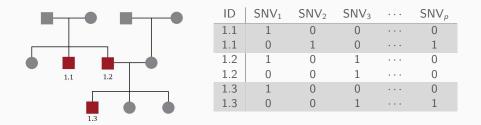
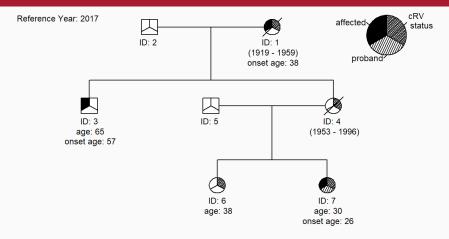

SIMULATING FAMILY STUDIES WITH WHOLE-EXOME SEQUENCING OF MULTIPLE DISEASE-AFFECTED RELATIVES


Christina Nieuwoudt Supervisor: Jinko Graham 6 August 2018

Simon Fraser University Department of Statistics

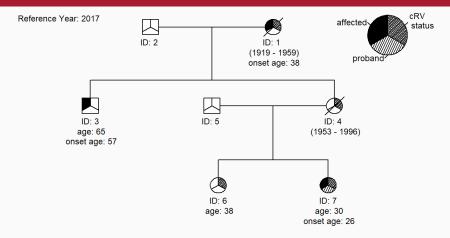
MOTIVATION

SINGLE-NUCLEOTIDE VARIANT (SNV) DATA

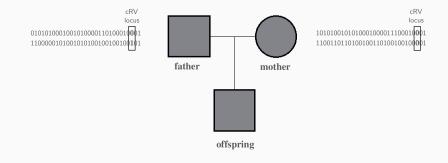

Mutated alleles are coded as 1 and wild type alleles are coded by 0.

To simulate sequence data for a pedigree we require:

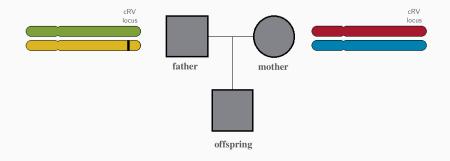
- 1. a pedigree, and
- 2. single-nucleotide variant (SNV) data from a sample of unrelated individuals.


Presently, we streamline the use of exon-only SNV data simulated by SLiM 2.0 and pedigrees simulated by SimRVPedigree.

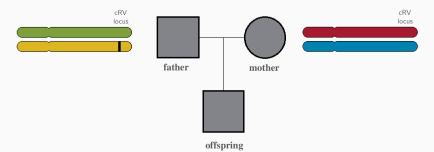
PEDIGREE SIMULATION


- We simulate life events by way of a competing-risk model which makes use of age-specific hazard rates of disease-onset and death provided by the user.
- ▶ Possible life events include: disease-onset, reproduction, and death.

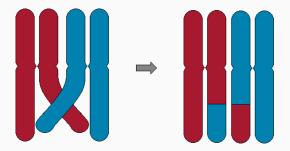
PEDIGREE SIMULATION



- At the individual level, disease onset is influenced by the presence (or absence of) a causal rare variant, or cRV.
- We assume the cRV has been introduced by no more than one founder and transmit it according to Mendel's laws.


SEQUENCE DATA FOR OFFSPRING

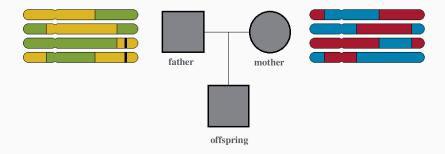
SEQUENCE DATA FOR OFFSPRING


SEQUENCE DATA FOR OFFSPRING

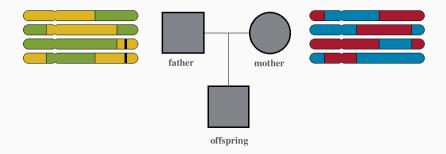
Given the cRV status of each pedigree member we perform a conditional gene drop to simulate inheritance.


- Simulate genetic recombination among parental haplotypes.
- Sample the inherited gamete conditionally on *c*RV status.

