Integration and L_{2}-Approximation of Functions of Infinitely Many Variables

Klaus Ritter
TU Kaiserslautern
Joint work with

M. Gnewuch, M. Hefter, A. Hinrichs, G. W. Wasilkowski

Introduction

Computational problem: For a class F of functions

$$
f: E \rightarrow \mathbb{K}
$$

integrate/approximate f based on a finite number of function values.

In this talk

- $E=D^{\mathbb{N}}$ with $D \subseteq \mathbb{R}$, i.e., f depends on the variables $y_{1}, y_{2}, \cdots \in D$,
- increasing smoothness w.r.t. these variables,
- worst case analysis in a Hilbert space setting.

Introduction

Computational problem: For a class F of functions

$$
f: E \rightarrow \mathbb{K}
$$

integrate/approximate f based on a finite number of function values.
In this talk

- $E=D^{\mathbb{N}}$ with $D \subseteq \mathbb{R}$, i.e., f depends on the variables $y_{1}, y_{2}, \cdots \in D$,
- increasing smoothness w.r.t. these variables,
- worst case analysis in a Hilbert space setting.

Integration and approximation of functions on $D^{\mathbb{N}}$
Hickernell, Müller-Gronbach, Niu, R (2010), Kuo, Sloan, Wasilkowski, Woźniakowski (2010),
Baldeaux, Dick, Dung, Gilbert, Gnewuch, Griebel, Hefter, Hinrichs, Nuyens, Oswald, Plaskota, . . .

Random (parametric) PDEs

Introduction

Computational problem: For a class F of functions

$$
f: E \rightarrow \mathbb{K}
$$

integrate/approximate f based on a finite number of function values.

In this talk

- $E=D^{\mathbb{N}}$ with $D \subseteq \mathbb{R}$, i.e., f depends on the variables $y_{1}, y_{2}, \cdots \in D$,
- increasing smoothness w.r.t. these variables,
- worst case analysis in a Hilbert space setting.

OUTLINE

I. The Function Spaces
II. Algorithms, Error, and Cost
III. Results and Remarks
IV. Embeddings and $\underbrace{\text { Optimal Algorithms }}_{\rightsquigarrow \text { Dirk's talk this afternoon }}$

I. The Function Spaces

Consider

- the trigonometric basis $\left(e_{\nu}\right)_{\nu \in \mathbb{Z}}$ of $L_{2}([0,1])$,
- smoothness parameters $0<r_{1} \leq r_{2} \leq \ldots$.

For $j \in \mathbb{N}$ and $\nu \in \mathbb{Z}$ we define Fourier weights

$$
\alpha_{\nu, j}=(1+|\nu|)^{r_{j}}
$$

and the corresponding scale of Korobov spaces

$$
\begin{gathered}
H_{j}=\left\{f \in L_{2}([0,1]): \sum_{\nu \in \mathbb{Z}} \alpha_{\nu, j} \cdot\left|\left\langle f, e_{\nu}\right\rangle_{L_{2}([0,1])}\right|^{2}<\infty\right\} \\
\langle f, g\rangle_{H_{j}}=\sum_{\nu \in \mathbb{Z}} \alpha_{\nu, j} \cdot\left\langle f, e_{\nu}\right\rangle_{L_{2}([0,1])} \cdot\left\langle e_{\nu}, g\right\rangle_{L_{2}([0,1])}
\end{gathered}
$$

I. The Function Spaces

Consider

- the trigonometric basis $\left(e_{\nu}\right)_{\nu \in \mathbb{Z}}$ of $L_{2}([0,1])$,
- smoothness parameters $0<r_{1} \leq r_{2} \leq \ldots$.

For $j \in \mathbb{N}$ and $\nu \in \mathbb{Z}$ we define Fourier weights

$$
\alpha_{\nu, j}=(1+|\nu|)^{r_{j}}
$$

and the corresponding scale of Korobov spaces

$$
\begin{gathered}
H_{j}=\left\{f \in L_{2}([0,1]): \sum_{\nu \in \mathbb{Z}} \alpha_{\nu, j} \cdot\left|\left\langle f, e_{\nu}\right\rangle_{L_{2}([0,1])}\right|^{2}<\infty\right\} \\
\langle f, g\rangle_{H_{j}}=\sum_{\nu \in \mathbb{Z}} \alpha_{\nu, j} \cdot\left\langle f, e_{\nu}\right\rangle_{L_{2}([0,1])} \cdot\left\langle e_{\nu}, g\right\rangle_{L_{2}([0,1])}
\end{gathered}
$$

Remark $H_{j} \hookleftarrow H_{j+1}$ compact $\Leftrightarrow r_{j}<r_{j+1}$.

