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The Recovery Problem

For X ⊆ Rd or Td def.
= Rd \ Zd, recover µ0 ∈M(X ) from m randomized linear observations

y ∈ Cm, where

yk = 〈ϕωk , µ0〉+ εk, where 〈ϕ, µ〉 def.
=

∫
X
ϕ(x)dµ(x) ∈ C.

(εk)mk=1 ∈ Cm accounts of noise or modelling errors,

(ω1, . . . , ωm) are i.i.d. according to some probability distribution Λ(ω) on ω ∈ Ω, and
for ω ∈ Ω, ϕω : X → C is a continuous function.

Typically, the measure of interest is of the form µ0 =
∑s
j=1 ajδxj with aj ∈ R, where aδx

denotes the Dirac at x ∈ X with amplitude a ∈ R (also called a ‘spike’).

This is the continuous analogue of the compressive sensing problem!

Example: In many imaging applications such as astronomy and electron microscopy, one
aims to recover the positions of point sources and their associated amplitudes, when
observing a selection of its Fourier coefficients, i.e.

X = [0, 1]d, ϕωk (x) = e2πiω
T
k x and ωk

iid∼ Unif({−fc, . . . , fc}).

First introduced by Tang et al (2013) for the 1D case as the compressive sensing off the
grid problem.
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Regression

Task: Given m training samples (ωk, yk)mk=1, construct a function to predict the values
yk ∈ R from the features ωk ∈ Ω using a continuous dictionary of functions ω 7→ ϕω(x)
parametrized by x ∈ X , i.e.

find µ such that yk ≈
∫
X ϕωk (x)dµ(x).

Example: Bach (2017) formulated the training of a neural network with a single hidden
layer made of an infinite number of neurons as a sparse spikes problem:

Ω = X = Rp, ϕω(x) = max(〈x, ω〉, 0).

If µ =
∑
j ajδxj , then ∫

X
ϕω(x)dµ(x) =

∑
j

aj max(〈xj , ω〉, 0)

The positions of µ represent the weights of the neural network.
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Sketching of a mixture of probability densities

Task: Fit a mixture of probability densities

ξ(t) =
∑
i

aiξxi (t)

=

∫
X
ξx(t)dµ0(x), where µ0 =

∑
j

aiδxi

on some domain T , (ξx)x∈X is a family of template distributions and ai > 0,
∑
i ai = 1.

Example: Gribonval et al (2017): ξx(t) ∼ σ−1e−(t−τ)2/(2σ2) with parameter space as
mean and standard deviation x = (τ, σ) ∈ X = R× R+. In practice:

No direct access to ξ, but n i.i.d. samples (t1, . . . , tn) ∈ T n drawn from ξ.

You do not record this (possibly huge) set of data, but compute “online” a small set
y ∈ Cm of m sketches against sketching functions θω(t):

∀k = 1, . . . ,m, yk
def.
=

1

n

n∑
j=1

θωk (tj) ≈
∫
T
θωk (t)ξ(t) =

∫
X

∫
T
θωk (t)ξx(t)dtdµ0(x).

So, we are back to solving our problem with ϕω(x)
def.
=
∫
T θω(t)ξx(t)dt.

Popular choice of sketching function over T = Rd: θω(t) = ei〈ω, t〉.
NB: ϕ·(x) is the characteristic function of ξx and often has closed form expression.
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The Beurling LASSO

Solve

min
µ∈M(X )

1

2m

m∑
k=1

|〈ϕωk , µ〉 − yk|
2 + λ |µ| (X )

where

|µ| (X )
def.
= sup

{
〈f, µ〉 ; f ∈ C(X ), ‖f‖∞ 6 1

}

Note that if µ =
∑
j ajδxj , then |µ| (X ) = ‖a‖1 =

∑
i |ai|.

There are other (non-variational) approaches, notably Prony-type methods (1795):
MUSIC (Schmidt, 1986), ESPRIT (Roy, 1987), Finite Rate of Innovation (Vetterli,
2002)... However, these are generally restricted to Fourier (or related) measurements,
and the extension to the multivariate setting is nontrivial.

There are efficient algorithms for solving this infinite dimensional minimization
problem, such as SDP approaches (Candès and Fernandez-Granda, 2014), and
Frank-Wolfe approaches (Bredies and Pikkarainen 2013, Boyd et al 2017).
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Background on the BLASSO

The BLASSO problem was initially proposed in De Castro & Gamboa (2012) and
Bredies & Pikkarainen (2013).