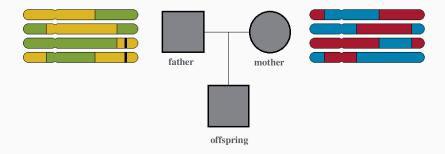
Each parent's haplotypes participate in recombination, or crossover, events whereby genetic material is exchanged between them.


We model the locations of crossover events as stochastic point process with a gamma renewal density [12].

FORMATION OF GAMETES


- To simulate the formation of gametes we assume that homologous chromatids are assigned to one of four gamete cells with equal probability.
- This assignment occurs independently for non-homologous chromosomes.

CONDITIONAL GENE DROP

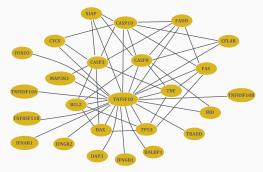

Case 1: If **both the parent and offspring carry the cRV** we sample the inherited gamete from those that carry the cRV.

CONDITIONAL GENE DROP



Case 2: If the parent carries the cRV but the offspring does not, we sample the inherited gamete from those that do not carry the cRV.

CONDITIONAL GENE DROP


Case 3: If a **parent is not a carrier of the cRV**, we sample the inherited gamete from the four parental gametes.

graphic by Daycd, at the English Wikipedia Project, distributed under a CC-BY 2.0 license

- We assume founders are unrelated and represent a random sample from a global population of individuals.
- Exon-only sequence data may be obtained from:
 - publicly available sequence data (1000 genomes project),
 - a coalescent simulator (msprime or fastsimcoal), or
 - ► a forward-in-time evolutionary simulator (SLiM 2.0).

Different families may segregate different *c*RVs residing in a set of interacting genes or a pathway.

- We specify a pool of cRVs from which to sample familial cRVs, so that different families can segregate different cRVs.
- Founder haplotypes are sampled from the population distribution of haplotypes conditioned on the founder's cRV status at the familial disease locus.

Task	Time
Simulating exon-only sequence data with SLiM 2.0 • 10,000 individuals • 44,000 generations • recombination rate 1×10^{-8} • mutation rate 1×10^{-8}	> 24 hrs
Simulating pedigrees with SimRVPedigree.200 pedigrees2 or more disease-affected relatives	1 - 90 mins
Simulating genetic data for the disease-affected relatives with SimRVSequences.	53 sec

Supervisor: Jinko Graham Lymphoid Cancer Families Study (PI Angela Brooks-Wilson)

REFERENCES

- 1000 Genomes Project (2010). A map of human genome variation from population-scale sequencing. *Nature*, 467:1061-1073.
- [2] Haller, B. C., Messer P. W., SLiM 2: Flexible, Interactive Forward Genetic Simulations. *Molecular Biology and Evolution*, 34(1):230-240.
- [3] Harris, K., Nielsen, R., (2016). The Genetic Cost of Neanderthal Introgression. *Genetics*, 203(2):881-891.
- [4] Karolchik, D. et al., (2004). The UCSC Table Browser data retrieval tool. Nucleic Acids Res. doi: 10.1093/nar/gkh103
- [5] Kent, W. J., *et al.*, (2002). The human genome browser at UCSC. *Genome Res*, 12(6):996-1006.
- [6] Lange, K., Mathematical and Statistical Methods for Genetic Analysis. Springer, NewYork. 2nd edition.
- [7] Nieuwoudt, C., Graham, J., (2017) SimRVPedigree: Simulate Pedigrees Ascertained for a Rare Disease. R package version 0.1.0. https://CRAN.R-project.org/package=SimRVPedigree.
- [8] Nieuwoudt, C., et al. (2017). Simulating Pedigrees Ascertained for Multiple Disease-Affected Relatives. *bioRxiv* 234153.
- [9] Poon, H., et al., (2014). Literome: PubMed-scale genomic knowledge base in the cloud. *Bioinformatics*, 30:2840-2842.
- [10] Takahata, N., (1993). Allelic genealogy and human evolution. Mol Biol Evol, 10:2-22.
- [12] Voorrips, R. E., Maliepaard, C. A, (2012) The simulation of meiosis in diploid and tetraploid organisms using various genetic models. *BMC Bioinformatics*, 13:248.