# Greedy approximation with data assimilation

James Ashton Nichols

April 24, 2018

Laboratoire Jacques-Louis Lions, Sorbonne Université



With Albert Cohen, Olga Mula, Peter Binev

# Our setting

We are motivated by elliptic parametric PDEs on a domain  $D \subset \mathbb{R}^d$  of the general form

 $\mathcal{P}(u,y)=0,$ 

where u(x, y) is the solution,  $y \in \mathcal{Y}$  is a (high-dimensional / stochastic) parameter. We typically write u(y).

In a wide variety of problems it is known that the solution map

 $y \mapsto u(y)$ 

is well-defined and smooth w.r.t.  $\|\cdot\|_{\mathcal{V}}$ , hence the solution manifold

 $\mathcal{M} := \{u(y) : y \in \mathcal{Y}\} \subset \mathcal{V}.$ 

 $\mathcal{M}$  is typically smooth and compact.  $\mathcal{V}$  is our ambient Hilbert-space e.g.  $H_0^1(D)$  with  $D \subset \mathbb{R}^d$ .

#### Our goal:

Given that y is unknown (and likely unknowable), how do we approximate u with minimal physical measurements?

In our setting we can take *m* independent measurements

 $\ell_i(u), \quad i=1,\ldots,m, \quad u=u(a)$ 

where the  $\ell_i \in \mathcal{V}'$  are linear functionals on  $\mathcal{V}$ .

We know what  $\ell_i$  are, we know the representers  $\ell_i(u) = \langle u, \omega_i \rangle$ . Define the measurement space

$$W_m := \operatorname{span}\{\omega_1,\ldots,\omega_m\}.$$

Hence from the  $\ell_i$  we can find

 $w = P_{W_m} u \in W_m$ 

So we retain a low dimensional information on the complex manifold  $\mathcal{M}.$ 

The  $\ell_i$  represent real-world sensor / microphone response

# Reduced modelling - $\mathcal{K}^n$ approximation set

In an "offline" computation we find nested subspaces

$$V_0 \subset V_1 \subset \cdots \subset V_n \subset \cdots, \quad \dim(V_n) = n,$$

that cover  $\mathcal{M}$  to within  $\varepsilon_0 > \varepsilon_1 > \cdots > 0$ 

 $\mathcal{M} \subset \mathcal{K}^n := \{ v \in \mathcal{V} : \operatorname{dist}(v, V_n) \leq \varepsilon_n \}$ 



E.g.

- Sparse polynomials:  $u(y) \approx \sum_{\nu \in \Lambda_n} u_{\nu} y^{\nu} \in V_n := \operatorname{span}\{u_{\nu} : \nu \in \Lambda_n\}.$
- Reduced bases:  $V_n := \operatorname{span}\{u_i : i = 1, \dots, n\}$  with  $u_i = u(y_i)$  snapshots.
- Fourier / wavelet bases etc...



## Linear reconstruction - from $W_m$ to $\mathcal{K}^n$

A is our *lifting* from observation  $w = P_{W_m} u$  to best fit point in  $\mathcal{K}^n$ . Evidently we require that  $P_{W_m} A(w) = w$  hence  $A(w) \in w + W_m^{\perp}$ 

$$\mathcal{K}_w^n := \{ v \in \mathcal{K} : P_{W_m} v = w \} = \mathcal{K}^n \cap (w + W_m^{\perp})$$

which is an ellipsoid: intersection of the cylinder  $\mathcal{K}^n$  with affine space  $w + W_m^{\perp}$ .



[Maday et al., 2015] : take

 $A(w) = \operatorname{argmin} \left\{ \operatorname{dist}(u, V_n) : u \in \mathcal{K}_w^n \right\}.$ 

A is linear. A(w) coincides with the center of the ellipsoid  $\mathcal{K}_{w}^{n}$ , hence is an optimal recovery algorithm [Binev et al., 2017]

The error of the optimal recovery algorithm is

$$\sup_{u\in\mathcal{K}^n}\|u-A(P_{W_m}u)\|=\frac{\varepsilon_n}{\beta(V_n,W_m)}$$

Based on the inf-sup constant (the "angle" between  $V_n$  and  $W_m$ )

$$\beta(V_n, W_m) := \inf_{v \in V_n} \frac{\|P_{W_m}v\|}{\|v\|} \in [0, 1].$$

see also [Adcock and Hansen, 2012].

