Copula Modeling of Dependent Traits in Rare Variant Analysis

Yildiz Yilmaz

Department of Mathematics and Statistics & Discipline of Genetics, Faculty of Medicine Memorial University of Newfoundland

August 9, 2018

Complex traits

- Many genetic association studies have been conducted to identify genetic variants associated with complex traits.
- However, much of the heritable variation in complex traits is still unexplained.
- There are many genetic and environmental factors that affect complex traits.
- ▶ Genetic factors may include some common (*MAF* ≥ 0.05), low-frequency (0.01 ≤ *MAF* < 0.05), and rare (*MAF* < 0.01) genetic variants.

Rare variant analysis

- Possible approaches to detect variants with small effects or rare variants:
 - Increase the sample size
 - Improve the study design: Reduce the phenotypic and genetic heterogeneity - select a more homogenous subgroup of individuals
 - Use appropriate methods of analysis
- Single-marker tests are often the method of choice for the analysis of common or low-frequency genetic variants.
- In population-based studies, single-variant analysis of rare variants may yield low power if the effect of the causal variant is not large.
- Thus, recent studies have focused on developing multi-marker rare variant association tests to identify causal genomic regions.

Multi-marker tests

- Multi-marker tests aggregate association signals across multiple rare variants in a genomic region.
- For population-based studies, some multi-marker tests were proposed.
- Lee et al. (2014) give a nice summary of different types of tests:
 - Different classes of methods including burden tests (e.g., Li and Leal, 2008; Morris and Zeggini, 2010), variance-component tests (e.g., Wu et al., 2011), combination of burden and variance-component tests (Derkach et al., 2013; Lee et al., 2012).
- Power of these tests depends on the proportion, effect sizes and directions of the effects of causal (in fact, associated) variants in a given region.

Single- versus multi-marker tests

- The aim of the multi-marker tests is to identify genomic regions associated with the trait.
- Multi-marker tests are testing
 - whether a given combination of variants in a given gene is associated with the trait (burden-type tests)

or

- whether any of the variants in a given gene is associated with the trait (variance-component-type tests).
- Single-marker tests are testing whether a given variant is associated with the trait.

Single- versus multi-marker tests

- To fairly compare the performance of these two types of tests, we need to compare them in their power to identify the same causal genetic locus (e.g., a gene).
- Thus, for single marker tests, we test whether any of the rare variants within the gene shows a significant association with the trait while accounting for multiple testing.
- We compared a single-marker test with some multi-marker tests (a burden test, SKAT, SKAT-O) for testing the same hypothesis in rare variant association studies of quantitative traits (Konigorski et al., 2017).

Single- versus multi-marker tests

- We considered a linear regression model of a normally distributed quantitative trait.
- We observed that the least square estimation method and the t-test statistic have valid properties even when investigating singletons and doubletons.
- The single-marker test has larger or equal power compared to multi-marker tests as long as there is not a large number of causal variants in a region all with small effect sizes (Konigorski et al., 2017).
- The single-marker test and the multi-marker tests are all sensitive to misspecification of the error distribution.
- The distribution assumptions need to be assessed before conducting the association tests.

Joint modeling of multiple traits

- Power of the single-marker tests could be improved by incorporating additional information through modeling multiple traits.
- ► Suppose there are bivariate traits (*Y*₁, *Y*₂).
- Well-known joint modeling approaches are
 - Conditional analysis of traits: It consists of modeling the marginal distribution of Y₁ given covariates and modeling the conditional distribution of Y₂ given Y₁ and covariates through some regression modeling approaches.
 - ▶ Models with random effects: A bivariate random effect model assumes that *Y*₁ and *Y*₂ are independent given an unobserved random variable and covariates.
 - Marginal approach: The joint distribution of Y₁ and Y₂ is modeled directly. The marginal distributions are usually modeled seperately from the dependency structure.

