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Our setting

We are motivated by elliptic parametric PDEs on a domain D C R? of the
general form
P(u,y) =0,

where u(x, y) is the solution, y € ) is a (high-dimensional / stochastic)
parameter. We typically write u(y).

In a wide variety of problems it is known that the solution map
y = uly)
is well-defined and smooth w.r.t. || - ||y, hence the solution manifold
M:={u(y) : yeY}cVv.

M is typically smooth and compact. V is our ambient Hilbert-space e.g.
Hg (D) with D C R,

Our goal:
Given that y is unknown (and likely unknowable), how do we approximate u
with minimal physical measurements?
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State estimation / data assimilation

In our setting we can take m independent measurements
bi(u), i=1,....,m u=u(a)

where the ¢; € V' are linear functionals on V.

We know what ¢; are, we know the representers ¢;(u) = (u,w;). Define the
measurement space
Wi, = span{wi, ...,wm}.

Hence from the ¢; we can find
w = PW,,,U e W,

So we retain a low dimensional information on the complex manifold M.

The £; represent real-world sensor / microphone response
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Reduced modelling - K" approximation set

In an ‘“offline” computation we find nested subspaces

VocViCc---CcV,C-, dim(V,)=n,

that cover M to withingg >¢e1 > --->0

McCK":={veV : dist(v,V,) <en}

i

W

E.g.

@ Sparse polynomials: u(y) = Z uyy” € Vi, :=span{u, : v € A,}.
veEN,

@ Reduced bases: V, :=span{u; : i =1,...,n} with u; = u(y;) snapshots.

@ Fourier / wavelet bases etc...
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Acoustic holography
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Linear reconstruction - from W,, to K"

A is our lifting from observation w = Py, u to best fit point in ". Evidently
we require that Py, A(w) = w hence A(w) € w + Wiy

Ky :={vek: PWmVZW}ZK:nﬂ(W—l-W,#)

which is an ellipsoid: intersection of the cylinder K" with affine space w + W

2

[ SO

p
F w m“

[Maday et al., 2015] : take

A(w) = argmin { dist(u, V) : u € K7, } .

A is linear. A(w) coincides with the center of the ellipsoid K}, hence is an
optimal recovery algorithm [Binev et al., 2017]
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Error estimates

The error of the optimal recovery algorithm is

En
— AP ="
sup fJu = A(Pw, ) 3V, W)

Based on the inf-sup constant (the “angle” between V, and Wp,)

o [[Pw, ]|
B(Vn, Wp) := inf o
( ) veVa vl

€ [o,1].

see also [Adcock and Hansen, 2012].

o B(Vh, Wn) =1if and only if V,, C Wp,.
o We require that n < m, otherwise 8(Vn, Wm) =0 (as V, N Wit # {0}).

@ In general 3(V,, W,,) and &, decrease as n grows... (hence stability issues)
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Topics of the talk

Optimal measurement selection
@ The sensors ¢; (or wj) are usually selected from a set D (the dictionary).
o If we are given a fixed budget m, what is the best choice?

o Task: Given given a fixed V,, for some goal * > 0 find w1, ...,wn from
D such that
B(Vay, Wa) > B° > 0,
with a number of measurements m > n as small possible.

Benchmark: m*(3) the smallest value of m > n such that such a selection
exists (sometimes theoretically available).

Nonlinear approximation/Data-driven reduced models.
Ongoing work with A. Cohen and O. Mula.

@ So far, V, is tailored for the whole manifold M.

e For given measurements, ¢1(u),...,¢m(u), can we find a reduced model
Vfata that performs better than V, for the reconstruction of u?
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Optimal measurement selection

Goal: Given 8" > 0 and given V,, find w1, ...,wm from D such that
B(Va, W) > B° >0,

with a number of measurements m > n as small possible.

Dictionary: We pick the w; which span W,, from a dictionary D of V, that is,
D=V and |w|=1, VweD.

The w may represent response characteristics of real-world sensors or
microphones

Examples of dictionaries: If V = H3(D) with D C R?
@ Pointwise evaluations: D = {{, : x € D}, £(f) = f(x) (when d =1)
@ Local averages: for a fixed € > 0, D. = {/. : x € D} where

L e(u) = /D u(y)ee(y — x)dy, @c(y) =€ % (X) , ¢ is a unit mollifier

€
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A greedy approach

Optimising Wy, simultaneously over D is not an option. So we go greedy.

[Binev et al., 2018]: greedy orthogonal matching pursuit (OMP) type
algorithms for selecting w; from D for the collective approximation of the
elements of V.

