Integration and L₂-Approximation of Functions of Infinitely Many Variables

Klaus Ritter

TU Kaiserslautern

Joint work with

M. Gnewuch, M. Hefter, A. Hinrichs, G. W. Wasilkowski

Introduction

Computational problem: For a class *F* of functions

 $f: E \to \mathbb{K},$

integrate/approximate f based on a finite number of function values.

In this talk

- ► $E = D^{\mathbb{N}}$ with $D \subseteq \mathbb{R}$, i.e., f depends on the variables $y_1, y_2, \dots \in D$,
- increasing smoothness w.r.t. these variables,
- worst case analysis in a Hilbert space setting.

Introduction

Computational problem: For a class *F* of functions

 $f: E \to \mathbb{K},$

integrate/approximate f based on a finite number of function values.

In this talk

- ► $E = D^{\mathbb{N}}$ with $D \subseteq \mathbb{R}$, i.e., f depends on the variables $y_1, y_2, \dots \in D$,
- increasing smoothness w.r.t. these variables,
- worst case analysis in a Hilbert space setting.

Integration and approximation of functions on $D^{\mathbb{N}}$

Hickernell, Müller-Gronbach, Niu, R (2010), Kuo, Sloan, Wasilkowski, Woźniakowski (2010), Baldeaux, Dick, Dũng, Gilbert, Gnewuch, Griebel, Hefter, Hinrichs, Nuyens, Oswald, Plaskota, ...

1

Random (parametric) PDEs

. . .

Introduction

Computational problem: For a class *F* of functions

 $f: E \to \mathbb{K},$

integrate/approximate f based on a finite number of function values.

In this talk

- ► $E = D^{\mathbb{N}}$ with $D \subseteq \mathbb{R}$, i.e., f depends on the variables $y_1, y_2, \dots \in D$,
- increasing smoothness w.r.t. these variables,
- worst case analysis in a Hilbert space setting.

OUTLINE

- I. The Function Spaces
- II. Algorithms, Error, and Cost
- III. Results and Remarks
- IV. Embeddings and Optimal Algorithms

~Dirk's talk this afternoon

I. The Function Spaces

Consider

- ▶ the trigonometric basis $(e_{\nu})_{\nu \in \mathbb{Z}}$ of $L_2([0,1])$,
- smoothness parameters $0 < r_1 \le r_2 \le \ldots$

For $j \in \mathbb{N}$ and $\nu \in \mathbb{Z}$ we define **Fourier weights**

$$\alpha_{\nu,j} = (1+|\nu|)^{r_j}$$

and the corresponding scale of Korobov spaces

$$H_{j} = \{f \in L_{2}([0,1]) : \sum_{\nu \in \mathbb{Z}} \alpha_{\nu,j} \cdot |\langle f, e_{\nu} \rangle_{L_{2}([0,1])}|^{2} < \infty\},$$

$$\langle f, g \rangle_{H_{j}} = \sum_{\nu \in \mathbb{Z}} \alpha_{\nu,j} \cdot \langle f, e_{\nu} \rangle_{L_{2}([0,1])} \cdot \langle e_{\nu}, g \rangle_{L_{2}([0,1])}.$$

I. The Function Spaces

Consider

- ▶ the trigonometric basis $(e_{\nu})_{\nu \in \mathbb{Z}}$ of $L_2([0,1])$,
- smoothness parameters $0 < r_1 \le r_2 \le \ldots$

For $j \in \mathbb{N}$ and $\nu \in \mathbb{Z}$ we define **Fourier weights**

$$\alpha_{\nu,j} = (1+|\nu|)^{r_j}$$

and the corresponding scale of Korobov spaces

$$H_{j} = \{f \in L_{2}([0,1]) : \sum_{\nu \in \mathbb{Z}} \alpha_{\nu,j} \cdot |\langle f, e_{\nu} \rangle_{L_{2}([0,1])}|^{2} < \infty \},$$

$$\langle f, g \rangle_{H_{j}} = \sum_{\nu \in \mathbb{Z}} \alpha_{\nu,j} \cdot \langle f, e_{\nu} \rangle_{L_{2}([0,1])} \cdot \langle e_{\nu}, g \rangle_{L_{2}([0,1])}.$$

Remark $H_j \leftrightarrow H_{j+1}$ compact $\Leftrightarrow r_j < r_{j+1}$.