- $\beta(V_n, W_m) = 1$  if and only if  $V_n \subset W_m$ .
- We require that n < m, otherwise  $\beta(V_n, W_m) = 0$  (as  $V_n \cap W_m^{\perp} \neq \{0\}$ ).
- In general  $\beta(V_n, W_m)$  and  $\varepsilon_n$  decrease as *n* grows... (hence stability issues)

## **Optimal measurement selection**

- The sensors  $\ell_i$  (or  $\omega_i$ ) are usually selected from a set  $\mathcal{D}$  (the *dictionary*).
- If we are given a fixed budget m, what is the best choice?
- Task: Given given a fixed  $V_n$ , for some goal  $\beta^* > 0$  find  $\omega_1, \ldots, \omega_m$  from  $\mathcal{D}$  such that

 $\beta(V_n, W_m) \geq \beta^* > 0,$ 

with a number of measurements  $m \ge n$  as small possible.

Benchmark:  $m^*(\beta)$  the smallest value of  $m \ge n$  such that such a selection exists (sometimes theoretically available).

# Nonlinear approximation/Data-driven reduced models. Ongoing work with A. Cohen and O. Mula.

- So far,  $V_n$  is tailored for the whole manifold  $\mathcal{M}$ .
- For given measurements,  $\ell_1(u), \ldots, \ell_m(u)$ , can we find a reduced model  $V_n^{data}$  that performs better than  $V_n$  for the reconstruction of u?

**Goal:** Given  $\beta^* > 0$  and given  $V_n$ , find  $\omega_1, \ldots, \omega_m$  from  $\mathcal{D}$  such that

 $\beta(V_n, W_m) \geq \beta^* > 0,$ 

with a number of measurements  $m \ge n$  as small possible.

**Dictionary:** We pick the  $\omega_i$  which span  $W_m$  from a *dictionary*  $\mathcal{D}$  of  $\mathcal{V}$ , that is,

 $\overline{\mathcal{D}} = V$  and  $\|\omega\| = 1, \ \forall \omega \in \mathcal{D}.$ 

The  $\omega$  may represent response characteristics of real-world sensors or microphones

**Examples of dictionaries:** If  $\mathcal{V} = H_0^1(D)$  with  $D \subset \mathbb{R}^d$ 

- Pointwise evaluations:  $\mathcal{D} = \{\ell_x : x \in D\}, \ell_x(f) = f(x) \text{ (when } d = 1)$
- Local averages: for a fixed  $\epsilon > 0$ ,  $\mathcal{D}_{\epsilon} = \{\ell_{x,\epsilon} : x \in D\}$  where

$$\ell_{x,\epsilon}(u) := \int_D u(y)\varphi_\epsilon(y-x)dy, \quad \varphi_\epsilon(y) := \epsilon^{-d}\varphi\left(\frac{y}{\epsilon}\right), \quad \varphi \text{ is a unit mollifier}$$

Optimising  $W_m$  simultaneously over  $\mathcal{D}$  is not an option. So we go greedy.

[Binev et al., 2018]: greedy orthogonal matching pursuit (OMP) type algorithms for selecting  $\omega_i$  from  $\mathcal{D}$  for the collective approximation of the elements of  $V_n$ .

We define **two** algorithms. Assume  $V_n = \text{span}\{\phi_1, \ldots, \phi_n\}$  is orthonormal. Having selected  $\{\omega_1, \ldots, \omega_m\}$  and with  $W_m = \text{span}\{\omega_1, \ldots, \omega_m\}$ , we define:

Collective OMP:

$$\omega_{m+1} := \operatorname{argmax} \left\{ \sum_{j=1}^{n} \left| \langle \phi_j - \mathcal{P}_{\mathcal{W}_m} \phi_j, \omega \rangle \right|^2 : \omega \in \mathcal{D} 
ight\}$$

Worst-case OMP:

$$v_{m+1} := \operatorname{argmax} \{ \|v - P_{W_m}v\| : v \in V_n, \|v\| = 1 \}$$

then

$$\omega_{m+1} := \operatorname{argmax} \Big\{ |\langle \mathbf{v}_{m+1} - \mathbf{P}_{W_m} \mathbf{v}_{m+1}, \omega \rangle| : \ \omega \in \mathcal{D} \Big\}$$

## Converge (loose statement) [Binev et al., 2018]

For the sequence of measurement spaces  $W_m$  built with either greedy algorithm, we have

$$\beta(V_n, W_m) \geq \left(1 - \frac{C}{m+1}\right)^{1/2}$$

The constant C is more favorable in the collective OMP but in our numerical experiments the worst case OMP performed better.

**Proof ideas:** We take any orthonormal basis  $\Phi = (\phi_1, \dots, \phi_n)$  of  $V_n$  and introduce the residual quantity

$$r_m^2 := \sum_{i=1}^n \|\phi_i - P_{W_m}\phi_i\|^2.$$

which is such that  $\beta(V_n, W_m)^2 \ge 1 - r_m^2$ . We can derive convergence rates for  $(r_m^2)_{m\ge 1}$ .

We will satisfy  $\beta(V_n, W_m) \ge \beta^*$  as soon as  $r_m^2 \le 1 - (\beta^*)^2$ .