Proposed methods

Some different joint modeling approaches and association tests have been proposed for genetic association studies:

- Yang and Wang (2012) and Zhu et al. (2015) discuss some joint modeling approaches and methods for joint association analysis of multiple phenotypes: modeling with random effects, variable reduction methods, combining test statistics from univariate analyses.
- MultiPhen (O'Reilly et al., 2012): Models the association between linear combinations of phenotypes and the genotypes at each variant and identifies the linear combination of the phenotypes most associated with the variant.
- MURAT (Multivariate Rare-Variant Association Test; Sun et al., 2016): A region-based rare variant association test obtained under a multivariate model of phenotypes with random variant effects. It reduces to SKAT when there is one phenotype.

Proposed methods

- ► aSPU, aSPUset, aSPUset-Score tests (Kim et al., 2016):
 - Fit the multivariate generalized linear model of traits conditional on a single variant (aSPU) or multiple variants (aSPUset, aSPUset-Score) using generalized estimating equations method.
 - Obtain the most powerful test statistic among different combinations of power of score test statistics over all traits (and variants).
 - aSPUset test includes some different other well-known multi-marker rare variant tests.

Comparison of modeling approaches

- Conditional modeling and random effect modeling may not give a simple form for the marginal models of phenotypes.
- Under the random effect modeling, the assumed distribution for the random effect cannot be assessed.
- Under the marginal approach, the marginal models have easily interpretable forms because they allow us to specify them according to the modeling needs.
- Copula modeling is a marginal approach.
- Copulas are functions used to construct a joint distribution function (or survival function) by combining marginal distributions with a dependence structure.

- Let g₁, g₂, ..., g_M denote the causal genetic variants and z denote the vector of other factors affecting Y₁ and/or Y₂.
- Suppose the marginal distributions of Y₁ and Y₂ conditional on covariates x = (z, g₁, g₂, ..., g_M) are denoted by F₁(y₁|x) and F₂(y₂|x).
- Marginal distributions can come from any distribution family and can be different.
- ► The joint distribution of Y₁ and Y₂ conditional on the covariate vector x is constructed by combining the marginal distributions F₁(.|x) and F₂(.|x) using a copula function C_ψ with dependence parameter vector ψ:

$$F(y_1, y_2 | \mathbf{x}) = C_{\psi} \left(F_1(y_1 | \mathbf{x}), F_2(y_2 | \mathbf{x}) \right)$$

- If F₁ and F₂ are continuous, there exists a unique copula function constructing the bivariate distribution function (Sklar, 1959).
- Copulas allow investigation of the marginal effects separately from the dependence structure between phenotypes since the measures of dependence do not appear in the marginal distributions.
- This allows us
 - to estimate and test the effect of a genetic variant on each trait, and
 - to identify pleiotropic variants which explain the dependence between the phenotypes (Konigorski et al., 2014).

- A copula function which allows to model a variety of dependence structures could be considered.
- ► For example, we use the two-parameter copula function

$$C_{\phi, heta}(u_1,u_2) = \left[\left((u_1^{-\phi}-1)^ heta + (u_2^{-\phi}-1)^ heta
ight)^{1/ heta} + 1
ight]^{-1/\phi},$$

which allows a flexible modeling and contains the Clayton (when $\theta = 1$), the Gumbel-Hougaard (when $\phi \rightarrow 0$), and the independent (when $\theta = 1, \phi \rightarrow 0$) copula (Joe, 1997).

 It is a member of the Archimedean copula family which contains some bivariate random effect models (Oakes, 1989).

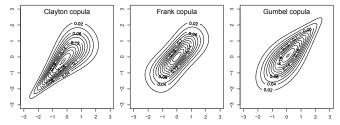


Figure 1: Density contour plots of bivariate distributions using Clayton, Frank, and Gumbel-Hougaard copulas when Kendall's $\tau = 0.5$ with standard normal margins.

- The Clayton copula has lower tail dependence but no upper tail dependence (Clayton, 1978).
- The Gumbel-Hougaard copula has upper tail dependence but no lower tail dependence (Gumbel, 1960).

