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Our setting

We are motivated by elliptic parametric PDEs on a domain D ⊂ Rd of the
general form

P(u, y) = 0,

where u(x , y) is the solution, y ∈ Y is a (high-dimensional / stochastic)
parameter. We typically write u(y).

In a wide variety of problems it is known that the solution map

y 7→ u(y)

is well-defined and smooth w.r.t. ‖ · ‖V , hence the solution manifold

M := {u(y) : y ∈ Y} ⊂ V.

M is typically smooth and compact. V is our ambient Hilbert-space e.g.
H1

0 (D) with D ⊂ Rd .

Our goal:
Given that y is unknown (and likely unknowable), how do we approximate u
with minimal physical measurements?
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State estimation / data assimilation

In our setting we can take m independent measurements

`i (u), i = 1, . . . ,m, u = u(a)

where the `i ∈ V ′ are linear functionals on V.

We know what `i are, we know the representers `i (u) = 〈u, ωi 〉. Define the
measurement space

Wm := span{ω1, . . . , ωm}.

Hence from the `i we can find

w = PWmu ∈Wm

So we retain a low dimensional information on the complex manifold M.

The `i represent real-world sensor / microphone response
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Reduced modelling - Kn approximation set

In an “offline” computation we find nested subspaces

V0 ⊂ V1 ⊂ · · · ⊂ Vn ⊂ · · · , dim(Vn) = n ,

that cover M to within ε0 > ε1 > · · · > 0

M⊂ Kn := {v ∈ V : dist(v ,Vn) ≤ εn}

K

ε Vn n

M

E.g.

Sparse polynomials: u(y) ≈
∑
ν∈Λn

uνy
ν ∈ Vn := span{uν : ν ∈ Λn}.

Reduced bases: Vn := span{ui : i = 1, . . . , n} with ui = u(yi ) snapshots.

Fourier / wavelet bases etc...
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Acoustic holography
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Linear reconstruction - from Wm to Kn

A is our lifting from observation w = PWmu to best fit point in Kn. Evidently
we require that PWmA(w) = w hence A(w) ∈ w + W⊥m

Kn
w := {v ∈ K : PWmv = w} = Kn ∩ (w + W⊥m )

which is an ellipsoid: intersection of the cylinder Kn with affine space w + W⊥m .

Wm

Vn

u

O

K

PWmu

[Maday et al., 2015] : take

A(w) = argmin {dist(u,Vn) : u ∈ Kn
w } .

A is linear. A(w) coincides with the center of the ellipsoid Kn
w , hence is an

optimal recovery algorithm [Binev et al., 2017]
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Error estimates

The error of the optimal recovery algorithm is

sup
u∈Kn

‖u − A(PWmu)‖ =
εn

β(Vn,Wm)

Based on the inf-sup constant (the “angle” between Vn and Wm)

β(Vn,Wm) := inf
v∈Vn

‖PWmv‖
‖v‖ ∈ [0, 1].

see also [Adcock and Hansen, 2012].

β(Vn,Wm) = 1 if and only if Vn ⊂Wm.

We require that n < m, otherwise β(Vn,Wm) = 0 (as Vn ∩W⊥m 6= {0}).

In general β(Vn,Wm) and εn decrease as n grows... (hence stability issues)
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Topics of the talk

Optimal measurement selection

The sensors `i (or ωi ) are usually selected from a set D (the dictionary).

If we are given a fixed budget m, what is the best choice?

Task: Given given a fixed Vn, for some goal β∗ > 0 find ω1, . . . , ωm from
D such that

β(Vn,Wm) ≥ β∗ > 0,

with a number of measurements m ≥ n as small possible.

Benchmark: m∗(β) the smallest value of m ≥ n such that such a selection
exists (sometimes theoretically available).

Nonlinear approximation/Data-driven reduced models.
Ongoing work with A. Cohen and O. Mula.

So far, Vn is tailored for the whole manifold M.

For given measurements, `1(u), . . . , `m(u), can we find a reduced model
V data

n that performs better than Vn for the reconstruction of u?
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Optimal measurement selection

Goal: Given β∗ > 0 and given Vn, find ω1, . . . , ωm from D such that

β(Vn,Wm) ≥ β∗ > 0,

with a number of measurements m ≥ n as small possible.

Dictionary: We pick the ωi which span Wm from a dictionary D of V, that is,

D = V and ‖ω‖ = 1, ∀ω ∈ D.