The first sharp analysis was by Candès & Fernandez-Granda (2014). In the case
of Fourier measurements on Td (d = 1, 2), they showed that, one can recover µ0

uniquely (with no noise) if ∆
def.
= mini 6=j |xi − xj | > C

fc
, given

{
µ̂0(k) ; |k|∞ 6 fc

}
.

I For positive spikes, no separation condition required, just fc > 2s: De Castro &
Gamboa (2012), Schiebinger et al (2015), Denoyelle et at (2017).

Robustness to noise under this separability condition: Candès & Fernandez-Granda
(2014), Azäis et al (2015), Duval and Peyré (2015). More on this later.

Tang et al (2013) extended the work of Candès & Fernandez-Granda to randomized
compressed measurements:

I Assume that ∆ > Cd
fc

and {sign(aj)} are drawn uniformly at random from the unit

circle.
I Then, with high probability, µ0 can be recovered exactly from m Fourier

frequencies, drawn uniformly at random from {−fc, . . . , fc} with

m = O(s log(fc) log(s)).
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This talk

Assume µ0 is approximately sparse, i.e. µ0 =
∑s
j=1 ajδxj + µ̃ with |µ̃| (X )� |µ| (X ).

Measurement operator is Φ : µ ∈M(X ) 7→ 1√
m

(〈ϕωk , µ〉)
m
k=1 ∈ Cm where ωk

iid∼ Λ.

Given y = Φµ0 + ε, consider

min
µ∈M(X )

1

2λ
‖Φµ− y‖2 + |µ| (X ) (Pλ(y))

Goal

We will remove the random signs assumption, and present a general theorem with stability
guarantees. The solution of (Pλ(y)) is stable with respect to inexact sparsity and inexact
measurements provided that m = O(s× Cd × log factors). The implicit constant depends
only on Φ.
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Dual certificates
Let X

def.
= {xj}sj=1. A discrete measure µ0 =

∑
i aiδxi is a solution of (P0(Φµ0)) if and only

if
D(X) =

{
η ∈ Im(Φ∗) ; ‖η‖L∞ 6 1, η(xi) = sign(ai), ∀i

}
6= ∅.

µ η

µ0 is the unique solution if there exists η ∈ D(X) such that |η(x)| < 1 for all x 6∈ X.

Burger & Osher, 2004: Existence of η = Φ∗p ∈ D(X)

=⇒ choosing λ ∼ ‖ε‖ def.
= δ, solutions µ of Pλ(y) are stable wrt the Bregman

“distance” :

d(µ, µ0)
def.
= |µ| (X )− |µ0| (X )− 〈η, µ− µ0〉 = O(δ + δ ‖p‖)

=⇒ ||µ| (X )− |µ0| (X )| = O(δ + δ ‖p‖).
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A stability result

For more precise control, look at how |η| decays from 1 near the points X
def.
= {xj}sj=1.

Theorem (P., Keriven, Peyré ’18, Variant of results by Candès & Fernandez-Granda ’14 and Azäis et al. ’13)

Suppose that there exists C0, C2 > 0, neighbourhoods Xnear
j around each point xj , with

X = X far ∪
⋃s
j=1 Xnear

j , and η ∈ Im(Φ∗) such that

∀i, η(xi) = sign(ai),

|η(x)| 6 1− C0 for all x ∈ X far,

∀i, ∀x ∈ Xnear
i , |η(x)| 6 1− C2 ‖x− xi‖2.

Then, for λ ∼ δ, any minimizer µ̂ of Pλ(y) satisfies

C0 |µ̂− µ0| (X far) + C2

s∑
j=1

∫
Xnear
i

‖x− xi‖2 d |µ̂− µ0| (x) . δ(1 + ‖p‖) + |µ0| (Xc).

Another interpretation: if µ̂, µ0 ∈M+(X ), then T 2
2 (µ̂, PN (µ̂)) = O(δ + |µ0| (T c)),

where PN (µ) =
∑s
j=1 ãjδxj with ãj = |µ| (Xnearj ), and T2 is the W2 partial optimal

transport distance. (c.f. Eftekhari et al 2018).