I. The Function Spaces

Consider

- ▶ the trigonometric basis $(e_{\nu})_{\nu \in \mathbb{Z}}$ of $L_2([0,1])$,
- smoothness parameters $0 < r_1 \le r_2 \le \ldots$

For $j \in \mathbb{N}$ and $\nu \in \mathbb{Z}$ we define **Fourier weights**

$$\alpha_{\nu,j} = (1+|\nu|)^{r_j}$$

and the corresponding scale of Korobov spaces

$$H_{j} = \{f \in L_{2}([0,1]) : \sum_{\nu \in \mathbb{Z}} \alpha_{\nu,j} \cdot |\langle f, e_{\nu} \rangle_{L_{2}([0,1])}|^{2} < \infty\},$$

$$\langle f, g \rangle_{H_{j}} = \sum_{\nu \in \mathbb{Z}} \alpha_{\nu,j} \cdot \langle f, e_{\nu} \rangle_{L_{2}([0,1])} \cdot \langle e_{\nu}, g \rangle_{L_{2}([0,1])}.$$

Remark $H_j \leftrightarrow H_{j+1}$ compact $\Leftrightarrow r_j < r_{j+1}$. Finally, based on the unit vectors $e_0 = 1$,

$$H = \bigotimes_{j \in \mathbb{N}} H_j$$

Consider $L_2([0,1]^{\mathbb{N}})$ w.r.t the product μ of the uniform distribution μ_0 on [0,1]. Put

$$arrho = \liminf_{j o \infty} rac{r_j}{\ln(j)} \in [0,\infty].$$

Lemma $\varrho > 0 \Rightarrow H \hookrightarrow L_2([0,1]^{\mathbb{N}})$ compact.

Consider $L_2([0,1]^{\mathbb{N}})$ w.r.t the product μ of the uniform distribution μ_0 on [0,1]. Put

$$\varrho = \liminf_{j \to \infty} \frac{r_j}{\ln(j)} \in [0,\infty].$$

Lemma $\varrho > 0 \Rightarrow H \hookrightarrow L_2([0,1]^{\mathbb{N}})$ compact.

A Hilbert space F is a RKHS on a domain $E \neq \emptyset$ if

►
$$F \subseteq \mathbb{K}^{E}$$
,

• $F \to \mathbb{K} : f \mapsto f(\mathbf{x})$ is continuous for every $\mathbf{x} \in E$.

Consider $L_2([0,1]^{\mathbb{N}})$ w.r.t the product μ of the uniform distribution μ_0 on [0,1]. Put

$$\varrho = \liminf_{j \to \infty} \frac{r_j}{\ln(j)} \in [0,\infty].$$

Lemma $\rho > 0 \Rightarrow H \hookrightarrow L_2([0,1]^{\mathbb{N}})$ compact.

A Hilbert space F is a RKHS on a domain $E \neq \emptyset$ if

►
$$F \subseteq \mathbb{K}^{E}$$
,

• $F \to \mathbb{K} \colon f \mapsto f(\mathbf{x})$ is continuous for every $\mathbf{x} \in E$.

Lemma H_j RKHS on $[0,1] \Leftrightarrow r_j > 1$.

Lemma

 $(r_1 > 1 \land \varrho \ln(2) > 1) \Rightarrow H \mathsf{RKHS} \text{ on } [0,1]^{\mathbb{N}} \Rightarrow (r_1 > 1 \land \varrho \ln(2) \ge 1).$

II. Algorithms, Error, and Cost

Briefly consider

$$H^d = \bigotimes_{j=1}^d H_j.$$

Common assumption, if H^d is a RKHS:

• Evaluation of $f \in H^d$ at any $\mathbf{x} \in [0, 1]^d$ at cost one.

II. Algorithms, Error, and Cost

Briefly consider

$$\mathcal{H}^d = \bigotimes_{j=1}^d \mathcal{H}_j.$$

Common assumption, if H^d is a RKHS:

• Evaluation of $f \in H^d$ at any $\mathbf{x} \in [0, 1]^d$ at cost one.

Actually, we consider

$$H = \bigotimes_{j \in \mathbb{N}} H_j.$$

Assumption, if *H* is a RKHS:

• Fix $a \in [0,1]$. Evaluation of $f \in H$ at any $\mathbf{x} \in [0,1]^{\mathbb{N}}$ with

$$\mathsf{active}(\mathsf{x}) = \big| \{ j \in \mathbb{N} : \mathsf{x}_j \neq \mathsf{a} \} \big| < \infty$$

at cost $active(\mathbf{x})$.

II. Algorithms, Error, and Cost

Briefly consider

$$\mathcal{H}^d = \bigotimes_{j=1}^d \mathcal{H}_j.$$

Common assumption, if H^d is a RKHS:

• Evaluation of $f \in H^d$ at any $\mathbf{x} \in [0, 1]^d$ at cost one.

Actually, we consider

$$H = \bigotimes_{j \in \mathbb{N}} H_j.$$

Assumption, if *H* is a RKHS:

Fix $a \in [0,1]$. Evaluation of $f \in H$ at any $\mathbf{x} \in [0,1]^{\mathbb{N}}$ with

$$\operatorname{active}(\mathbf{x}) = \left| \{ j \in \mathbb{N} : \mathbf{x}_j \neq a \} \right| < \infty$$

at cost active(**x**). See *Kuo*, *Sloan*, *Wasilkowski*, *Woźniakowski* (2010), and cf. *Creutzig*, *Dereich*, *Müller-Gronbach*, *R* (2009).

