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Complex traits

I Many genetic association studies have been conducted to
identify genetic variants associated with complex traits.

I However, much of the heritable variation in complex traits is
still unexplained.

I There are many genetic and environmental factors that affect
complex traits.

I Genetic factors may include some common (MAF ≥ 0.05),
low-frequency (0.01 ≤ MAF < 0.05), and rare (MAF < 0.01)
genetic variants.



Rare variant analysis

I Possible approaches to detect variants with small effects or
rare variants:

I Increase the sample size
I Improve the study design: Reduce the phenotypic and genetic

heterogeneity - select a more homogenous subgroup of
individuals

I Use appropriate methods of analysis

I Single-marker tests are often the method of choice for the
analysis of common or low-frequency genetic variants.

I In population-based studies, single-variant analysis of rare
variants may yield low power if the effect of the causal variant
is not large.

I Thus, recent studies have focused on developing multi-marker
rare variant association tests to identify causal genomic
regions.



Multi-marker tests

I Multi-marker tests aggregate association signals across
multiple rare variants in a genomic region.

I For population-based studies, some multi-marker tests were
proposed.

I Lee et al. (2014) give a nice summary of different types of
tests:

I Different classes of methods including burden tests (e.g., Li
and Leal, 2008; Morris and Zeggini, 2010),
variance-component tests (e.g., Wu et al., 2011), combination
of burden and variance-component tests (Derkach et al., 2013;
Lee et al., 2012).

I Power of these tests depends on the proportion, effect sizes
and directions of the effects of causal (in fact, associated)
variants in a given region.



Single- versus multi-marker tests

I The aim of the multi-marker tests is to identify genomic
regions associated with the trait.

I Multi-marker tests are testing

I whether a given combination of variants in a given gene is
associated with the trait (burden-type tests)

or

I whether any of the variants in a given gene is associated with
the trait (variance-component-type tests).

I Single-marker tests are testing whether a given variant is
associated with the trait.



Single- versus multi-marker tests

I To fairly compare the performance of these two types of tests,
we need to compare them in their power to identify the same
causal genetic locus (e.g., a gene).

I Thus, for single marker tests, we test whether any of the rare
variants within the gene shows a significant association with
the trait while accounting for multiple testing.

I We compared a single-marker test with some multi-marker
tests (a burden test, SKAT, SKAT-O) for testing the same
hypothesis in rare variant association studies of quantitative
traits (Konigorski et al., 2017).



Single- versus multi-marker tests

I We considered a linear regression model of a normally
distributed quantitative trait.

I We observed that the least square estimation method and the
t-test statistic have valid properties even when investigating
singletons and doubletons.

I The single-marker test has larger or equal power compared to
multi-marker tests as long as there is not a large number of
causal variants in a region all with small effect sizes
(Konigorski et al., 2017).

I The single-marker test and the multi-marker tests are all
sensitive to misspecification of the error distribution.

I The distribution assumptions need to be assessed before
conducting the association tests.



Joint modeling of multiple traits

I Power of the single-marker tests could be improved by
incorporating additional information through modeling
multiple traits.

I Suppose there are bivariate traits (Y1,Y2).

I Well-known joint modeling approaches are

I Conditional analysis of traits: It consists of modeling the
marginal distribution of Y1 given covariates and modeling the
conditional distribution of Y2 given Y1 and covariates through
some regression modeling approaches.

I Models with random effects: A bivariate random effect model
assumes that Y1 and Y2 are independent given an unobserved
random variable and covariates.

I Marginal approach: The joint distribution of Y1 and Y2 is
modeled directly. The marginal distributions are usually
modeled seperately from the dependency structure.



Proposed methods
Some different joint modeling approaches and association tests
have been proposed for genetic association studies:

I Yang and Wang (2012) and Zhu et al. (2015) discuss some
joint modeling approaches and methods for joint association
analysis of multiple phenotypes: modeling with random
effects, variable reduction methods, combining test statistics
from univariate analyses.

I MultiPhen (O’Reilly et al., 2012): Models the association
between linear combinations of phenotypes and the genotypes
at each variant and identifies the linear combination of the
phenotypes most associated with the variant.