We introduce for any  $\Phi = (\phi_1, \dots, \phi_n) \in \mathcal{V}^n$  the quantity

$$\|\Phi\|_{\ell^{1}(\mathcal{D})} := \inf_{c_{\omega,i}} \left\{ \sum_{\omega \in \mathcal{D}} \left( \sum_{i=1}^{n} |c_{\omega,i}|^{2} \right)^{1/2} : \phi_{i} = \sum_{\omega \in \mathcal{D}} c_{\omega,i}\omega, \quad i = 1, \dots, n \right\}.$$

(similar to the typical approximation spaces  $\mathcal{A}^1(\mathcal{D})$ , but for a basis)

Convergence of  $(r_k)$  in the collective OMP [Binev et al., 2018]

Let  $\Phi = (\phi_1, \dots, \phi_n)$  be an orthonormal basis of  $V_n$  with finite  $\|\Phi\|_{\ell^1(\mathcal{D})}$ . Then, we have for the collective OMP

$$r_m^2 \leq \frac{\|\Phi\|_{\ell^1(\mathcal{D})}^2}{\kappa^2(m+1)}$$

and for the worst case OMP,

$$r_m^2 \leq rac{\mathbf{n}^2 \|\Phi\|_{\ell^1(\mathcal{D})}^2}{\kappa^2(m+1)}.$$

A few notes:

- This can be extended to any basis  $\Psi = (\psi_1, \dots, \psi_n)$  of  $V_n$ , can thus show that it applies to all of  $V_n$
- $\kappa$  is included because in practice we have a large finite but incomplete dictionary  $\mathcal{D}_N \subset \mathcal{D}$  and some residual from the Galerkin projection etc... so our theory is not for  $\omega_{m+1} = \operatorname{argmax}(\ldots)$  but in fact  $\omega_{m+1}$  satisfies Collective OMP:

$$\sum_{j=1}^{n} |\langle \phi_j - P_{W_m} \phi_j, \omega_{m+1} \rangle|^2 \geq \kappa \max \Big\{ \sum_{j=1}^{n} |\langle \phi_j - P_{W_m} \phi_j, \omega \rangle|^2 : \omega \in \mathcal{D} \Big\}$$

Wost-case OMP

$$|\langle \mathsf{v}_{m+1} - \mathsf{P}_{W_m} \mathsf{v}_{m+1}, \omega_{m+1} \rangle| \geq \kappa \max\left\{ |\langle \mathsf{v}_{m+1} - \mathsf{P}_{W_m} \mathsf{v}_{m+1}, \omega \rangle| : \ \omega \in \mathcal{D} \right\}$$

## Numerical results - Fourier basis with point evaluation

- Ambient space:  $\mathcal{V} = H_0^1(]0, 1[)$
- Reduced model:  $V_n = \operatorname{span}\left\{\frac{\sqrt{2}}{\pi k}\sin(k\pi x)\right\}_{k=1}^n$
- Dictionary of pointwise evaluation: D = {ℓ<sub>x</sub> : x ∈]0,1[}, ℓ<sub>x</sub>(f) = f(x).
- In this case we know equispaced evaluation points are optimal:

$$W_m^{\text{opt}} = \left\{ \omega_x : x \in \left\{ \frac{1}{m+1}, \dots, \frac{m}{m+1} \right\} \right\}$$

But the greedy algo cannot choose equispaced points at every step.



What is the minimum *m* to get  $\beta(V_n, W_m) > \beta^* > 0$ ? We see it is almost linear with *n*.



Open problem: can a greedy algorithm achieve some fixed lower bound  $\beta$  with a number of measurements  $m(\beta)$  of comparable size as  $m^*(\beta)$ ?

# Our "fruit fly" example...

E.g.

$$-\operatorname{div}(a\nabla u) = 1$$
 on  $[0,1]^2$ 

with  $u_{|\partial D} = 0$ ,

$$a=a(y)=1+0.9\sum_{j=1}^{16}y_j\chi_{D_j}, \hspace{1em} y=(y_j)\in [-1,1]^{16}.$$

#### We solve using FEM





# Reduced basis $V_n$

We can produce a random sequence of  $y^{(i)} \in [-1, 1]^{16}$  for y = 1, ..., n then calculate snapshots  $u(y^{(i)})$  and orthonormalise them to produce  $V_n$ :



# Local average measurement $W_m$ , projection and WC-OMP

Using a dictionary D of local averages  $\ell_{x_0,\varepsilon}$  for any  $x_0 \in D$  we perform WC-OMP greedy algo:

Recall

$$\sup_{u\in\mathcal{K}^n}\|u-A(P_{W_m}u)\|=\beta^{-1}(V_n,W_m)\varepsilon_n$$

1.0

Reduced basis  $V_n$  has smaller avg. projection error than a sinusoid basis...