Let
$$G = \mathbb{R}$$
 or $G = L_2([0,1]^{\mathbb{N}})$, and let $S : H \to G$ be given by
 $S(f) = \int_{[0,1]^{\mathbb{N}}} f \, d\mu$ or $S(f) = f$.

Let
$$G = \mathbb{R}$$
 or $G = L_2([0,1]^{\mathbb{N}})$, and let $S : H \to G$ be given by
 $S(f) = \int_{[0,1]^{\mathbb{N}}} f \, d\mu$ or $S(f) = f$.

$$A(f) = \sum_{i=1}^m f(\mathbf{x}_i) \cdot g_i$$

with $g_i \in G$ and $\mathbf{x}_i \in [0, 1]^{\mathbb{N}}$.

Let
$$G = \mathbb{R}$$
 or $G = L_2([0,1]^{\mathbb{N}})$, and let $S : H \to G$ be given by
 $S(f) = \int_{[0,1]^{\mathbb{N}}} f \, d\mu$ or $S(f) = f$.

$$A(f) = \sum_{i=1}^{m} f(\mathbf{x}_i) \cdot g_i$$

with $g_i \in G$ and $\mathbf{x}_i \in [0,1]^{\mathbb{N}}$. Error and cost

$$\operatorname{error}(A) = \sup\{\|S(f) - A(f)\|_{G} : f \in H, \|f\|_{H} \le 1\},\\ \operatorname{cost}(A) = \sum_{i=1}^{m} \operatorname{active}(\mathbf{x}_{i}).$$

Let
$$G = \mathbb{R}$$
 or $G = L_2([0,1]^{\mathbb{N}})$, and let $S : H \to G$ be given by
 $S(f) = \int_{[0,1]^{\mathbb{N}}} f \, d\mu$ or $S(f) = f$.

$$A(f) = \sum_{i=1}^m f(\mathbf{x}_i) \cdot g_i$$

with $g_i \in G$ and $\mathbf{x}_i \in [0, 1]^{\mathbb{N}}$. Error and cost

$$\operatorname{error}(A) = \sup\{\|S(f) - A(f)\|_{G} : f \in H, \|f\|_{H} \le 1\},\\ \operatorname{cost}(A) = \sum_{i=1}^{m} \operatorname{active}(\mathbf{x}_{i}).$$

Key quantity: n-th minimal error

$$e_n = \inf\{\operatorname{error}(A) : \operatorname{cost}(A) \le n\}.$$

Let
$$G = \mathbb{R}$$
 or $G = L_2([0,1]^{\mathbb{N}})$, and let $S : H \to G$ be given by
 $S(f) = \int_{[0,1]^{\mathbb{N}}} f \, d\mu$ or $S(f) = f$.

$$A(f) = \sum_{i=1}^m f(\mathbf{x}_i) \cdot g_i$$

with $g_i \in G$ and $\mathbf{x}_i \in [0, 1]^{\mathbb{N}}$. Error and cost

$$\operatorname{error}(A) = \sup\{\|S(f) - A(f)\|_{G} : f \in H, \|f\|_{H} \le 1\},\\ \operatorname{cost}(A) = \sum_{i=1}^{m} \operatorname{active}(\mathbf{x}_{i}).$$

Key quantity: *n*-th minimal error

$$e_n = \inf\{\operatorname{error}(A) : \operatorname{cost}(A) \le n\}.$$

Questions

- Order of convergence of the minimal errors e_n?
- ▶ Optimal choice of the sampling points **x**₁,..., **x**_n?

III. Results and Remarks

Recall that

$$\varrho = \liminf_{j \to \infty} \frac{r_j}{\ln(j)}.$$

Put

$$s=\frac{1}{2}\cdot\min(r_1,\,\varrho\ln(2)-1).$$

III. Results and Remarks

Recall that

$$\varrho = \liminf_{j \to \infty} \frac{r_j}{\ln(j)}.$$

Put

$$s=\frac{1}{2}\cdot\min(r_1,\,\varrho\ln(2)-1).$$

Theorem Assume that $r_1 > 1$ and $\rho \ln(2) > 1$. Then the minimal errors e_n for integration and L_2 -approximation satisfy

$$\forall \varepsilon > 0 \exists c_1, c_2 > 0 \ \forall n \in \mathbb{N}:$$

 $c_1 n^{-(s+\varepsilon)} \le e_n \le c_2 n^{-(s-\varepsilon)}.$

III. Results and Remarks

Recall that

$$\varrho = \liminf_{j \to \infty} \frac{r_j}{\ln(j)}.$$

Put

$$s=\frac{1}{2}\cdot\min(r_1,\,\varrho\ln(2)-1).$$

Theorem Assume that $r_1 > 1$ and $\rho \ln(2) > 1$. Then the minimal errors e_n for integration and L_2 -approximation satisfy