I MURAT (Multivariate Rare-Variant Association Test; Sun et
al., 2016): A region-based rare variant association test
obtained under a multivariate model of phenotypes with
random variant effects. It reduces to SKAT when there is one
phenotype.



Proposed methods

I aSPU, aSPUset, aSPUset-Score tests (Kim et al., 2016):

I Fit the multivariate generalized linear model of traits
conditional on a single variant (aSPU) or multiple variants
(aSPUset, aSPUset-Score) using generalized estimating
equations method.

I Obtain the most powerful test statistic among different
combinations of power of score test statistics over all traits
(and variants).

I aSPUset test includes some different other well-known
multi-marker rare variant tests.



Comparison of modeling approaches

I Conditional modeling and random effect modeling may not
give a simple form for the marginal models of phenotypes.

I Under the random effect modeling, the assumed distribution
for the random effect cannot be assessed.

I Under the marginal approach, the marginal models have easily
interpretable forms because they allow us to specify them
according to the modeling needs.

I Copula modeling is a marginal approach.

I Copulas are functions used to construct a joint distribution
function (or survival function) by combining marginal
distributions with a dependence structure.



Copula modeling

I Let g1, g2, ..., gM denote the causal genetic variants and z
denote the vector of other factors affecting Y1 and/or Y2.

I Suppose the marginal distributions of Y1 and Y2 conditional
on covariates x = (z, g1, g2, ..., gM) are denoted by F1(y1|x)
and F2(y2|x).

I Marginal distributions can come from any distribution family
and can be different.

I The joint distribution of Y1 and Y2 conditional on the
covariate vector x is constructed by combining the marginal
distributions F1(.|x) and F2(.|x) using a copula function Cψ
with dependence parameter vector ψ:

F (y1, y2|x) = Cψ (F1(y1|x),F2(y2|x))



Copula modeling

I If F1 and F2 are continuous, there exists a unique copula
function constructing the bivariate distribution function
(Sklar, 1959).

I Copulas allow investigation of the marginal effects separately
from the dependence structure between phenotypes since the
measures of dependence do not appear in the marginal
distributions.

I This allows us

I to estimate and test the effect of a genetic variant on each
trait, and

I to identify pleiotropic variants which explain the dependence
between the phenotypes (Konigorski et al., 2014).



Copula modeling

I A copula function which allows to model a variety of
dependence structures could be considered.

I For example, we use the two-parameter copula function

Cφ,θ(u1, u2) =

[(
(u−φ1 − 1)θ + (u−φ2 − 1)θ

)1/θ
+ 1

]−1/φ

,

which allows a flexible modeling and contains the Clayton
(when θ = 1), the Gumbel-Hougaard (when φ→ 0), and the
independent (when θ = 1, φ→ 0) copula (Joe, 1997).

I It is a member of the Archimedean copula family which
contains some bivariate random effect models (Oakes, 1989).



Copula modeling
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Figure 1: Density contour plots of bivariate distributions using Clayton,
Frank, and Gumbel-Hougaard copulas when Kendall’s τ = 0.5 with standard
normal margins.

I The Clayton copula has lower tail dependence but no upper
tail dependence (Clayton, 1978).

I The Gumbel-Hougaard copula has upper tail dependence but
no lower tail dependence (Gumbel, 1960).



Marginal models of phenotypes

I Suppose the marginal models are in the form of

Y1 = α0 + α1z +
M∑
j=1

α2jgj + ε1

Y2 = β0 + β1z +
M∑
j=1

β2jgj + ε2.

I Distributions of ε1 and ε2 could come from any distribution
family.

I In our simulation study, we assume that ε1 and ε2 come from
Normal distributions with mean 0 and constant variances.



C-JAMP: Copula-based Joint Analysis of Multiple
Phenotypes

I In single-marker analysis, we consider the marginal models

Y1 = α∗
0 + α∗

1z1 + α2jgj + ε1

Y2 = β∗0 + β∗1z1 + β2jgj + ε2.

I For the genetic variant gj , the null hypothesis in interest could
be

H0 : α2j = 0 or H0 : β2j = 0.