I. The Function Spaces

Consider

- the trigonometric basis $\left(e_{\nu}\right)_{\nu \in \mathbb{Z}}$ of $L_{2}([0,1])$,
- smoothness parameters $0<r_{1} \leq r_{2} \leq \ldots$.

For $j \in \mathbb{N}$ and $\nu \in \mathbb{Z}$ we define Fourier weights

$$
\alpha_{\nu, j}=(1+|\nu|)^{r_{j}}
$$

and the corresponding scale of Korobov spaces

$$
\begin{gathered}
H_{j}=\left\{f \in L_{2}([0,1]): \sum_{\nu \in \mathbb{Z}} \alpha_{\nu, j} \cdot\left|\left\langle f, e_{\nu}\right\rangle_{L_{2}([0,1])}\right|^{2}<\infty\right\} \\
\langle f, g\rangle_{H_{j}}=\sum_{\nu \in \mathbb{Z}} \alpha_{\nu, j} \cdot\left\langle f, e_{\nu}\right\rangle_{L_{2}([0,1])} \cdot\left\langle e_{\nu}, g\right\rangle_{L_{2}([0,1])}
\end{gathered}
$$

Remark $H_{j} \hookleftarrow H_{j+1}$ compact $\Leftrightarrow r_{j}<r_{j+1}$.
Finally, based on the unit vectors $e_{0}=1$,

$$
H=\bigotimes_{j \in \mathbb{N}} H_{j}
$$

Consider $L_{2}\left([0,1]^{\mathbb{N}}\right)$ w.r.t the product μ of the uniform distribution μ_{0} on $[0,1]$. Put

$$
\varrho=\liminf _{j \rightarrow \infty} \frac{r_{j}}{\ln (j)} \in[0, \infty] .
$$

Lemma $\varrho>0 \Rightarrow H \hookrightarrow L_{2}\left([0,1]^{\mathbb{N}}\right)$ compact.

Consider $L_{2}\left([0,1]^{\mathbb{N}}\right)$ w.r.t the product μ of the uniform distribution μ_{0} on $[0,1]$. Put

$$
\varrho=\liminf _{j \rightarrow \infty} \frac{r_{j}}{\ln (j)} \in[0, \infty] .
$$

Lemma $\varrho>0 \Rightarrow H \hookrightarrow L_{2}\left([0,1]^{\mathbb{N}}\right)$ compact.
A Hilbert space F is a RKHS on a domain $E \neq \emptyset$ if

- $F \subseteq \mathbb{K}^{E}$,
- $F \rightarrow \mathbb{K}: f \mapsto f(\mathbf{x})$ is continuous for every $\mathbf{x} \in E$.

Consider $L_{2}\left([0,1]^{\mathbb{N}}\right)$ w.r.t the product μ of the uniform distribution μ_{0} on $[0,1]$. Put

$$
\varrho=\liminf _{j \rightarrow \infty} \frac{r_{j}}{\ln (j)} \in[0, \infty] .
$$

Lemma $\varrho>0 \Rightarrow H \hookrightarrow L_{2}\left([0,1]^{\mathbb{N}}\right)$ compact.
A Hilbert space F is a RKHS on a domain $E \neq \emptyset$ if

- $F \subseteq \mathbb{K}^{E}$,
- $F \rightarrow \mathbb{K}: f \mapsto f(\mathbf{x})$ is continuous for every $\mathbf{x} \in E$.

Lemma H_{j} RKHS on $[0,1] \Leftrightarrow r_{j}>1$.
Lemma
$\left(r_{1}>1 \wedge \varrho \ln (2)>1\right) \Rightarrow H$ RKHS on $[0,1]^{\mathbb{N}} \Rightarrow\left(r_{1}>1 \wedge \varrho \ln (2) \geq 1\right)$.
II. Algorithms, Error, and Cost

Briefly consider

$$
H^{d}=\bigotimes_{j=1}^{d} H_{j} .
$$

Common assumption, if H^{d} is a RKHS:

- Evaluation of $f \in H^{d}$ at any $\mathbf{x} \in[0,1]^{d}$ at cost one.
II. Algorithms, Error, and Cost

Briefly consider

$$
H^{d}=\bigotimes_{j=1}^{d} H_{j} .
$$

Common assumption, if H^{d} is a RKHS:

- Evaluation of $f \in H^{d}$ at any $\mathbf{x} \in[0,1]^{d}$ at cost one.

Actually, we consider

$$
H=\bigotimes_{j \in \mathbb{N}} H_{j}
$$

Assumption, if H is a RKHS:

- Fix $a \in[0,1]$. Evaluation of $f \in H$ at any $\mathbf{x} \in[0,1]^{\mathbb{N}}$ with

$$
\operatorname{active}(\mathbf{x})=\left|\left\{j \in \mathbb{N}: \mathbf{x}_{j} \neq a\right\}\right|<\infty
$$

at cost active (\mathbf{x}).