$$\forall \varepsilon > 0 \exists c_1, c_2 > 0 \ \forall n \in \mathbb{N}:$$

 $c_1 n^{-(s+\varepsilon)} \le e_n \le c_2 n^{-(s-\varepsilon)}.$

Remark For L₂-approximation using linear functionals at cost one

$$s=\frac{1}{2}\cdot\min(r_1,\,\varrho\ln(2)).$$

See Papageorgiou, Woźniakowski (2010), Siedlecki (2014), Dũng, Griebel (2016), Dũng, Griebel, Huy, Rieger (2018).

- a probability measure μ_0 on any set $D \neq \emptyset$,
- ▶ an orthonormal system $(e_{\nu})_{\nu \in \mathbb{N}_0}$ in $L_2(D)$ with $e_0 = 1$,
- Fourier weights $\alpha_{\nu,j}$ such that, for $\nu, j \in \mathbb{N}$,

$$\alpha_{1,1} > 1 = \alpha_{0,j}$$

and

$$\alpha_{\nu,j} \geq \max(\alpha_{\nu,1}, \alpha_{1,j}).$$

- ▶ a probability measure μ_0 on any set $D \neq \emptyset$,
- ▶ an orthonormal system $(e_{\nu})_{\nu \in \mathbb{N}_0}$ in $L_2(D)$ with $e_0 = 1$,
- Fourier weights $\alpha_{\nu,j}$ such that, for $\nu, j \in \mathbb{N}$,

$$\alpha_{1,1} > 1 = \alpha_{0,j}$$

and

$$\alpha_{\nu,j} \geq \max(\alpha_{\nu,1}, \alpha_{1,j}).$$

Example $\alpha_{\nu,j} = \exp(\nu^{b_j})$ with $0 < b_1 \le b_2 \le \dots$ Cf. Irrgeher, Kritzer, Pillichshammer, Woźniakowski (2016).

- ▶ a probability measure μ_0 on any set $D \neq \emptyset$,
- ▶ an orthonormal system $(e_{\nu})_{\nu \in \mathbb{N}_0}$ in $L_2(D)$ with $e_0 = 1$,
- Fourier weights $\alpha_{\nu,j}$ such that, for $\nu, j \in \mathbb{N}$,

$$\alpha_{1,1} > 1 = \alpha_{0,j}$$

and

$$\alpha_{\nu,j} \geq \max(\alpha_{\nu,1}, \alpha_{1,j}).$$

Example $\alpha_{\nu,j} = \exp(\nu^{b_j})$ with $0 < b_1 \le b_2 \le \dots$ Cf. Irrgeher, Kritzer, Pillichshammer, Woźniakowski (2016).

Example

▶ Walsh, Haar, Jacobi (Legendre) basis \rightsquigarrow domain $[a, b]^{\mathbb{N}}$.

- ▶ a probability measure μ_0 on any set $D \neq \emptyset$,
- ▶ an orthonormal system $(e_{\nu})_{\nu \in \mathbb{N}_0}$ in $L_2(D)$ with $e_0 = 1$,
- Fourier weights $\alpha_{\nu,j}$ such that, for $\nu, j \in \mathbb{N}$,

$$\alpha_{1,1} > 1 = \alpha_{0,j}$$

and

$$\alpha_{\nu,j} \geq \max(\alpha_{\nu,1}, \alpha_{1,j}).$$

Example $\alpha_{\nu,j} = \exp(\nu^{b_j})$ with $0 < b_1 \le b_2 \le \dots$ Cf. Irrgeher, Kritzer, Pillichshammer, Woźniakowski (2016).

Example

- ▶ Walsh, Haar, Jacobi (Legendre) basis \rightsquigarrow domain $[a, b]^{\mathbb{N}}$.
- Hermite basis → domain X ⊊ ℝ^N.
 Cf. Gnewuch, Mayer, R (2014).

- ▶ a probability measure μ_0 on any set $D \neq \emptyset$,
- ▶ an orthonormal system $(e_{\nu})_{\nu \in \mathbb{N}_0}$ in $L_2(D)$ with $e_0 = 1$,
- Fourier weights $\alpha_{\nu,j}$ such that, for $\nu, j \in \mathbb{N}$,

$$\alpha_{1,1} > 1 = \alpha_{0,j}$$

and

$$\alpha_{\nu,j} \geq \max(\alpha_{\nu,1}, \alpha_{1,j}).$$

Example $\alpha_{\nu,j} = \exp(\nu^{b_j})$ with $0 < b_1 \le b_2 \le \dots$ Cf. Irrgeher, Kritzer, Pillichshammer, Woźniakowski (2016).