1



 $\beta(V_n, W_m)$  against m for sinusoid and reduced bases with n = 20

...but slightly worse  $\beta(W_m, V_n)$ 

#### Goal:

- Now  $W_m$  and  $w = P_{W_m} u$  are given
- We look for a good  $V_n = \operatorname{span} \{\phi_i\}_{i=1}^n$  to reconstruct u.
- The  $\phi_i$  are sought in a set  $\mathcal{D} \subset V$  e.g. set of snapshots from  $\mathcal{M}$ , ideally  $\mathcal{M} \subseteq \overline{\mathcal{D}}$

## Greedy algorithms to build $V_n$ :

• Pure greedy (not data driven):

For k = 1, we choose

 $\phi_1 = \operatorname{argmax}_{v \in \mathcal{D}} ||v||$ 

and set  $V_1 := \operatorname{span}\{\phi_1\}$ . For n > 1, given  $V_n = \operatorname{span}\{\phi_1, \dots, \phi_n\}$ , we look for

 $\phi_{n+1} = \operatorname{argmax}_{v \in \mathcal{D}} \| v - P_{V_n} v \|$ 

and set  $V_{N+1} := \operatorname{span}\{V_n, \phi_{n+1}\}.$ 

**()** Measurement based OMP: For n = 1, we choose

 $\phi_{1} = \operatorname{argmax}_{\boldsymbol{v} \in \mathcal{D}} \left\langle \boldsymbol{w}, \boldsymbol{v} \right\rangle$ 

and set  $V_1 := \operatorname{span}\{\phi_1\}$ . For n > 1, given  $V_n = \operatorname{span}\{\phi_1, \dots, \phi_n\}$ , we look for

$$\phi_{n+1} = \operatorname{argmax}_{v \in \mathcal{D}} \left\langle w - P_{P_{W_m} v_n} w, \frac{P_{W_m} v}{\|P_{W_m} v\|} \right\rangle$$

and set  $V_{n+1} := \operatorname{span}\{V_n, \phi_{n+1}\}.$ 

**@** Measurement based Projection Pursuit: For n = 1, we choose

$$\phi_1 = \operatorname{argmin}_{v \in \mathcal{D}} ||w - P_{P_{W_m}(v)}(w)||$$

and set  $V_1 := \operatorname{span}\{\phi_1\}$ . For n > 1, given  $V_n = \operatorname{span}\{\phi_1, \dots, \phi_n\}$ , we look for

$$\phi_{n+1} = \operatorname{argmin}_{v \in \mathcal{D}} ||w - P_{P_{W_m}(V_n \oplus \mathbb{R}_v)}w||$$

and set  $V_{n+1} := \operatorname{span}\{V_n, \phi_{n+1}\}.$ 

\* Both these algorithms operate in  $\mathbb{R}^m$  hence relatively cheap \*

# Projection error on checkerboard elliptic problem



# Projection error on checkerboard elliptic problem



# Reconstruction error on checkerboard elliptic problem





**Conclusions:** In the well-known setting of state estimation with measurements and reduced models we

- For a given approximation space  $V_n$  perform measurement selection to build  $W_m$  with greedy algorithms.
- For  $W_m$  and  $\ell_i(u)$  given, we built data based reduced models. Better accuracy than non data driven models in numerical experiments. Difficult theoretical justification.

## Future directions / open questions

- "Dictionary width"? Quantify deviation of greedy algorithm with optimal choice in general cases.
- Building  $W_{m(n)}, W_{m(n+1)}, \ldots$  parallel with  $V_n, V_{n+1}, \ldots$  incrementally. Any guarantees?
- Non-linear measurements, sensor failure, noisy data.
- Greedy  $L_{\infty}(Y, V)$  opt. bases vs low-rank  $L_2(Y, V)$  opt. bases
- Sparsity in  $V_n$ ? Links to compressed sensing? Inverse estimates?

## **References** I



#### Adcock, B. and Hansen, A. C. (2012).

A Generalized Sampling Theorem for Stable Reconstructions in Arbitrary Bases. Journal of Fourier Analysis and Applications, 18(4):685–716.



Binev, P., Cohen, A., Dahmen, W., DeVore, R., Petrova, G., and Wojtaszczyk, P. (2017). Data assimilation in reduced modeling.

SIAM/ASA Journal on Uncertainty Quantification, 5(1):1-29.



Greedy algorithms for optimal measurements selection in state estimation using reduced models.

submitted to SIAM/ASA Journal on Uncertainty Quantification.



Maday, Y., Patera, A. T., Penn, J. D., and Yano, M. (2015).

A parameterized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics.

International Journal for Numerical Methods in Engineering, 102(5):933-965.