Under a slightly stronger condition, we have for each j,∣∣∣∣∫Xnearj
d(µ̂− µ0)(x)

∣∣∣∣ = O(δ + |µ0| (Xc)) which implies control on T 2
2 (µ̂, µ0).
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Support stability in the small noise regime

Duval & Peyré, 2015: One particular element of D(X) governs support stability.

The minimal norm certificate

η0 = Φ∗p0, p0 = argmin
{
‖p‖2 ; Φ∗p ∈ D(X)

}
.

If η0 is nondegenerate, that is

∀x 6∈ X, |η0(x)| < 1 and ∀i, sign(ai)∇2η0(xi) ≺ 0.

∃c0 such that for ‖ε‖ 6 c0λ and λ 6 c0, Pλ(y) has a unique solution which consists of
precisely s spikes and (â, x̂)→ (a, x) smoothly as ‖ε‖ → 0 with

‖x− x̂‖+ ‖a− â‖ = O(‖ε‖).

In certain cases, if η0 saturates at values other than X, then there is no support
stability. So, for support stability, η0 is the certificate to study.
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Precertificates

We need to find η = Φ∗p such that η(xi) = sign(ai) for all i and ‖η‖∞ 6 1. This is hard.

Vanishing derivatives precertificate

Consider instead: ηV = Φ∗pV with

pV = argmin {‖p‖ ; ∀i, (Φ∗p)(xi) = sign(ai) and ∇(Φ∗p)(xi) = 0} .

The constraint consists of (d+ 1)s equations and in fact,

ηV (x) =
N∑
i=1

αiK(xi, x) +
N∑
i=1

βi∂1K(xi, x),
(α
β

)
=

(
M0, M1

MT
1 M2

)−1 (sign(a)

0N

)
with correlation kernel K(x, x′) = 〈ϕ(x), ϕ(x′)〉,

M0 = (K(xi, xj))i,j , M1 = (∂1K(xi, xj))i,j , M2 = (∂1∂2K(xi, xj))i,j .

ηV is called the vanishing derivatives precertificate by Duval & Peyré (2015), coincides
with the minimal norm certificate if ‖ηV ‖∞ 6 1 and is necessarily a valid certificate if
there is support stability.

Typical strategy: compute some ηV based on a correlation kernel K, then check that it
is nondegenerate.
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Examples

Consider

ϕk =

(
1−

|k|
fc + 1

)
e2πik· and Φµ = (〈ϕk, µ〉)k=−fc,...,fc .

Solve

min
µ
|µ| (T) +

1

2λ
‖Φµ− y‖22

where y = Φµ0 + ε.

µ0 consists of 4 spikes.

Let fc = 10, λ = 10−3 and ‖ε‖ = 10−4 ‖y‖.

ηV is nondegenerate

Reconstruction ηV
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Methodology

What conditions should we impose on K and ϕω to guarantee the existence of a
nondegenerate dual certificate (and hence stable recovery) from O(s× log factors)
randomized measurements?

First observe that

K(x, x′) =
1

m

m∑
k=1

Re(ϕωk (x)ϕωk (x′))
m→∞−→ K(x, x′)

def.
=

∫
Re(ϕω(x)ϕω(x′))dΛ(ω).

What are the conditions on K such that ηV is nondegenerate in this limit case? This
ensure stability of the limit problem

min
µ
|µ| (X ) +

1

2λ

∥∥Φµ− y
∥∥2

L2(Λ)

where Φµ =
∫
ϕ(x)dµ(x) and ϕ(x) = ω 7→ ϕω(x).

How many measurements m are required such that ηV constructed from K is
nondegenerate?
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Admissible kernels

Recall:

ηV (x) =
s∑
i=1

αiK(xi, x) +
s∑
i=1

βi∂1K(xi, x).

K(x, ·)
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Recall:

ηV (x) =
s∑
i=1

αiK(xi, x) +
s∑
i=1

βi∂1K(xi, x).

K(x, ·)

Ultimately, we want to interpolate a sign pattern using the kernel K. Intuitively, locally
around xi, K(xi, ·) should be sufficiently ‘peaky’ and when |xi − x′| is large, K(xi, ·) should
be sufficiently small.
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ηV (x) =
s∑
i=1

αiK(xi, x) +
s∑
i=1

βi∂1K(xi, x).