Example

- ▶ Walsh, Haar, Jacobi (Legendre) basis \rightsquigarrow domain $[a, b]^{\mathbb{N}}$.
- Hermite basis → domain X ⊊ ℝ^N.
 Cf. Gnewuch, Mayer, R (2014).
- Gaussian kernels with increasing shape parameters.

Notation

- H(K) RKHS with reproducing kernel K,
- **u** any finite subset of \mathbb{N} ,
- μ_0 uniform distribution on [0, 1],
- μ product of μ_0 on $[0,1]^{\mathbb{N}}$, $\mu_{\mathbf{u}}$ product of μ_0 on $[0,1]^{\mathbf{u}}$.

Notation

- H(K) RKHS with reproducing kernel K,
- **u** any finite subset of \mathbb{N} ,
- μ_0 uniform distribution on [0, 1],
- μ product of μ_0 on $[0,1]^{\mathbb{N}}$, $\mu_{\mathbf{u}}$ product of μ_0 on $[0,1]^{\mathbf{u}}$.

We have H = H(K) with

$$\mathcal{K}(\mathbf{x}, \mathbf{y}) = \prod_{j \in \mathbb{N}} \left(1 + \underbrace{\sum_{\nu \neq 0} \alpha_{\nu, j}^{-1} \cdot e_{\nu}(x_j) \cdot \overline{e_{\nu}(y_j)}}_{=k_j(x_j, y_j)} \right)$$

Notation

- H(K) RKHS with reproducing kernel K,
- **u** any finite subset of \mathbb{N} ,
- μ_0 uniform distribution on [0, 1],
- μ product of μ_0 on $[0,1]^{\mathbb{N}}$, $\mu_{\mathbf{u}}$ product of μ_0 on $[0,1]^{\mathbf{u}}$.

We have H = H(K) with

$$\mathcal{K}(\mathbf{x},\mathbf{y}) = \prod_{j \in \mathbb{N}} \left(1 + \underbrace{\sum_{\nu \neq 0} \alpha_{\nu,j}^{-1} \cdot e_{\nu}(x_j) \cdot \overline{e_{\nu}(y_j)}}_{=k_j(x_j,y_j)} \right) = \left(\sum_{\mathbf{u}} \underbrace{\bigotimes_{j \in \mathbf{u}} k_j}_{=k_{\mathbf{u}}} \right) (\mathbf{x},\mathbf{y}).$$

Notation

- H(K) RKHS with reproducing kernel K,
- **u** any finite subset of \mathbb{N} ,
- μ_0 uniform distribution on [0, 1],
- μ product of μ_0 on $[0,1]^{\mathbb{N}}$, $\mu_{\mathbf{u}}$ product of μ_0 on $[0,1]^{\mathbf{u}}$.

We have H = H(K) with

$$\mathcal{K}(\mathbf{x},\mathbf{y}) = \prod_{j \in \mathbb{N}} \left(1 + \underbrace{\sum_{\nu \neq 0} \alpha_{\nu,j}^{-1} \cdot e_{\nu}(x_j) \cdot \overline{e_{\nu}(y_j)}}_{=k_j(x_j,y_j)} \right) = \left(\sum_{\mathbf{u}} \underbrace{\bigotimes_{j \in \mathbf{u}} k_j}_{=k_{\mathbf{u}}} \right) (\mathbf{x},\mathbf{y}).$$

Since $H(1) \perp H(k_j)$ in $H(1 + k_j)$, we have the orthogonal decomposition $H(K) = \bigoplus_{\mathbf{u}} H(k_{\mathbf{u}}).$

Notation

- H(K) RKHS with reproducing kernel K,
- **u** any finite subset of \mathbb{N} ,
- μ_0 uniform distribution on [0, 1],
- μ product of μ_0 on $[0,1]^{\mathbb{N}}$, $\mu_{\mathbf{u}}$ product of μ_0 on $[0,1]^{\mathbf{u}}$.

We have H = H(K) with

$$\mathcal{K}(\mathbf{x},\mathbf{y}) = \prod_{j \in \mathbb{N}} \left(1 + \underbrace{\sum_{\nu \neq 0} \alpha_{\nu,j}^{-1} \cdot e_{\nu}(x_j) \cdot \overline{e_{\nu}(y_j)}}_{=k_j(x_j,y_j)} \right) = \left(\sum_{\mathbf{u}} \underbrace{\bigotimes_{j \in \mathbf{u}} k_j}_{=k_{\mathbf{u}}} \right) (\mathbf{x},\mathbf{y}).$$

Since $H(1) \perp H(k_j)$ in $H(1 + k_j)$, we have the orthogonal decomposition

$$H(K) = \bigoplus_{\mathbf{u}} H(k_{\mathbf{u}}).$$

For the corresponding projections $f_{u} \in H(k_{u})$ of $f \in H(K)$

$$\int_{[0,1]^{\mathbb{N}}} f \, d\mu = \sum_{\mathbf{u}} \int_{[0,1]^{\mathbf{u}}} f_{\mathbf{u}} \, d\mu_{\mathbf{u}}.$$

Recall that

$$\int_{[0,1]^{\mathbb{N}}} f d\mu = \sum_{\mathbf{u}} \int_{[0,1]^{\mathbf{u}}} f_{\mathbf{u}} d\mu_{\mathbf{u}}.$$

Basic idea: approximate the most relevant finite-dimensional integrals based on function values of f.