II. Algorithms, Error, and Cost

Briefly consider

$$
H^{d}=\bigotimes_{j=1}^{d} H_{j} .
$$

Common assumption, if H^{d} is a RKHS:

- Evaluation of $f \in H^{d}$ at any $\mathbf{x} \in[0,1]^{d}$ at cost one.

Actually, we consider

$$
H=\bigotimes_{j \in \mathbb{N}} H_{j}
$$

Assumption, if H is a RKHS:

- Fix $a \in[0,1]$. Evaluation of $f \in H$ at any $\mathbf{x} \in[0,1]^{\mathbb{N}}$ with

$$
\operatorname{active}(\mathbf{x})=\left|\left\{j \in \mathbb{N}: \mathbf{x}_{j} \neq a\right\}\right|<\infty
$$

at cost active(x). See Kuo, Sloan, Wasilkowski, Woźniakowski (2010), and cf. Creutzig, Dereich, Müller-Gronbach, R (2009).

Let $G=\mathbb{R}$ or $G=L_{2}\left([0,1]^{\mathbb{N}}\right)$, and let $S: H \rightarrow G$ be given by

$$
S(f)=\int_{[0,1]^{\mathbb{N}}} f d \mu \quad \text { or } \quad S(f)=f
$$

Let $G=\mathbb{R}$ or $G=L_{2}\left([0,1]^{\mathbb{N}}\right)$, and let $S: H \rightarrow G$ be given by

$$
S(f)=\int_{[0,1]^{\mathbb{N}}} f d \mu \quad \text { or } \quad S(f)=f .
$$

We study deterministic linear algorithms

$$
A(f)=\sum_{i=1}^{m} f\left(\mathbf{x}_{i}\right) \cdot g_{i}
$$

with $g_{i} \in G$ and $\mathbf{x}_{i} \in[0,1]^{\mathbb{N}}$.

Let $G=\mathbb{R}$ or $G=L_{2}\left([0,1]^{\mathbb{N}}\right)$, and let $S: H \rightarrow G$ be given by

$$
S(f)=\int_{[0,1]^{\mathbb{N}}} f d \mu \quad \text { or } \quad S(f)=f
$$

We study deterministic linear algorithms

$$
A(f)=\sum_{i=1}^{m} f\left(\mathbf{x}_{i}\right) \cdot g_{i}
$$

with $g_{i} \in G$ and $\mathbf{x}_{i} \in[0,1]^{\mathbb{N}}$. Error and cost

$$
\begin{gathered}
\operatorname{error}(A)=\sup \left\{\|S(f)-A(f)\|_{G}: f \in H,\|f\|_{H} \leq 1\right\} \\
\operatorname{cost}(A)=\sum_{i=1}^{m} \operatorname{active}\left(\mathbf{x}_{i}\right)
\end{gathered}
$$

Let $G=\mathbb{R}$ or $G=L_{2}\left([0,1]^{\mathbb{N}}\right)$, and let $S: H \rightarrow G$ be given by

$$
S(f)=\int_{[0,1]^{\mathbb{N}}} f d \mu \quad \text { or } \quad S(f)=f
$$

We study deterministic linear algorithms

$$
A(f)=\sum_{i=1}^{m} f\left(\mathbf{x}_{i}\right) \cdot g_{i}
$$

with $g_{i} \in G$ and $\mathbf{x}_{i} \in[0,1]^{\mathbb{N}}$. Error and cost

$$
\begin{gathered}
\operatorname{error}(A)=\sup \left\{\|S(f)-A(f)\|_{G}: f \in H,\|f\|_{H} \leq 1\right\} \\
\operatorname{cost}(A)=\sum_{i=1}^{m} \operatorname{active}\left(\mathbf{x}_{i}\right)
\end{gathered}
$$

Key quantity: nth minimal error

$$
e_{n}=\inf \{\operatorname{error}(A): \operatorname{cost}(A) \leq n\}
$$

Let $G=\mathbb{R}$ or $G=L_{2}\left([0,1]^{\mathbb{N}}\right)$, and let $S: H \rightarrow G$ be given by

$$
S(f)=\int_{[0,1]^{\mathbb{N}}} f d \mu \quad \text { or } \quad S(f)=f
$$

We study deterministic linear algorithms

$$
A(f)=\sum_{i=1}^{m} f\left(\mathbf{x}_{i}\right) \cdot g_{i}
$$

with $g_{i} \in G$ and $\mathbf{x}_{i} \in[0,1]^{\mathbb{N}}$. Error and cost

$$
\begin{gathered}
\operatorname{error}(A)=\sup \left\{\|S(f)-A(f)\|_{G}: f \in H,\|f\|_{H} \leq 1\right\} \\
\operatorname{cost}(A)=\sum_{i=1}^{m} \operatorname{active}\left(\mathbf{x}_{i}\right)
\end{gathered}
$$

Key quantity: nth minimal error

$$
e_{n}=\inf \{\operatorname{error}(A): \operatorname{cost}(A) \leq n\}
$$

Questions

- Order of convergence of the minimal errors e_{n} ?
- Optimal choice of the sampling points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$?