I The bivariate distribution of Y1 and Y2 given z1 and gj is
modeled by using a copula function

F (y1, y2|z1, gj) = Cψ (F1(y1|z1, gj),F2(y2|z1, gj)) .

I Maximum likelihood estimation is used to fit the model.

I Wald test statistic is used to test the null hypothesis.



Simulation Study - Data Generation

Construct N = 10, 000 datasets for power comparison and N = 100, 000
datasets for assessing type I error, each of sample size n = 1, 000:

I Genetic data generation was similar to Lee et al. (2012).

I Generate traits Y1 and Y2 given the covariates x = (z, g1, ..., gM)T

from the Clayton copula model with Gaussian marginal
distributions.

I Weak (Kendall’s tau, τ = 0.2), moderate (τ = 0.5) and strong
(τ = 0.8) dependences between the adjusted traits for covariates
were considered.

I Causal SNVs have MAF ≤ 0.03.

I For effects of causal SNVs, used the scenarios in Lee et al. (2012)
with 10%, 20%, 50% causal SNVs (among SNVs having MAF
≤ 0.03), effect sizes are inversely proportional to their MAFs, and
with 100%, 80%, or 50% of effects in the same direction.



Simulation results - Evaluation of asymptotic properties

I We assessed the asymptotic properties of maximum likelihood
estimation under single marker analysis.

I When the MAC of a variant is not very low, asymptotic
properties of the maximum likelihood estimation are valid.

I When the MAC is low and the dependence between traits is
moderate or strong, asymptotic properties of the maximum
likelihood estimation do not hold.

I For such variants,
I the p-values for the Wald test can be obtained by conducting a

parametric bootstrap under the estimated null model

or

I the distribution of the Wald test can be approximated by
conducting a Monte Carlo simulation study under the
estimated null model.



Simulation results - Type I error

I We test the null hypothesis that the gene is not associated
with the trait Y2.

I We consider the scenarios where
I α2j = β2j = 0 for all js in the gene.
I α2j 6= 0 for some j in the gene but β2j = 0 for all j .

I The empirical type I errors of C-JAMP are generally close to
the nominal levels considered.

I However, when there is strong dependence between traits and
the gene affects Y1, the type I error is slightly inflated.

I When the copula model is misspecified, empirical type I error
rates remain close to the nominal value.



Simulation results - Type I error

I We compared the performance of C-JAMP with MultiPhen,
MURAT, aSPU, aSPUset, aSPUset-Score.

I MultiPhen, MURAT, and aSPU yielded inflated type I error
rates under the assumed copula model with Gaussian marginal
distributions.

I aSPUset test yields valid type I error rates and aSPUset-Score
test has slightly inflated type I error rate.



Simulation results - Power

Figure 2: Empirical power estimates of C-JAMP versus the univariate SMT and MMTs



Power comparison of C-JAMP with the univariate SMT
and MMTs

I Comparison to the univariate SMT, C-JAMP yields higher
power when there is dependence between traits.

I As the dependence level between traits increases, power of
C-JAMP increases.

I C-JAMP is more powerful than univariate MMTs except when
there is a large number of causal variants all with small effect
sizes.

I The power of C-JAMP is not affected by the direction of the
variant effects.



Simulation results - Power

Figure 3: Empirical power estimates of C-JAMP versus multivariate MMTs



Power comparison of C-JAMP with multivariate MMTs

I Power of aSPUset-Score is always higher than that of
aSPUset.

I Power of aSPUset and aSPUset-Score is very sentitive to the
misspecification of dependence structure as their power
decreases when the dependence level increases.

I C-JAMP yields more powerful tests except when the
dependence level is low and there is a large number of causal
variants all with small effect sizes.



Extension and application areas of C-JAMP

I The approach could easily be extended to the analysis of
multivariate time-to-event phenotypes (Yilmaz and Lawless,
2011).

I Semiparametric estimation could be performed to reduce the
marginal distribution assumptions for phenotypes (Yilmaz and
Lawless, 2011).

I Other test statistics including likelihood ratio or score test
statistic could be used to test the genetic association.

I The approach could be applied for the analysis of family data.

I Multi-marker tests could be obtained under copula modeling
(Lakhal-Chaieb et al., 2016).
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