Marginal models of phenotypes

Suppose the marginal models are in the form of

$$\begin{aligned} Y_1 &= \alpha_0 + \alpha_1 \mathbf{z} + \sum_{j=1}^M \alpha_{2j} g_j + \epsilon_1 \\ Y_2 &= \beta_0 + \beta_1 \mathbf{z} + \sum_{j=1}^M \beta_{2j} g_j + \epsilon_2. \end{aligned}$$

- Distributions of \(\epsilon_1\) and \(\epsilon_2\) could come from any distribution family.
- In our simulation study, we assume that \(\earepsilon_1\) and \(\earepsilon_2\) come from Normal distributions with mean 0 and constant variances.

C-JAMP: Copula-based Joint Analysis of Multiple Phenotypes

▶ In single-marker analysis, we consider the marginal models

$$Y_1 = \alpha_0^* + \alpha_1^* \mathbf{z}_1 + \alpha_{2j} g_j + \epsilon_1$$

$$Y_2 = \beta_0^* + \beta_1^* \mathbf{z}_1 + \beta_{2j} g_j + \epsilon_2.$$

 For the genetic variant g_j, the null hypothesis in interest could be

$$H_0: \alpha_{2j} = 0 \qquad \text{or} \qquad H_0: \beta_{2j} = 0.$$

The bivariate distribution of Y₁ and Y₂ given z₁ and g_j is modeled by using a copula function

$$F(y_1, y_2 | \mathbf{z_1}, g_j) = C_{\psi} \left(F_1(y_1 | \mathbf{z_1}, g_j), F_2(y_2 | \mathbf{z_1}, g_j) \right).$$

- Maximum likelihood estimation is used to fit the model.
- Wald test statistic is used to test the null hypothesis.

Simulation Study - Data Generation

Construct N = 10,000 datasets for power comparison and N = 100,000 datasets for assessing type I error, each of sample size n = 1,000:

- Genetic data generation was similar to Lee et al. (2012).
- ▶ Generate traits Y₁ and Y₂ given the covariates x = (z, g₁, ..., g_M)^T from the Clayton copula model with Gaussian marginal distributions.
- Weak (Kendall's tau, τ = 0.2), moderate (τ = 0.5) and strong (τ = 0.8) dependences between the adjusted traits for covariates were considered.
- Causal SNVs have MAF \leq 0.03.
- ▶ For effects of causal SNVs, used the scenarios in Lee et al. (2012) with 10%, 20%, 50% causal SNVs (among SNVs having MAF \leq 0.03), effect sizes are inversely proportional to their MAFs, and with 100%, 80%, or 50% of effects in the same direction.

Simulation results - Evaluation of asymptotic properties

- We assessed the asymptotic properties of maximum likelihood estimation under single marker analysis.
- When the MAC of a variant is not very low, asymptotic properties of the maximum likelihood estimation are valid.
- When the MAC is low and the dependence between traits is moderate or strong, asymptotic properties of the maximum likelihood estimation do not hold.
- For such variants,
 - the p-values for the Wald test can be obtained by conducting a parametric bootstrap under the estimated null model
 - or
 - the distribution of the Wald test can be approximated by conducting a Monte Carlo simulation study under the estimated null model.

Simulation results - Type I error

- ► We test the null hypothesis that the gene is not associated with the trait Y₂.
- We consider the scenarios where
 - $\alpha_{2j} = \beta_{2j} = 0$ for all *j*s in the gene.
 - $\alpha_{2j} \neq 0$ for some j in the gene but $\beta_{2j} = 0$ for all j.
- The empirical type I errors of C-JAMP are generally close to the nominal levels considered.
- ► However, when there is strong dependence between traits and the gene affects Y₁, the type I error is slightly inflated.
- When the copula model is misspecified, empirical type I error rates remain close to the nominal value.

Simulation results - Type I error

- We compared the performance of C-JAMP with MultiPhen, MURAT, aSPU, aSPUset, aSPUset-Score.
- MultiPhen, MURAT, and aSPU yielded inflated type I error rates under the assumed copula model with Gaussian marginal distributions.
- aSPUset test yields valid type I error rates and aSPUset-Score test has slightly inflated type I error rate.