K(x, ·)

Basically, if

K(xi, x) has a sufficient peak (negative definite Hessian) when ‖x− xi‖∗ 6 εnear,

and the 0th, 1st, 2nd derivatives of K(xi, ·) are sufficiently small wrt 1/smax for
‖xi − x‖∗ > ∆,

then ηV constructed for s 6 smax spikes, {xi}si=1, with mink 6=j ‖xk − xj‖∗ > ∆ will be
nondegenerate, with control on its Hessian inside B(xi, εnear).
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Admissible kernels

Order 0 Order 1 Order 2 (Order 3)

x = x′ K = 1
∣∣∣∂1,iK

∣∣∣ 6 `1

∣∣∣∂1,i∂2,jK
∣∣∣ 6 `2, i 6= j,∣∣∣∂1,i∂2,iK

∣∣∣ > v
n/a∥∥∥x − x′∥∥∥

∗
6 εnear n/a n/a eig

(
∇2

2K
)

6 −λ1

∥∥∥∇1∇
2
2K

∥∥∥ 6 `3∥∥∥x − x′∥∥∥
∗

> εnear

∣∣∣K∣∣∣ 6 `0

∥∥∥∇1K
∥∥∥ 6 `1 n/a n/a∥∥∥x − x′∥∥∥

∗
> ∆

2

∣∣∣K∣∣∣ 6 g0
smax

∥∥∥∇1K
∥∥∥ 6

g1
smax

∥∥∥∇2
2K

∥∥∥ 6
g2
smax

∥∥∥∇1∇
2
2K

∥∥∥ 6
g3
smax∥∥∥x − x′∥∥∥

∗
> ∆

∣∣∣K∣∣∣ 6 g0
smax

∣∣∣∂1,iK
∣∣∣ 6 g1

smax

∥∥∥∂1,i∇2K
∥∥∥
1

6
g2
smax

n/a

Theorem (P., Keriven, Peyré (2018))

Let u
def.
= (`1 + g1)/

√
v. Assume that for some δ, δ′ < 1,

v
−1

(d`2 + g2) 6 δ, g0 + du2

1−δ 6 δ
′

C̄0
def.
= 1−

(
`0+g0
1−δ′ + u

√
d√

v(1−δ)(1−δ′) · (c1 + e1)
)
> 0

C̄2
def.
=
(

1− δ′
1−δ′

)
· λ1 − g2

1−δ′ −
u
√
d√

v(1−δ)(1−δ′) · (`3 + g3) > 0

then for s 6 smax, a1, . . . , as ∈ R, x1, . . . , xs ∈ X s.t. minj 6=k ‖xj − xk‖∗ > ∆,

sign(ai)∇2
η̄V (x) ≺ −C̄2Id, ∀ ‖x− xi‖∗ 6 εnear and |η̄V (x)| < 1− C̄0, ∀x 6∈

⋃
i

B(xi, εnear).

This extends the main result of Candès and Fernandez-Granda (2014) to general kernels by
making explicit all the quantities which had to be bounded in their proof.
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Examples

The Fejér kernel on Td:

K(x, x′) =
d∏
i=1

κ(xi − x′i) where κ(t) =

(
sin((fc/2 + 1)πt)

(fc/2 + 1) sin(πt)

)4

=

fc∑
`=−fc

g(`)ei2π`t.

where g(`) > 0 is such that
∑
` g(`) = 1. This corresponds to discrete Fourier sampling with

Ω = {−fc, . . . , fc}d, ϕω(x) = ei2πω
T x and Λ(ω) =

∏d
i=1 g(ωi).

To ensure that K is an admissible kernel, take

εnear =
0.1
√
dfc

and ∆ =
5
√
d 4
√
smax

fc
and ‖·‖∗ = ‖·‖∞

with fc sufficiently large. Then, ηV is nondegenerate with C̄0 > 0.0056
d

and C̄2 >
0.0318f2

c
2

.

Remark

But, in the result of Candès and Fernandez-Granda, ∆ does not depend on s!?

The separation distance ∆ is the distance at which one ‘minimizes the inteference between
the spikes’. For d = 1, if xi’s are ∆-separated, there are at most Nd = 2 elements of {xj}j 6=i
such that ‖xj − xi‖ = ∆. As d increases, Nd grows exponentially in d.
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Examples

The Gaussian kernel on Rd:

K(x, x′) = exp

(
−
‖x− x′‖2

2σ2

)
.