III. Results and Remarks

Recall that

$$
\varrho=\liminf _{j \rightarrow \infty} \frac{r_{j}}{\ln (j)}
$$

Put

$$
s=\frac{1}{2} \cdot \min \left(r_{1}, \varrho \ln (2)-1\right) .
$$

III. Results and Remarks

Recall that

$$
\varrho=\liminf _{j \rightarrow \infty} \frac{r_{j}}{\ln (j)}
$$

Put

$$
s=\frac{1}{2} \cdot \min \left(r_{1}, \varrho \ln (2)-1\right) .
$$

Theorem Assume that $r_{1}>1$ and $\varrho \ln (2)>1$. Then the minimal errors e_{n} for integration and L_{2}-approximation satisfy

$$
\begin{aligned}
& \forall \varepsilon>0 \exists c_{1}, c_{2}>0 \forall n \in \mathbb{N}: \\
& \quad c_{1} n^{-(s+\varepsilon)} \leq e_{n} \leq c_{2} n^{-(s-\varepsilon)} .
\end{aligned}
$$

III. Results and Remarks

Recall that

$$
\varrho=\liminf _{j \rightarrow \infty} \frac{r_{j}}{\ln (j)}
$$

Put

$$
s=\frac{1}{2} \cdot \min \left(r_{1}, \varrho \ln (2)-1\right) .
$$

Theorem Assume that $r_{1}>1$ and $\varrho \ln (2)>1$. Then the minimal errors e_{n} for integration and L_{2}-approximation satisfy

$$
\begin{aligned}
& \forall \varepsilon>0 \exists c_{1}, c_{2}>0 \forall n \in \mathbb{N}: \\
& \qquad c_{1} n^{-(s+\varepsilon)} \leq e_{n} \leq c_{2} n^{-(s-\varepsilon)}
\end{aligned}
$$

Remark For L_{2}-approximation using linear functionals at cost one

$$
s=\frac{1}{2} \cdot \min \left(r_{1}, \varrho \ln (2)\right)
$$

See Papageorgiou, Woźniakowski (2010), Siedlecki (2014), Dũng, Griebel (2016), Dũng, Griebel, Huy, Rieger (2018).

Abstract approach, based on

- a probability measure μ_{0} on any set $D \neq \emptyset$,
- an orthonormal system $\left(e_{\nu}\right)_{\nu \in \mathbb{N}_{0}}$ in $L_{2}(D)$ with $e_{0}=1$,
- Fourier weights $\alpha_{\nu, j}$ such that, for $\nu, j \in \mathbb{N}$,

$$
\alpha_{1,1}>1=\alpha_{0, j}
$$

and

$$
\alpha_{\nu, j} \geq \max \left(\alpha_{\nu, 1}, \alpha_{1, j}\right)
$$

Abstract approach, based on

- a probability measure μ_{0} on any set $D \neq \emptyset$,
- an orthonormal system $\left(e_{\nu}\right)_{\nu \in \mathbb{N}_{0}}$ in $L_{2}(D)$ with $e_{0}=1$,
- Fourier weights $\alpha_{\nu, j}$ such that, for $\nu, j \in \mathbb{N}$,

$$
\alpha_{1,1}>1=\alpha_{0, j}
$$

and

$$
\alpha_{\nu, j} \geq \max \left(\alpha_{\nu, 1}, \alpha_{1, j}\right)
$$

Example $\alpha_{\nu, j}=\exp \left(\nu^{b_{j}}\right)$ with $0<b_{1} \leq b_{2} \leq \ldots$ Cf. Irrgeher, Kritzer, Pillichshammer, Woźniakowski (2016).

Abstract approach, based on

- a probability measure μ_{0} on any set $D \neq \emptyset$,
- an orthonormal system $\left(e_{\nu}\right)_{\nu \in \mathbb{N}_{0}}$ in $L_{2}(D)$ with $e_{0}=1$,
- Fourier weights $\alpha_{\nu, j}$ such that, for $\nu, j \in \mathbb{N}$,

$$
\alpha_{1,1}>1=\alpha_{0, j}
$$

and

$$
\alpha_{\nu, j} \geq \max \left(\alpha_{\nu, 1}, \alpha_{1, j}\right)
$$

Example $\alpha_{\nu, j}=\exp \left(\nu^{b_{j}}\right)$ with $0<b_{1} \leq b_{2} \leq \ldots$
Cf. Irrgeher, Kritzer, Pillichshammer, Woźniakowski (2016).