The ω may represent response characteristics of real-world sensors or
microphones

Examples of dictionaries: If V = H1
0 (D) with D ⊂ Rd

Pointwise evaluations: D = {`x : x ∈ D}, `x(f ) = f (x) (when d = 1)

Local averages: for a fixed ε > 0, Dε = {`x,ε : x ∈ D} where

`x,ε(u) :=

∫
D

u(y)ϕε(y − x)dy , ϕε(y) := ε−dϕ
(y
ε

)
, ϕ is a unit mollifier
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A greedy approach

Optimising Wm simultaneously over D is not an option. So we go greedy.

[Binev et al., 2018]: greedy orthogonal matching pursuit (OMP) type
algorithms for selecting ωi from D for the collective approximation of the
elements of Vn.

We define two algorithms. Assume Vn = span{φ1, . . . , φn} is orthonormal.
Having selected {ω1, . . . , ωm} and with Wm = span{ω1, . . . , ωm}, we define:

Collective OMP:

ωm+1 := argmax
{ n∑

j=1

|〈φj − PWmφj , ω〉|2 : ω ∈ D
}

Worst-case OMP:

vm+1 := argmax { ‖v − PWmv‖ : v ∈ Vn, ‖v‖ = 1 }

then
ωm+1 := argmax

{
|〈vm+1 − PWmvm+1, ω〉| : ω ∈ D

}
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Convergence rates

Converge (loose statement) [Binev et al., 2018]

For the sequence of measurement spaces Wm built with either greedy
algorithm, we have

β(Vn,Wm) ≥
(

1− C

m + 1

)1/2

The constant C is more favorable in the collective OMP but in our numerical
experiments the worst case OMP performed better.

Proof ideas: We take any orthonormal basis Φ = (φ1, . . . , φn) of Vn and
introduce the residual quantity

r 2
m :=

n∑
i=1

‖φi − PWmφi‖2.

which is such that β(Vn,Wm)2 ≥ 1− r 2
m. We can derive convergence rates for

(r 2
m)m≥1.

We will satisfy β(Vn,Wm) ≥ β∗ as soon as r 2
m ≤ 1− (β∗)2.
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Convergence rates

We introduce for any Φ = (φ1, . . . , φn) ∈ Vn the quantity

‖Φ‖`1(D) := inf
cω,i

∑
ω∈D

(
n∑

i=1

|cω,i |2
)1/2

: φi =
∑
ω∈D

cω,iω, i = 1, . . . , n

 .

(similar to the typical approximation spaces A1(D), but for a basis)

Convergence of (rk) in the collective OMP [Binev et al., 2018]

Let Φ = (φ1, . . . , φn) be an orthonormal basis of Vn with finite ‖Φ‖`1(D). Then,
we have for the collective OMP

r 2
m ≤

‖Φ‖2
`1(D)

κ2(m + 1)
.

and for the worst case OMP,

r 2
m ≤

n2‖Φ‖2
`1(D)

κ2(m + 1)
.
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Convergence rates

A few notes:

This can be extended to any basis Ψ = (ψ1, . . . , ψn) of Vn, can thus show
that it applies to all of Vn

κ is included because in practice we have a large finite but incomplete
dictionary DN ⊂ D and some residual from the Galerkin projection etc...
so our theory is not for ωm+1 = argmax(. . .) but in fact ωm+1 satisfies
Collective OMP:

n∑
j=1

|〈φj − PWmφj , ωm+1〉|2 ≥ κ max
{ n∑

j=1

|〈φj − PWmφj , ω〉|2 : ω ∈ D
}

Wost-case OMP

|〈vm+1 − PWmvm+1, ωm+1〉| ≥ κ max
{
|〈vm+1 − PWmvm+1, ω〉| : ω ∈ D

}
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Numerical results - Fourier basis with point evaluation

Ambient space: V = H1
0 (]0, 1[)

Reduced model: Vn = span
{√

2
πk

sin(kπx)
}n

k=1

Dictionary of pointwise evaluation: D = {`x : x ∈]0, 1[}, `x(f ) = f (x).