Recall that

$$\int_{[0,1]^{\mathbb{N}}} f \, d\mu = \sum_{\mathbf{u}} \int_{[0,1]^{\mathbf{u}}} f_{\mathbf{u}} \, d\mu_{\mathbf{u}}.$$

Basic idea: approximate the most relevant finite-dimensional integrals based on function values of f.

More precisely, embed H(K) into another RKHS on the domain $[0, 1]^{\mathbb{N}}$, where this makes sense.

Proof of the Upper Bound

Step 1: Weighted kernels instead of increasing smoothness Put

$$\gamma_j = \sup_{\nu \neq 0} \frac{\alpha_{\nu,1}}{\alpha_{\nu,j}} = 2^{r_1 - r_j}.$$

We have

- ▶ $H_1 = H(1 + \gamma_j k_1)$ with equivalent norms for every $j \in \mathbb{N}$, but
- $H_j \hookrightarrow H(1 + \gamma_j k_1)$ with norm one, and compactly if $r_j > r_1$.

Proof of the Upper Bound

Step 1: Weighted kernels instead of increasing smoothness Put

$$\gamma_j = \sup_{\nu \neq 0} \frac{\alpha_{\nu,1}}{\alpha_{\nu,j}} = 2^{r_1 - r_j}.$$

We have

- ► $H_1 = H(1 + \gamma_j k_1)$ with equivalent norms for every $j \in \mathbb{N}$, but
- $H_j \hookrightarrow H(1 + \gamma_j k_1)$ with norm one, and compactly if $r_j > r_1$.

Furthermore, for $f\in H_1$ and $I(f)=\int_{[0,1]}f\,d\mu_0$,

$$\|f\|_{H(1+\gamma_jk_1)}^2 = (I(f))^2 + \frac{1}{\gamma_j} \cdot \|f - I(f)\|_{H(k_1)}^2.$$

Proof of the Upper Bound

Step 1: Weighted kernels instead of increasing smoothness Put

$$\gamma_j = \sup_{\nu \neq 0} \frac{\alpha_{\nu,1}}{\alpha_{\nu,j}} = 2^{r_1 - r_j}.$$

We have

- ► $H_1 = H(1 + \gamma_j k_1)$ with equivalent norms for every $j \in \mathbb{N}$, but
- $H_j \hookrightarrow H(1 + \gamma_j k_1)$ with norm one, and compactly if $r_j > r_1$.

Furthermore, for $f \in H_1$ and $I(f) = \int_{[0,1]} f \, d\mu_0$,

$$\|f\|_{H(1+\gamma_jk_1)}^2 = (I(f))^2 + \frac{1}{\gamma_j} \cdot \|f - I(f)\|_{H(k_1)}^2.$$

Lemma For

$$L = \bigotimes_{j \in \mathbb{N}} (1 + \gamma_j k_1) = \sum_{\mathbf{u}} \prod_{\substack{j \in \mathbf{u} \\ = \gamma_{\mathbf{u}}}} \gamma_j \cdot \bigotimes_{j \in \mathbf{u}} k_1$$

we have $H(K) \hookrightarrow H(L)$ with norm one.

Step 2: Anchored kernels instead of ANOVA kernels

Lemma Gnewuch, Hefter, Hinrichs, R (2017) For every $a \in [0, 1]$ there exists

- ▶ a reproducing kernel $m: [0,1] imes [0,1] o \mathbb{C}$ and
- a constant c > 1

such that

$$m(a,a)=0, \qquad H(1+m)=H_1,$$

Step 2: Anchored kernels instead of ANOVA kernels

Lemma Gnewuch, Hefter, Hinrichs, R (2017) For every $a \in [0, 1]$ there exists

- ▶ a reproducing kernel $m: [0,1] \times [0,1] \rightarrow \mathbb{C}$ and
- a constant c > 1

such that

$$m(a, a) = 0,$$
 $H(1 + m) = H_1,$

and for

$$M = \bigotimes_{j \in \mathbb{N}} (1 + c\gamma_j m) = \sum_{\mathbf{u}} c^{|\mathbf{u}|} \gamma_{\mathbf{u}} \bigotimes_{\substack{j \in \mathbf{u} \\ = m_{\mathbf{u}}}} m$$

we have

 $H(L) \hookrightarrow H(M)$ continuously.