Example

- Walsh, Haar, Jacobi (Legendre) basis \rightsquigarrow domain $[a, b]^{\mathbb{N}}$.

Abstract approach, based on

- a probability measure μ_{0} on any set $D \neq \emptyset$,
- an orthonormal system $\left(e_{\nu}\right)_{\nu \in \mathbb{N}_{0}}$ in $L_{2}(D)$ with $e_{0}=1$,
- Fourier weights $\alpha_{\nu, j}$ such that, for $\nu, j \in \mathbb{N}$,

$$
\alpha_{1,1}>1=\alpha_{0, j}
$$

and

$$
\alpha_{\nu, j} \geq \max \left(\alpha_{\nu, 1}, \alpha_{1, j}\right)
$$

Example $\alpha_{\nu, j}=\exp \left(\nu^{b_{j}}\right)$ with $0<b_{1} \leq b_{2} \leq \ldots$
Cf. Irrgeher, Kritzer, Pillichshammer, Woźniakowski (2016).

Example

- Walsh, Haar, Jacobi (Legendre) basis \rightsquigarrow domain $[a, b]^{\mathbb{N}}$.
- Hermite basis \rightsquigarrow domain $\mathfrak{X} \subsetneq \mathbb{R}^{\mathbb{N}}$.

Cf. Gnewuch, Mayer, R (2014).

Abstract approach, based on

- a probability measure μ_{0} on any set $D \neq \emptyset$,
- an orthonormal system $\left(e_{\nu}\right)_{\nu \in \mathbb{N}_{0}}$ in $L_{2}(D)$ with $e_{0}=1$,
- Fourier weights $\alpha_{\nu, j}$ such that, for $\nu, j \in \mathbb{N}$,

$$
\alpha_{1,1}>1=\alpha_{0, j}
$$

and

$$
\alpha_{\nu, j} \geq \max \left(\alpha_{\nu, 1}, \alpha_{1, j}\right)
$$

Example $\alpha_{\nu, j}=\exp \left(\nu^{b_{j}}\right)$ with $0<b_{1} \leq b_{2} \leq \ldots$.
Cf. Irrgeher, Kritzer, Pillichshammer, Woźniakowski (2016).

Example

- Walsh, Haar, Jacobi (Legendre) basis \rightsquigarrow domain $[a, b]^{\mathbb{N}}$.
- Hermite basis \rightsquigarrow domain $\mathfrak{X} \subsetneq \mathbb{R}^{\mathbb{N}}$. Cf. Gnewuch, Mayer, R (2014).
- Gaussian kernels with increasing shape parameters.

IV. Embeddings and Optimal Algorithms

Notation

- $H(K)$ RKHS with reproducing kernel K,
- u any finite subset of \mathbb{N},
- μ_{0} uniform distribution on $[0,1]$,
- μ product of μ_{0} on $[0,1]^{\mathbb{N}}, \mu_{\mathbf{u}}$ product of μ_{0} on $[0,1]^{\mathbf{u}}$.

IV. Embeddings and Optimal Algorithms

Notation

- $H(K)$ RKHS with reproducing kernel K,
- u any finite subset of \mathbb{N},
- μ_{0} uniform distribution on $[0,1]$,
- μ product of μ_{0} on $[0,1]^{\mathbb{N}}, \mu_{\mathbf{u}}$ product of μ_{0} on $[0,1]^{\mathbf{u}}$.

We have $H=H(K)$ with

$$
K(\mathbf{x}, \mathbf{y})=\prod_{j \in \mathbb{N}}(1+\underbrace{\left.\sum_{\nu \neq 0} \alpha_{\nu, j}^{-1} \cdot e_{\nu}\left(x_{j}\right) \cdot \overline{e_{\nu}\left(y_{j}\right)}\right)}_{=k_{j}\left(x_{j}, y_{j}\right)}
$$

IV. Embeddings and Optimal Algorithms

Notation

- $H(K)$ RKHS with reproducing kernel K,
- u any finite subset of \mathbb{N},
- μ_{0} uniform distribution on $[0,1]$,
- μ product of μ_{0} on $[0,1]^{\mathbb{N}}, \mu_{\mathbf{u}}$ product of μ_{0} on $[0,1]^{\mathbf{u}}$.