This corresponds to continuous Fourier sampling with

Ω = Rd and ϕω(x) = eiω
T x and Λ = N (0, σ−2).

To ensure that K is an admissible kernel, Take

εnear = σ/
√

2 and ∆ = σ
√

10 log(smax) + 4 log(d) + 24 and ‖·‖∗ = ‖·‖2 .

Then C̄0 > 0.1712 and C̄2 > 0.08
2σ2 .
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The sampled problem

Assume that ηV associated to K is nondegenerate. How many samples m do we need such
that there exists (with high probability) a nondegenerate dual certificate in Im(Φ∗)?

In addition to the nondegeneracy parameters of ηV and properties of K, the amount of
subsampling is dependent on the Lipschitz constants of ϕω and its derivatives.

Lipschitz constants

In particular, assume that ϕω ∈ C2(X ) with uniformly bounded derivatives and Lipschitz
second derivative:

sup
ω∈Ω

sup
x∈X
‖∇rϕω(x)‖ 6 Lr, r ∈ {0, 1, 2}

and
sup
ω∈Ω

∥∥∇2ϕω(x)−∇2ϕω(x′)
∥∥ 6 L3

∥∥x− x′∥∥ .
Define L0,1

def.
=
√
L2

0 + L2
1/v, where v s.t.

∣∣∂1,i∂2,iK
∣∣ > v.
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Main result

Theorem (P., Keriven, Peyré (2018))

Let ρ > 0. Assume that the number of measurements m satisfies

m & s ·

L2
1 · log (sd) log

(
sd

ρ

)
+

∑
j∈{0,2}

L2
j ·
(

log

(
(sNj)

d

ρ

)
+ log

(
1

ρ

)
log((sNj)

d)

log(sd)

)
where

L2
0

def.
=

(
L2

0

(
d

C̄0
+

1

B2
0

)
+ L0L01

(√
d

C̄0
,

1

B0

)
· log

(
L0

C̄0
+
L2

C̄2

)

L2
1

def.
= d2L2

01

(
B2

0

C̄2
0

+
B2

2

C̄2
2

)

L2
2

def.
=

(
L2

2

(
d

C̄2
2

+
1

B2
2

)
+ L2L01

(√
d

C̄2
+

1

B2

))
· log

(
L0

C̄0
+
L2

C̄2

)
where B0, B2 depend only on K, and

N0
def.
=

dL01L1BX
C̄0

, N2
def.
=

dL01L3εnear

C̄2

Then, with probability at least 1− ρ, there exists a dual certificate η ∈ Im(Φ∗) which is

nondegenerate with parameters C2 = C̄2
4

and C0 = C̄0
4

.
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Examples
The Fejér kernel on Td:

K(x, x′) =
d∏
i=1

κ(xi − x′i) where κ(t) =

(
sin((fc/2 + 1)πt)

(fc/2 + 1) sin(πt)

)4

=

fc∑
`=−fc

g(`)ei2π`t.

where g(`) > 0 is such that
∑
` w` = 1. This corresponds to discrete Fourier sampling with

Ω = {−fc, . . . , fc}d, ϕω(x) = ei2πω
T x, Λ(ω) =

d∏
i=1

g(ωi).

To ensure that K is an admissible kernel, take

εnear =
0.1
√
dfc

and ∆ =
5
√
d 4
√
smax

fc
and ‖·‖∗ = ‖·‖∞

with fc sufficiently large. Then, C̄0 > 0.0056
d

and C̄2 >
0.0318f2

c
2

.

Number of measurements

Under the assumption that the underlying positions are separated by ∆, we have a
nondegenerate certificate when

m & s ·
(
d6 log(sd) log

(
sd

ρ

)
+ d4 log

(
1

ρ

)
log(dfc)

)
.
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Examples
The Gaussian kernel on Rd:

K(x, x′) = exp

(
−
‖x− x′‖2

2σ2

)
.

Corresponds to continuous Fourier sampling: ϕω(x) = eiω
T x, ω ∈ R and Λ = N (0, σ−2).

Admissible with C̄0 > 0.1712 and C̄2 > 0.08
2σ2 when

εnear = σ/
√

2 and ∆ = σ
√

10 log(smax) + 4 log(d) + 24 and ‖·‖∗ = ‖·‖2 .