In this case we know equispaced evaluation points are optimal:

W opt
m =

{
ωx : x ∈

{
1

m + 1
, . . . ,

m

m + 1

}}
But the greedy algo cannot choose equispaced points at every step.
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Numerical examples - Fourier basis with point evaluation - m(β)

What is the minimum m to get β(Vn,Wm) > β∗ > 0? We see it is almost
linear with n.
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n
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m

m(n) for * = 0.5 with n-incrementally constructed Wm, against n

m(n), n-incremental Wm, Worst-case OMP
m(n), n-incremental Wm,  Collective OMP
m(n), Worst-case OMP
m(n), Collective OMP

Open problem: can a greedy algorithm achieve some fixed lower bound β with
a number of measurements m(β) of comparable size as m∗(β)?
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Our “fruit fly” example...

E.g.
−div(a∇u) = 1 on [0, 1]2

with u|∂D = 0,

a = a(y) = 1 + 0.9
16∑
j=1

yjχDj , y = (yj) ∈ [−1, 1]16.

We solve using FEM
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Reduced basis Vn

We can produce a random sequence of y (i) ∈ [−1, 1]16 for y = 1, . . . , n then
calculate snapshots u(y (i)) and orthonormalise them to produce Vn:

1 2 3 4

5 6 7 8

9 10 11 12
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Local average measurement Wm, projection and WC-OMP

Using a dictionary D of local averages `x0,ε for any x0 ∈ D we perform
WC-OMP greedy algo:

Recall
sup
u∈Kn

‖u − A(PWmu)‖ = β−1(Vn,Wm) εn

Reduced basis Vn has smaller avg. projection error than a sinusoid basis...
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...but slightly worse β(Wm,Vn)
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Data-driven greedy algorithms for Vn

Goal:

Now Wm and w = PWmu are given

We look for a good Vn = span{φi}ni=1 to reconstruct u.

The φi are sought in a set D ⊂ V e.g. set of snapshots from M, ideally
M⊆ D

Greedy algorithms to build Vn:

1 Pure greedy (not data driven):
For k = 1, we choose

φ1 = argmaxv∈D||v ||

and set V1 := span{φ1}.
For n > 1, given Vn = span{φ1, . . . , φn}, we look for

φn+1 = argmaxv∈D‖v − PVnv‖

and set VN+1 := span{Vn, φn+1}.
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Data-driven greedy algorithms for Vn

1 Measurement based OMP: For n = 1, we choose

φ1 = argmaxv∈D 〈w , v〉

and set V1 := span{φ1}.
For n > 1, given Vn = span{φ1, . . . , φn}, we look for

φn+1 = argmaxv∈D

〈
w − PPWmVnw ,

PWmv

‖PWmv‖

〉
and set Vn+1 := span{Vn, φn+1}.

2 Measurement based Projection Pursuit: For n = 1, we choose

φ1 = argminv∈D||w − PPWm (v)(w)||

and set V1 := span{φ1}.
For n > 1, given Vn = span{φ1, . . . , φn}, we look for

φn+1 = argminv∈D||w − PPWm (Vn⊕Rv)w ||

and set Vn+1 := span{Vn, φn+1}.

* Both these algorithms operate in Rm hence relatively cheap *
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Projection error on checkerboard elliptic problem

With m = 64 evenly spaced measurements in [0, 1]2
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Wm: Reg grid Vn: Plain greedy
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Wm: Reg grid Vn: Meas based PP
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Projection error on checkerboard elliptic problem

With m = 64 evenly spaced measurements in [0, 1]2
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0 , Wm: Reg grid, m=64, with best/worst cases
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Reconstruction error on checkerboard elliptic problem

With m = 64 evenly spaced measurements in [0, 1]2
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β(Vn,Wm)

With m = 64 evenly spaced measurements in [0, 1]2
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Conclusions

Conclusions: In the well-known setting of state estimation with measurements
and reduced models we

For a given approximation space Vn perform measurement selection to
build Wm with greedy algorithms.

For Wm and `i (u) given, we built data based reduced models. Better
accuracy than non data driven models in numerical experiments. Difficult
theoretical justification.

Future directions / open questions

“Dictionary width”? Quantify deviation of greedy algorithm with optimal
choice in general cases.

Building Wm(n),Wm(n+1), . . . parallel with Vn,Vn+1, . . . incrementally. Any
guarantees?

Non-linear measurements, sensor failure, noisy data.

Greedy L∞(Y ,V ) opt. bases vs low-rank L2(Y ,V ) opt. bases

Sparsity in Vn? Links to compressed sensing? Inverse estimates?
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