We have $H=H(K)$ with

$$
K(\mathbf{x}, \mathbf{y})=\prod_{j \in \mathbb{N}}(1+\underbrace{\left.\sum_{\nu \neq 0} \alpha_{\nu, j}^{-1} \cdot e_{\nu}\left(x_{j}\right) \cdot \overline{e_{\nu}\left(y_{j}\right)}\right)}_{=k_{j}\left(x_{j}, y_{j}\right)}=(\sum_{\mathbf{u}} \underbrace{\bigotimes_{j \in \mathbf{u}} k_{j}}_{=k_{\mathbf{u}}})(\mathbf{x}, \mathbf{y})
$$

IV. Embeddings and Optimal Algorithms

Notation

- $H(K)$ RKHS with reproducing kernel K,
- u any finite subset of \mathbb{N},
- μ_{0} uniform distribution on $[0,1]$,
- μ product of μ_{0} on $[0,1]^{\mathbb{N}}, \mu_{\mathbf{u}}$ product of μ_{0} on $[0,1]^{\mathbf{u}}$.

We have $H=H(K)$ with

$$
K(\mathbf{x}, \mathbf{y})=\prod_{j \in \mathbb{N}}(1+\underbrace{\left.\sum_{\nu \neq 0} \alpha_{\nu, j}^{-1} \cdot e_{\nu}\left(x_{j}\right) \cdot \overline{e_{\nu}\left(y_{j}\right)}\right)}_{=k_{j}\left(x_{j}, y_{j}\right)}=(\sum_{\mathbf{u}}^{\bigotimes_{\underbrace{}_{\mathbf{u}}}^{\bigotimes_{j \in \mathbf{u}}} k_{j}})(\mathbf{x}, \mathbf{y}) .
$$

Since $H(1) \perp H\left(k_{j}\right)$ in $H\left(1+k_{j}\right)$, we have the orthogonal decomposition

$$
H(K)=\bigoplus_{\mathbf{u}} H\left(k_{\mathbf{u}}\right)
$$

IV. Embeddings and Optimal Algorithms

Notation

- $H(K)$ RKHS with reproducing kernel K,
- u any finite subset of \mathbb{N},
- μ_{0} uniform distribution on $[0,1]$,
- μ product of μ_{0} on $[0,1]^{\mathbb{N}}, \mu_{\mathbf{u}}$ product of μ_{0} on $[0,1]^{\mathbf{u}}$.

We have $H=H(K)$ with

$$
K(\mathbf{x}, \mathbf{y})=\prod_{j \in \mathbb{N}}(1+\underbrace{\left.\sum_{\nu \neq 0} \alpha_{\nu, j}^{-1} \cdot e_{\nu}\left(x_{j}\right) \cdot \overline{e_{\nu}\left(y_{j}\right)}\right)}_{=k_{j}\left(x_{j}, y_{j}\right)}=(\sum_{\mathbf{u}}^{\bigotimes_{\underbrace{}_{\mathbf{u}}}^{\bigotimes_{j \in \mathbf{u}}} k_{j}})(\mathbf{x}, \mathbf{y}) .
$$

Since $H(1) \perp H\left(k_{j}\right)$ in $H\left(1+k_{j}\right)$, we have the orthogonal decomposition

$$
H(K)=\bigoplus_{\mathbf{u}} H\left(k_{\mathbf{u}}\right) .
$$

For the corresponding projections $f_{\mathbf{u}} \in H\left(k_{\mathbf{u}}\right)$ of $f \in H(K)$

$$
\int_{[0,1]^{\mathbb{N}}} f d \mu=\sum_{\mathbf{u}} \int_{[0,1]^{\mathbf{u}}} f_{\mathbf{u}} d \mu_{\mathbf{u}} .
$$

Recall that

$$
\int_{[0,1]^{\mathbb{N}}} f d \mu=\sum_{\mathbf{u}} \int_{[0,1]_{\mathbf{u}}} f_{\mathbf{u}} d \mu_{\mathbf{u}} .
$$

Basic idea: approximate the most relevant finite-dimensional integrals based on function values of f.

Recall that

$$
\int_{[0,1]^{\mathbb{N}}} f d \mu=\sum_{\mathbf{u}} \int_{[0,1]_{\mathbf{u}}} f_{\mathbf{u}} d \mu_{\mathbf{u}} .
$$

Basic idea: approximate the most relevant finite-dimensional integrals based on function values of f.
More precisely, embed $H(K)$ into another RKHS on the domain $[0,1]^{\mathbb{N}}$, where this makes sense.

Proof of the Upper Bound

Step 1: Weighted kernels instead of increasing smoothness

Put

$$
\gamma_{j}=\sup _{\nu \neq 0} \frac{\alpha_{\nu, 1}}{\alpha_{\nu, j}}=2^{r_{1}-r_{j}} .
$$

We have

- $H_{1}=H\left(1+\gamma_{j} k_{1}\right)$ with equivalent norms for every $j \in \mathbb{N}$, but
- $H_{j} \hookrightarrow H\left(1+\gamma_{j} k_{1}\right)$ with norm one, and compactly if $r_{j}>r_{1}$.