Number of measurements

Problem: Since ω is unbounded, the derivatives of ϕω are not uniformly bounded.
Fix: Weight each ϕω by f(ω) and modify Λ to keep the same kernel K. (This simply slightly
modifies the way we sample). E.g.

Let f(ω) = 1
2

√∑3
`=0

‖w‖2`
γ2`

where γ` = Eω∼N (0,σ−2) ‖ω‖
`.

ϕω(x)
def.
= eiω

T x

f(ω)
and Λ = f(·)2N (0, σ−2).

Number of measurements:

m & s ·
(
d3 log(sd) log

(
sd

ρ

)
+ d4 log

(
1

ρ

)
log(sd) + d2 log

(
BX
σ

))
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Mixture model learning
Assume that data points t1, . . . , tn are drawn according to a mixture of Gaussians

s∑
i=1

aiN (xi, σ0Id),

where σ0 is given and the means {xi}si=1 are unknown. Choose any σ∗ > 0 and draw

ω1, . . . , ωm iid from N (0, σ2
∗Id). Let M∗

def.
= (1 + 2σ2

0σ
2
∗)
d/4.

1 Sketch the data: for k = 1, . . . ,m, compute yk = M∗
n

∑n
j=1 e

iωTk tj .

2 Solve (Pλ(y)) with ϕω(x) = M∗ exp
(
iωT x− 1

2
‖ω‖2

)
.

Then, with probability ρ,

δ
def.
= ‖Φµ0 − y‖2 6

M∗√
n

(
1 +

√
2 log(2ρ−1)

)
.

If x′is are ∆-separated with ∆ ∼ (σ0 + σ−1
∗ )

√
log(sd) and letting σ2 = σ2

0 + σ−2
∗ , then w.p.

> 1− ρ, there exists a nondegenerate dual certificate with

C0 = O(1) and C2 = O(σ−2) and εnear = O(σ)

provided that

m & sd2M2
∗

(
σ2 log(sd) log

(
sd

ρ

)
+ log

(
1

ρ

)(
log(MBX ) + σ4 log (sdM∗)

))
On the dependence on d: There is a tradeoff between the number of measurements and the separation distance ∆

in the choice of σ∗.

σ∗ & σ
−1
0 implies both m and n are O(ed), but ∆ = O(σ0

√
log(sd)).

σ2
∗ = 1/(σ2

0d) implies that m = poly(d) and n = O(d), but ∆ = O(σ0
√
d log(sd)).
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Assume that data points t1, . . . , tn are drawn according to a mixture of Gaussians

s∑
i=1

aiN (xi, σ0Id),

where σ0 is given and the means {xi}si=1 are unknown. Choose any σ∗ > 0 and draw

ω1, . . . , ωm iid from N (0, σ2
∗Id). Let M∗

def.
= (1 + 2σ2

0σ
2
∗)
d/4.

1 Sketch the data: for k = 1, . . . ,m, compute yk = M∗
n

∑n
j=1 e

iωTk tj .

2 Solve (Pλ(y)) with ϕω(x) = M∗ exp
(
iωT x− 1

2
‖ω‖2

)
.

Then, with probability ρ,

δ
def.
= ‖Φµ0 − y‖2 6

M∗√
n

(
1 +

√
2 log(2ρ−1)

)
.

If x′is are ∆-separated with ∆ ∼ (σ0 + σ−1
∗ )

√
log(sd) and letting σ2 = σ2

0 + σ−2
∗ , then w.p.

> 1− ρ, there exists a nondegenerate dual certificate with

C0 = O(1) and C2 = O(σ−2) and εnear = O(σ)

provided that

m & sd2M2
∗

(
σ2 log(sd) log

(
sd

ρ

)
+ log

(
1

ρ

)(
log(MBX ) + σ4 log (sdM∗)

))

On the dependence on d: There is a tradeoff between the number of measurements and the separation distance ∆
in the choice of σ∗.
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Remarks on the main theorem

The certificate is constructed via an infinite dimensional version of the golfing scheme
(initially introduced by Gross (2009) for the problem of matrix completion).

I Although it is a dual certificate with some of the nice properties of the limiting
minimal norm certificate, it is not the minimal norm certificate. So, stability and
uniqueness guarantees, but no support stability.

Following the work of Tang et al, by bounding the variations of the limiting minimal
norm certificate η0, we can show that the minimal norm certificate η0 for Φ is
nondegenerate if

m = O
(
s · poly(d) · log

(
sd

ρ

)
log

(
(sN)d

ρ

))
.