We define two algorithms. Assume V,, = span{¢1,...,¢n} is orthonormal.
Having selected {w1,...,wm} and with W, = span{ws, ... ,wm}, we define:

Collective OMP:

n

Wmil i= argmax{ Z () — Pw, ¢, w)]> = we D}

j=1
Worst-case OMP:
Vmi1 := argmax { ||v — Pw,v|: v € V,, |v] =1}

then

Wmil = argmax{\(vmﬂ — Pw, Vmi1,w)| : w € D}
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Convergence rates

Converge (loose statement) [Binev et al., 2018]

For the sequence of measurement spaces W, built with either greedy

algorithm, we have
c 1/2
B(Va, W) > [1 - ——
A )2 ( m + 1)

The constant C is more favorable in the collective OMP but in our numerical
experiments the worst case OMP performed better.

Proof ideas: We take any orthonormal basis ® = (¢1,...,¢n) of V, and
introduce the residual quantity

rmi= Y ll6i — P, il
i=1
which is such that 8(V,, W,,)? > 1 — r2. We can derive convergence rates for
(fi)mzy

We will satisfy 3(V,, W,,) > 3 as soon as rA<1-— (‘8*)2.
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Convergence rates

We introduce for any ® = (¢1,...,¢n) € V" the quantity

" 1/2
H¢||£1('D) = (I:Df; Z ( |Cw,i 2) . ¢i = Z Cuw,iW, i = 17 <o
’ 1

weD weD

i=

(similar to the typical approximation spaces A'(D), but for a basis)

Convergence of (rx) in the collective OMP [Binev et al., 2018]

Let ® = (¢1,...,¢n) be an orthonormal basis of V,, with finite [|||,1(p). Then,
we have for the collective OMP
) 2
rs] < H Hzl(D) )
~ kK2(m+1)

and for the worst case OMP,

”2H¢||§1(D)

2
< —.
fm = K2(m+1)
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Convergence rates

A few notes:

@ This can be extended to any basis W = (11, ...,¢,) of V,, can thus show
that it applies to all of V,

@ k is included because in practice we have a large finite but incomplete
dictionary Dy C D and some residual from the Galerkin projection etc...
so our theory is not for wm+1 = argmax(...) but in fact wmi1 satisfies
Collective OMP:

Z (¢ — Pw,,dj, wmi1)|> > K max { Z (¢ — Pw, ¢, ) : we D}
Jj=1 j=1

Wost-case OMP

[{Vmt+1 — Pw,, Vm+1, Wms1)| > K max{\(va — Pw, Vmi1,w)| : w € D}

James Ashton Nichols Greedy approximation with data assimilation




Numerical results - Fourier basis with point evaluation

o Ambient space: V = H;(]0, 1[)
o Reduced model: V, = Span{—sm knx)}n
k=1

o Dictionary of pointwise evaluation: D = {/, : x €]0, 1[}, £x(f) = f(x).
@ In this case we know equispaced evaluation points are optimal:

WP =Jw, : x€ L,...,L
m+1 m+1

But the greedy algo cannot choose equispaced points at every step.

BV, W) against m for n = 20 BV, W) against m for n = 40

—— Collective OMP W,
Random W,

0 2 50 75 100 125 150 175 200
m
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Numerical examples - Fourier basis with point evaluation - m(/3)

What is the minimum m to get B(V,, W) > 5% > 07 We see it is almost
linear with n.

m(n) for B* = 0.5 with n-incrementally constructed W, against n

300
] S S A | A —
200
'€
150
100
-~ rii(n), n-incremental W, Worst-case OMP
50 -~ i(n), n-incremental W, Collective OMP

= ri(n), Worst-case OMP
—— ri(n), Collective OMP

25 50 75 100 125 150 175

Open problem: can a greedy algorithm achieve some fixed lower bound 3 with
a number of measurements m(3) of comparable size as m*(3)?
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Our “fruit fly” example...

E.g.
—div(aVu) =1 on [0,1]
with ujpp = 0,

16
16
a=a(y)=1 +0.92ijpj, y=)el-1,1]".
Jj=1
We solve using FEM
Random field a on dyadic level 2 grid (4-by-4) FEM solution uy,(a(y))
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]16

We can produce a random sequence of y e [-1,1]"° for y =1,...,n then
calculate snapshots u(y(’)) and orthonormalise them to produce V,:

2% 62 ¢ $a
¢s [ ¢7 9
e\ v - »
& I’ 3
v
¢ $10 $11 $12




Local average measurement W,,, projection and WC-OMP

Using a dictionary D of local averages ¢, . for any xo € D we perform
WC-OMP greedy algo:

Recall
sup [|u — A(Pw,u)|| = 57 (Vi Wan) €
uekcn
Reduced basis V,, has smaller avg. projection error than a sinusoid basis...