Proof of the Upper Bound

Step 1: Weighted kernels instead of increasing smoothness

Put

$$
\gamma_{j}=\sup _{\nu \neq 0} \frac{\alpha_{\nu, 1}}{\alpha_{\nu, j}}=2^{r_{1}-r_{j}} .
$$

We have

- $H_{1}=H\left(1+\gamma_{j} k_{1}\right)$ with equivalent norms for every $j \in \mathbb{N}$, but
- $H_{j} \hookrightarrow H\left(1+\gamma_{j} k_{1}\right)$ with norm one, and compactly if $r_{j}>r_{1}$.

Furthermore, for $f \in H_{1}$ and $I(f)=\int_{[0,1]} f d \mu_{0}$,

$$
\|f\|_{H\left(1+\gamma_{j} k_{1}\right)}^{2}=(I(f))^{2}+\frac{1}{\gamma_{j}} \cdot\|f-I(f)\|_{H\left(k_{1}\right)}^{2} .
$$

Proof of the Upper Bound

Step 1: Weighted kernels instead of increasing smoothness

Put

$$
\gamma_{j}=\sup _{\nu \neq 0} \frac{\alpha_{\nu, 1}}{\alpha_{\nu, j}}=2^{r_{1}-r_{j}} .
$$

We have

- $H_{1}=H\left(1+\gamma_{j} k_{1}\right)$ with equivalent norms for every $j \in \mathbb{N}$, but
- $H_{j} \hookrightarrow H\left(1+\gamma_{j} k_{1}\right)$ with norm one, and compactly if $r_{j}>r_{1}$.

Furthermore, for $f \in H_{1}$ and $I(f)=\int_{[0,1]} f d \mu_{0}$,

$$
\|f\|_{H\left(1+\gamma_{j} k_{1}\right)}^{2}=(I(f))^{2}+\frac{1}{\gamma_{j}} \cdot\|f-I(f)\|_{H\left(k_{1}\right)}^{2}
$$

Lemma For

$$
L=\bigotimes_{j \in \mathbb{N}}\left(1+\gamma_{j} k_{1}\right)=\sum_{\mathbf{u}} \underbrace{\prod_{j \in \mathbf{u}} \gamma_{j}}_{=\gamma_{\mathbf{u}}} \cdot \bigotimes_{j \in \mathbf{u}} k_{1}
$$

we have $H(K) \hookrightarrow H(L)$ with norm one.

Step 2: Anchored kernels instead of ANOVA kernels

Lemma Gnewuch, Hefter, Hinrichs, R (2017)
For every $a \in[0,1]$ there exists

- a reproducing kernel $m:[0,1] \times[0,1] \rightarrow \mathbb{C}$ and
- a constant $c>1$
such that

$$
m(a, a)=0, \quad H(1+m)=H_{1},
$$

Step 2: Anchored kernels instead of ANOVA kernels

Lemma Gnewuch, Hefter, Hinrichs, R (2017)
For every $a \in[0,1]$ there exists

- a reproducing kernel $m:[0,1] \times[0,1] \rightarrow \mathbb{C}$ and
- a constant $c>1$
such that

$$
m(a, a)=0, \quad H(1+m)=H_{1},
$$

and for

$$
M=\bigotimes_{j \in \mathbb{N}}\left(1+c \gamma_{j} m\right)=\sum_{\mathbf{u}} c^{|\mathbf{u}|} \gamma_{\mathbf{u}} \underbrace{\bigotimes_{j \in \mathbf{u}} m}_{=m_{\mathbf{u}}}
$$

we have

$$
H(L) \hookrightarrow H(M) \quad \text { continuously. }
$$

Step 2: Anchored kernels instead of ANOVA kernels

Lemma Gnewuch, Hefter, Hinrichs, R (2017)
For every $a \in[0,1]$ there exists

- a reproducing kernel $m:[0,1] \times[0,1] \rightarrow \mathbb{C}$ and
- a constant $c>1$
such that

$$
m(a, a)=0, \quad H(1+m)=H_{1},
$$

and for

$$
M=\bigotimes_{j \in \mathbb{N}}\left(1+c \gamma_{j} m\right)=\sum_{\mathbf{u}} c^{|\mathbf{u}|} \gamma_{\mathbf{u}} \underbrace{\bigotimes_{j \in \mathbf{u}} m}_{=m_{\mathbf{u}}}
$$

we have

$$
H(L) \hookrightarrow H(M) \text { continuously. }
$$

Key property: M is a superposition of weighted tensor products of an anchored kernel.