Simulation results - Power

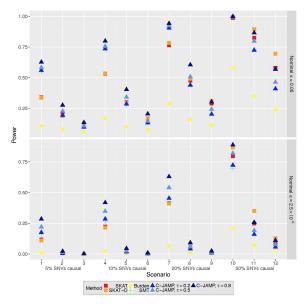


Figure 2: Empirical power estimates of C-JAMP versus the univariate SMT and MMTs

Power comparison of C-JAMP with the univariate SMT and MMTs

- Comparison to the univariate SMT, C-JAMP yields higher power when there is dependence between traits.
- As the dependence level between traits increases, power of C-JAMP increases.
- C-JAMP is more powerful than univariate MMTs except when there is a large number of causal variants all with small effect sizes.
- The power of C-JAMP is not affected by the direction of the variant effects.

Simulation results - Power

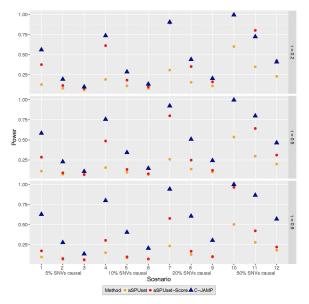


Figure 3: Empirical power estimates of C-JAMP versus multivariate MMTs

Power comparison of C-JAMP with multivariate MMTs

- Power of aSPUset-Score is always higher than that of aSPUset.
- Power of aSPUset and aSPUset-Score is very sentitive to the misspecification of dependence structure as their power decreases when the dependence level increases.
- C-JAMP yields more powerful tests except when the dependence level is low and there is a large number of causal variants all with small effect sizes.

Extension and application areas of C-JAMP

- The approach could easily be extended to the analysis of multivariate time-to-event phenotypes (Yilmaz and Lawless, 2011).
- Semiparametric estimation could be performed to reduce the marginal distribution assumptions for phenotypes (Yilmaz and Lawless, 2011).
- Other test statistics including likelihood ratio or score test statistic could be used to test the genetic association.
- The approach could be applied for the analysis of family data.
- Multi-marker tests could be obtained under copula modeling (Lakhal-Chaieb et al., 2016).

Acknowledgements

Joint work with

- Stefan Konigorski, Postdoctoral researcher at Max Delbruck Center (MDC) for Molecular Medicine, Berlin, Germany
- Tobias Pischon, Molecular Epidemiology Research Group, Max Delbruck Center (MDC) for Molecular Medicine, Berlin, Germany

References

- ▶ Derkach et al. (2013). Genet Epidemiol 37: 110-121.
- ▶ Kim et al. (2016). *Genetics* 203: 715-731.
- ► Konigorski et al. (2014). BMC Proc 8(Suppl 1): S72.
- ▶ Konigorski et al. (2017). *PLoS One* 12(5): e0178504.
- Lakhal-Chaieb et al. (2016). Statist Med 35: 905-921.
- ▶ Lee et al. (2012). *Biostatistics* 13: 762-775.
- ▶ Lee et al. (2014). Am J Hum Genet 95: 5-23.
- ▶ Li and Leal (2008). Am J Hum Genet 83: 311-321.
- Morris and Zeggini (2010). Genet Epidemiol 34: 188-193
- O'Reilly et al. (2012). PLoS One 7(5): e34861.
- Sklar (1959). Publ Inst Statist Univ Paris 8: 229-231.
- ▶ Sun et al. (2016). Eur J Hum Genet 24: 1344-1351.
- ▶ Yang and Wang (2012). J Probab Stat 2012: 652569.
- ▶ Wu et al. (2011). Am J Hum Genet 89: 82-93.
- ▶ Yilmaz and Lawless (2011). Lifetime Data Anal 17: 386-408.
- Zhu et al. (2015). Hum Hered 80: 144-152.