Projection errors for various solutions of uy(a(y)) and average BV, W) against m for sinusoid and reduced bases with n = 20

10
Sinusois basis: projerbr single vec
K — Siusoid basis: average projecton error
0 Reduced basi: roj eror single vec
Reduced basi: average projection error
08
_ 06
3
< 3
v 5
20" ES
04
02
—— Sinusoid basis
§ Reduced basis
10 00
10 20 S 40 3 w & & 100 120 140
n m

...but slightly worse B(Wm, V)
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Data-driven greedy algorithms for V,,

Goal:
o Now W, and w = Py, u are given
@ We look for a good V), = span{¢;}7_; to reconstruct u.
@ The ¢; are sought in a set D C V e.g. set of snapshots from M, ideally
MCD
Greedy algorithms to build V,:

© Pure greedy (not data driven):
For k = 1, we choose
¢1 = argmax, cp||v||

and set V; := span{¢1}.
For n > 1, given V, = span{¢s, ..., ®n}, we look for

¢nr1 = argmax, . p||v — Py, v||

and set Vi1 := span{V,, dni1}.
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Data-driven greedy algorithms for V,,

@ Measurement based OMP: For n = 1, we choose

¢1 = argmax,cp <W7 V>
and set V4 := span{¢1}.
For n > 1, given V, = span{¢1, ..., ¢n}, we look for

PW v
Qny1 = argmax, cp <W — Pme v, W, 4||PWmVH >
m

and set Vi1 := span{V,, ¢nt1}.
@ Measurement based Projection Pursuit: For n = 1, we choose
¢1 = argmin,p||w — Py, (W)

and set V4 := span{¢1}.
For n > 1, given V, = span{és, ..., ®n}, we look for

$nt1 = argmin, e pl||w — Ppy, (v,orwl|
and set V41 := span{V,, ¢ni1}.
* Both these algorithms operate in R™ hence relatively cheap *
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Projection error on checkerboard elliptic problem

With m = 64 evenly spaced measurements in [0, 1]?

Projection error ||up — Py,un||H3, Wm: Reg grid, m=64, with CI

Ilun = Pu,unll average

: Reg grid Vn: Sinusoid basis

: Reg grid Vn: Reduced basis
: Reg grid Vn: Plain greedy

Wm: Reg grid Vn: PCA

—— Wm: Reg grid Vn: Meas based OMP
——— Wm: Reg grid Vn: Meas based PP
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Projection error on checkerboard elliptic problem

With m = 64 evenly spaced measurements in [0, 1]?

Projection error ||up — Py,un| |3, Wm: Reg grid, m=64, with best/worst cases

||lun = Py,un|| average and best/worst cases

Wm: Reg grid Vn: Reduced basis
~= Wm: Reg grid Vn: Plain greedy

0 10 20 30 40 50




Reconstruction error on checkerboard elliptic problem

With m = 64 evenly spaced measurements in [0, 1]?

Reconstruction error |[us — u | |3, Wm: Reg grid, m=64, with CI

|lup — u”|| average

Wm: Reg grid Vn: Sinusoid basis
Wm: Reg grid Vn: Reduced basis
~= Wm: Reg grid Vn: Plain greedy
~= Wm: Reg grid Vn: PCA
—— Wm: Reg grid Vn: Meas based OMP
——— Wm: Reg grid Vn: Meas based PP
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With m

B(Vn, Wi)

0.8

0.6

0.2

0.0

64 evenly spaced measurements in [0, 1]

inf-sup condition B(Wp,, V;,), Wp,: Reg grid, m=64

Wm: Reg grid Vn: PCA

?%x

Wm: Reg grid Vn: Sinusoid basis
Wm: Reg grid Vn: Reduced basis
Wm: Reg grid Vn: Plain greedy

Wm: Reg grid Vn: Meas based OMP
Wm: Reg grid Vn: Meas based PP
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Conclusions

Conclusions: In the well-known setting of state estimation with measurements
and reduced models we

@ For a given approximation space V,, perform measurement selection to
build W, with greedy algorithms.

e For W, and /¢i(u) given, we built data based reduced models. Better
accuracy than non data driven models in numerical experiments. Difficult
theoretical justification.

Future directions / open questions

o “Dictionary width”? Quantify deviation of greedy algorithm with optimal
choice in general cases.

@ Building Wiyn), Win(ns1), - - - parallel with Vi, Vii1, ... incrementally. Any
guarantees?

@ Non-linear measurements, sensor failure, noisy data.
o Greedy Lo(Y, V) opt. bases vs low-rank L2(Y, V) opt. bases

@ Sparsity in V,? Links to compressed sensing? Inverse estimates?
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