoconf or CMake options.

M2. Provide a comprehensive test suite.

M3. Employ user-provided MPI communicator.

M4. Give best effort at portability to key architectures.

M5. Provide a documented, reliable way to contact the development team.

M6. Respect system resources and settings made by other previously called packages.

M7. Come with an open source license.

M8. Provide a runtime API to return the current version number of the software.

M9. Use a limited and well-defined symbol, macro, library, and include file name space.

M10. Provide an accessible repository (not necessarily publicly available).

M11. Have no hardwired print or IO statements.

M12. Allow installing, building, and linking against an outside copy of external software.

M13. Install headers and libraries under <prefix>/include/ and <prefix>/lib/.

M14. Be buildable using 64 bit pointers. 32 bit is optional.

M15. All xSDK compatibility changes should be sustainable.

M16. The package must support production-quality installation compatible with the xSDK install
tool and xSDK metapackage.

25
LLNL-PRES-763462

xSDK recommended community policies

Also recommended policies, which currently are encouraged but not required:

R1. Have a public repository.

R2. Possible to run test suite under valgrind in order to test for memory
corruption issues.

R3. Adopt and document consistent system for error conditions/exceptions.

R4. Free all system resources it has acquired as soon as they are no longer
needed.

R5. Provide a mechanism to export ordered list of library dependencies.

https://xsdk.info/policies

https://xsdk.info

https://xsdk.info/policies
https://xsdk.info/

26
LLNL-PRES-763462

Through the Exascale Computing Project, the xSDK is
also facilitating greater interoperability between
member packages

• PETSc:

– hypre, SuperLU, Trilinos linear
solvers

– SUNDIALS time integrators

• Trilinos: hypre, SuperLU, PETSc
linear solvers

• Hypre:

– SuperLU for coarse grid solves

– Planned: interoperability with
PETSc and Trilinos matrix
structures

• SUNDIALS:

– SuperLU_MT

– Planned: Trilinos, hypre, PETSc,
MAGMA, and more SuperLU linear
solvers

• MFEM:

– PETSc solvers

– SUNDIALS time integrators

PETSc/TAO SuperLU

MFEM

27
LLNL-PRES-763462

Summary and Future Directions

▪ Exascale systems are posing significant challenges to the scientific computing
community and to numerical libraries

▪ Numerical libraries provide application developers with state-of-the-art numerical
capabilities and the opportunity to easily take advantage of new algorithms

▪ Many time integration methods are easy to encapsulate in very flexible software

▪ By using control inversion and careful encapsulation of functionality, SUNDIALS
provides flexible interfaces to high performance solvers and data structures

▪ We have made some progress in responding to the exascale challenge for SUNDIALS

— New vector kernels (CUDA, RAJA, OpenMP4.5); fused vector kernel API

— Redesigned solver interfaces for better encapsulation

— Multirate methods – See talks by Dan Reynolds and John Loffeld

SUNDIALS v4.0.0 coming out this week:
https://computation.llnl.gov/casc/sundials

28
LLNL-PRES-763462

Acknowledgements

Support for this work was provided through the Scientific Discovery through Advanced Computing (SciDAC)

program funded by the U.S. Department of Energy Office of Advanced Scientific Computing Research and National

Nuclear Security Administration.

This research was supported by the Exascale Computing Project (ECP), Project Number: 17-SC-20-SC, a

collaborative effort of two DOE organizations – the Office of Science and the National Nuclear Security

Administration, responsible for the planning and preparation of a capable exascale ecosystem, including software,

applications, hardware, advanced system engineering and early testbed platforms, to support the nation’s

exascale computing imperative.

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States government or Lawrence
Livermore National Security, LLC. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States government or Lawrence Livermore
National Security, LLC, and shall not be used for advertising or product endorsement purposes.