Step 2: Anchored kernels instead of ANOVA kernels

Lemma Gnewuch, Hefter, Hinrichs, R (2017) For every $a \in [0, 1]$ there exists

- ▶ a reproducing kernel $m: [0,1] \times [0,1] \rightarrow \mathbb{C}$ and
- a constant c > 1

such that

$$m(a, a) = 0,$$
 $H(1 + m) = H_1,$

and for

$$M = \bigotimes_{j \in \mathbb{N}} (1 + c\gamma_j m) = \sum_{\mathbf{u}} c^{|\mathbf{u}|} \gamma_{\mathbf{u}} \bigotimes_{\substack{j \in \mathbf{u} \\ = m_{\mathbf{u}}}} m$$

we have

 $H(L) \hookrightarrow H(M)$ continuously.

Key property: M is a superposition of weighted tensor products of an anchored kernel.

We have the orthogonal decomposition

$$H(M) = \bigoplus_{\mathbf{u}} H(\gamma_{\mathbf{u}} m_{\mathbf{u}}).$$

We have the orthogonal decomposition

$$H(M) = \bigoplus_{\mathbf{u}} H(\gamma_{\mathbf{u}} m_{\mathbf{u}}).$$

The corresponding projections $f_u \in H(\gamma_u k_u)$ of $f \in H(M)$ are given by

$$f_{\emptyset} = f(a, a, \dots)$$
 and $f_{\mathbf{u}}((x_j)_{j \in \mathbf{u}}) = \left(f - \sum_{\mathbf{v} \subsetneq \mathbf{u}} f_{\mathbf{v}}\right)(\mathbf{y})$

for $\mathbf{u} \neq \emptyset$, where

$$y_j = \begin{cases} x_j, & \text{if } j \in \mathbf{u}, \\ a, & \text{otherwise.} \end{cases}$$

We have the orthogonal decomposition

$$H(M) = \bigoplus_{\mathbf{u}} H(\gamma_{\mathbf{u}} m_{\mathbf{u}}).$$

The corresponding projections $f_{\mathbf{u}} \in H(\gamma_{\mathbf{u}}k_{\mathbf{u}})$ of $f \in H(M)$ are given by

$$f_{\emptyset} = f(a, a, \dots)$$
 and $f_{\mathbf{u}}((x_j)_{j \in \mathbf{u}}) = \left(f - \sum_{\mathbf{v} \subsetneq \mathbf{u}} f_{\mathbf{v}}\right)(\mathbf{y})$

for $\mathbf{u} \neq \emptyset$, where

$$y_j = egin{cases} x_j, & ext{if } j \in \mathbf{u}, \ a, & ext{otherwise}. \end{cases}$$

Lemma Kuo, Sloan, Wasilkowski, Woźniakowski (2010) Values of f_{u} can be efficiently computed from a 'small' number of values of f using only a 'few' active variables.

We have the orthogonal decomposition

$$H(M) = \bigoplus_{\mathbf{u}} H(\gamma_{\mathbf{u}} m_{\mathbf{u}}).$$

The corresponding projections $f_{u} \in H(\gamma_{u}k_{u})$ of $f \in H(M)$ are given by

$$f_{\emptyset} = f(a, a, \dots)$$
 and $f_{\mathbf{u}}((x_j)_{j \in \mathbf{u}}) = \left(f - \sum_{\mathbf{v} \subsetneq \mathbf{u}} f_{\mathbf{v}}\right)(\mathbf{y})$

for $\mathbf{u} \neq \emptyset$, where

$$y_j = egin{cases} x_j, & ext{if } j \in \mathbf{u}, \ a, & ext{otherwise}. \end{cases}$$

Lemma Kuo, Sloan, Wasilkowski, Woźniakowski (2010) Values of f_{u} can be efficiently computed from a 'small' number of values of f using only a 'few' active variables.

Theorem Plaskota, Wasilkowski (2011), Wasilkowski (2012) The minimal errors e_n for int/app on H(M) satisfy

$$\forall \varepsilon > 0 \ \exists c > 0 \ \forall n \in \mathbb{N}$$
: $e_n \leq c \ n^{-(s-\varepsilon)}$.

We have the orthogonal decomposition

$$H(M) = \bigoplus_{\mathbf{u}} H(\gamma_{\mathbf{u}} m_{\mathbf{u}}).$$

The corresponding projections $f_{\mathbf{u}} \in H(\gamma_{\mathbf{u}}k_{\mathbf{u}})$ of $f \in H(M)$ are given by

$$f_{\emptyset} = f(a, a, \dots)$$
 and $f_{\mathbf{u}}((x_j)_{j \in \mathbf{u}}) = \left(f - \sum_{\mathbf{v} \subsetneq \mathbf{u}} f_{\mathbf{v}}\right)(\mathbf{y})$

for $\mathbf{u} \neq \emptyset$, where

$$y_j = egin{cases} x_j, & ext{if } j \in \mathbf{u}, \ a, & ext{otherwise}. \end{cases}$$

Lemma Kuo, Sloan, Wasilkowski, Woźniakowski (2010) Values of f_{u} can be efficiently computed from a 'small' number of values of f using only a 'few' active variables.