I This requires a random signs assumption.
I Without the random signs assumption, we can guarantee nondegeneracy of η0 with

m = O
(
s2 · poly(d) · log

(
(sN)d

ρ

))
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Ideas from compressed sensing

Let Φ ∈ Cm×N . Consider the finite dimensional CS problem

min
x
‖x‖1 +

1

2λ
‖Φx− y‖22

If y = Φx0 + ε, To guarantee a solution which is stable to noisy measurements, we need to
find Im(Φ∗) such

vj = sign(x0
j ), ∀j ∈ Supp(x0) and |vj | < 1, ∀j 6∈ Supp(x0).

It is sufficient to construct an approximate certificate:

Theorem (Gross (2011); Candès and Plan (2011))

Let T index the largest s entries of
∣∣x0
∣∣. Suppose that there exists v = Φ∗p such that∥∥vT − sign(x0

T )
∥∥

2
6

1

4
and ‖vTc‖∞ 6

1

4

and ∥∥(Φ∗TΦT )−1
∥∥

2→2
6 2 and max

i∈Tc

∥∥Φ∗TΦ{i}
∥∥

2
6 1,

then one can guarantee that
∥∥x̂− x0

∥∥
2
. (1 + ‖p‖2) ‖ε‖2 + σ1(x0)s provided that λ ∼ δ.
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Alternative proof: ∃ inexact certificate =⇒ ∃ dual certificate

Theorem (Gross (2011); Candès and Plan (2011))

Let T index the largest s entries of
∣∣x0
∣∣. Suppose that there exists v = Φ∗p such that∥∥vT − sign(x0

T )
∥∥

2
6

1

4
and ‖vTc‖∞ 6

1

4

and ∥∥(Φ∗TΦT )−1
∥∥

2→2
6 2 and max

i∈Tc

∥∥Φ∗TΦ{i}
∥∥

2
6 1,

then one can guarantee that
∥∥x̂− x0

∥∥
2
. (1 + ‖p‖2) ‖ε‖2 + σ1(x0)s provided that λ ∼ δ.

Proof:

Observe that u
def.
= v + ṽ where

ṽ
def.
= Φ∗ΦT (Φ∗TΦT )−1e and e = sign(x0

T )− vT ,

satisfies uT = sign(x0
T ) and

‖uTc‖∞ 6 ‖vTc‖∞ +
∥∥Φ∗TcΦT (Φ∗TΦT )−1e

∥∥
∞

6
1

4
+ ‖Φ∗TcΦT ‖2→∞

∥∥(Φ∗TΦT )−1
∥∥

2→2
‖e‖2 6

3

4
.
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Outline of the proof of our main theorem

Define Ψ : η ∈ C1(X ) 7→
(
η(x1), . . . , η(xs),∇η(x1)T , . . . ,∇η(xs)T

)T ∈ Cs(d+1).

1 Construct (using a golfing scheme) η̃ such that

I

∥∥∥Ψη̃ −
(sign(a)

0sd

)∥∥∥
D,2

6 cmin{C̄0, C̄2}

I For all x ∈ X fargrid, |η̃(x)| 6 1− 3C̄0
8

I For all x ∈ Xneargrid , sign(aj)∇2η̃(x) ≺ − 3C̄2
8

Id.

2 Fix this function to obtain a certificate which is nondegenerate when evaluated on the
finite grid.

I Ψη =
(sign(a)

0sd

)
I For all x ∈ X fargrid, |η(x)| 6 1− C̄0

4

I For all x ∈ Xneargrid (j), sign(aj)∇2η(x) ≺ − C̄2
4

Id.

3 Extend the nondegeneracy properties to the entire domain via covering arguments.
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Summary

We have

discussed the role of dual certificates in analysing the BLASSO.

presented conditions under which there exists nondegenerate dual certificate when the
number of samples is linear with sparsity up to log factors. This gives sharp estimates
in the cases of Fourier sampling in low dimensions.

Ongoing work...

Further analysis of our conditions for a comprehensive understanding of more complex
sampling operators, e.g Gaussian mixtures with varying standard deviation.

A full understanding of the impact of dimension is still missing.

Thanks for your attention.

A Dual Certificates Analysis of Compressive Off-the-Grid Recovery (arXiv:1802.08464)
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