See Gilbert, Kuo, Nuyens, Wasilkowski (2017) for the implementation.

Proof of the Lower Bound for Integration

Since $H_1 \hookrightarrow H(K)$ with norm one, we get

$$\exists c > 0 \ \forall n \in \mathbb{N}: \qquad e_n \geq c \ n^{-r_1/2}.$$

Proof of the Lower Bound for Integration

Since $H_1 \hookrightarrow H(K)$ with norm one, we get

$$\exists c > 0 \ \forall n \in \mathbb{N}: \qquad e_n \geq c \ n^{-r_1/2}.$$

To verify

 $\forall \varepsilon > 0 \exists c > 0 \forall n \in \mathbb{N}$: $e_n \ge c n^{-(\varrho \ln(2) - 1 + \varepsilon)/2}$

Proof of the Lower Bound for Integration

Since $H_1 \hookrightarrow H(K)$ with norm one, we get

$$\exists c > 0 \ \forall n \in \mathbb{N}: \qquad e_n \geq c \ n^{-r_1/2}.$$

To verify

$$\forall \varepsilon > 0 \ \exists c > 0 \ \forall n \in \mathbb{N}$$
: $e_n \ge c \ n^{-(\varrho \ln(2) - 1 + \varepsilon)/2}$

we

- start with span $\{e_0, e_1\} \subset H(1+k_j)$,
- apply the two embedding steps reversely,
- employ the lower bound from *Plaskota*, *Wasilkowski* (2011) for superpositions of weighted tensor products of anchored kernels.

Does randomization help?

Put

$$s^{\mathrm{ran}} = \frac{1}{2} \cdot \min(r_1 + 1, \ \rho \ln(2) - 1).$$

Does randomization help?

Put

$$s^{\mathrm{ran}} = rac{1}{2} \cdot \min(r_1 + 1, \ \varrho \ln(2) - 1).$$

Theorem Assume that $r_1 > 1$ and $\rho \ln(2) > 1$. Then the minimal errors e_n^{ran} of randomized algorithms for integration satisfy

$$\begin{array}{l} \forall \, \varepsilon > 0 \, \exists \, c_1, \, c_2 > 0 \, \, \forall \, n \in \mathbb{N} : \\ \\ c_1 \, n^{-(s^{\mathrm{ran}} + \varepsilon)} \leq e_n^{\mathrm{ran}} \leq c_2 \, n^{-(s^{\mathrm{ran}} - \varepsilon)}. \end{array}$$

Does randomization help?

Put

$$s^{\mathrm{ran}} = rac{1}{2} \cdot \min(r_1 + 1, \ \varrho \ln(2) - 1).$$

Theorem Assume that $r_1 > 1$ and $\rho \ln(2) > 1$. Then the minimal errors e_n^{ran} of randomized algorithms for integration satisfy

$$\begin{aligned} \forall \varepsilon > 0 \ \exists c_1, c_2 > 0 \ \forall n \in \mathbb{N}: \\ c_1 \ n^{-(s^{\operatorname{ran}} + \varepsilon)} \leq e_n^{\operatorname{ran}} \leq c_2 \ n^{-(s^{\operatorname{ran}} - \varepsilon)}. \end{aligned}$$

Proof: Use embeddings and Dick, Gnewuch (2014).

Summary

- Function spaces: countable tensor products of (Korobov) spaces of increasing smoothness.
- *n*-th minimal error for integration and L₂-approximation of order

$$s = \frac{1\pm\varepsilon}{2} \cdot \min(r_1, \ \varrho \ln(2) - 1).$$

Summary

- Function spaces: countable tensor products of (Korobov) spaces of increasing smoothness.
- *n*-th minimal error for integration and L_2 -approximation of order

$$s = \frac{1 \pm \varepsilon}{2} \cdot \min(r_1, \, \varrho \ln(2) - 1).$$

- ▶ Main tool: embeddings, see *Hefter, R (2015)*,
- Here: weights and anchored kernels instead of increasing smoothness.

Summary

- Function spaces: countable tensor products of (Korobov) spaces of increasing smoothness.
- *n*-th minimal error for integration and L_2 -approximation of order

$$s = \frac{1\pm\varepsilon}{2} \cdot \min(r_1, \, \varrho \ln(2) - 1).$$

- Main tool: embeddings, see Hefter, R (2015),
- Here: weights and anchored kernels instead of increasing smoothness.
- Form a complexity point of view: excessive amount of smoothness in the tensor products of (Korobov) spaces of increasing smoothness.