Step 3: The multivariate decomposition method

We have the orthogonal decomposition

$$
H(M)=\bigoplus_{\mathbf{u}} H\left(\gamma_{\mathbf{u}} m_{\mathbf{u}}\right) .
$$

Step 3: The multivariate decomposition method

We have the orthogonal decomposition

$$
H(M)=\bigoplus_{\mathbf{u}} H\left(\gamma_{\mathbf{u}} m_{\mathbf{u}}\right)
$$

The corresponding projections $f_{\mathbf{u}} \in H\left(\gamma_{\mathbf{u}} k_{\mathbf{u}}\right)$ of $f \in H(M)$ are given by

$$
f_{\emptyset}=f(a, a, \ldots) \quad \text { and } \quad f_{\mathbf{u}}\left(\left(x_{j}\right)_{j \in \mathbf{u}}\right)=\left(f-\sum_{\mathbf{v} \subseteq \mathbf{u}} f_{\mathbf{v}}\right)(\mathbf{y})
$$

for $\mathbf{u} \neq \emptyset$, where

$$
y_{j}= \begin{cases}x_{j}, & \text { if } j \in \mathbf{u} \\ a, & \text { otherwise }\end{cases}
$$

Step 3: The multivariate decomposition method

We have the orthogonal decomposition

$$
H(M)=\bigoplus_{\mathbf{u}} H\left(\gamma_{\mathbf{u}} m_{\mathbf{u}}\right)
$$

The corresponding projections $f_{\mathbf{u}} \in H\left(\gamma_{\mathbf{u}} k_{\mathbf{u}}\right)$ of $f \in H(M)$ are given by

$$
f_{\emptyset}=f(a, a, \ldots) \quad \text { and } \quad f_{\mathbf{u}}\left(\left(x_{j}\right)_{j \in \mathbf{u}}\right)=\left(f-\sum_{\mathbf{v} \subseteq \mathbf{u}} f_{\mathbf{v}}\right)(\mathbf{y})
$$

for $\mathbf{u} \neq \emptyset$, where

$$
y_{j}= \begin{cases}x_{j}, & \text { if } j \in \mathbf{u} \\ a, & \text { otherwise }\end{cases}
$$

Lemma Kuo, Sloan, Wasilkowski, Woźniakowski (2010)
Values of $f_{\mathbf{u}}$ can be efficiently computed from a 'small' number of values of f using only a 'few' active variables.

Step 3: The multivariate decomposition method

We have the orthogonal decomposition

$$
H(M)=\bigoplus_{\mathbf{u}} H\left(\gamma_{\mathbf{u}} m_{\mathbf{u}}\right)
$$

The corresponding projections $f_{\mathbf{u}} \in H\left(\gamma_{\mathbf{u}} k_{\mathbf{u}}\right)$ of $f \in H(M)$ are given by

$$
f_{\emptyset}=f(a, a, \ldots) \quad \text { and } \quad f_{\mathbf{u}}\left(\left(x_{j}\right)_{j \in \mathbf{u}}\right)=\left(f-\sum_{\mathbf{v} \subseteq \mathbf{u}} f_{\mathbf{v}}\right)(\mathbf{y})
$$

for $\mathbf{u} \neq \emptyset$, where

$$
y_{j}= \begin{cases}x_{j}, & \text { if } j \in \mathbf{u} \\ a, & \text { otherwise }\end{cases}
$$

Lemma Kuo, Sloan, Wasilkowski, Woźniakowski (2010)
Values of $f_{\mathbf{u}}$ can be efficiently computed from a 'small' number of values of f using only a 'few' active variables.

Theorem Plaskota, Wasilkowski (2011), Wasilkowski (2012)
The minimal errors e_{n} for int/app on $H(M)$ satisfy

$$
\forall \varepsilon>0 \exists c>0 \forall n \in \mathbb{N}: \quad e_{n} \leq c n^{-(s-\varepsilon)}
$$

Step 3: The multivariate decomposition method

We have the orthogonal decomposition

$$
H(M)=\bigoplus_{\mathbf{u}} H\left(\gamma_{\mathbf{u}} m_{\mathbf{u}}\right)
$$

The corresponding projections $f_{\mathbf{u}} \in H\left(\gamma_{\mathbf{u}} k_{\mathbf{u}}\right)$ of $f \in H(M)$ are given by

$$
f_{\emptyset}=f(a, a, \ldots) \quad \text { and } \quad f_{\mathbf{u}}\left(\left(x_{j}\right)_{j \in \mathbf{u}}\right)=\left(f-\sum_{\mathbf{v} \subseteq \mathbf{u}} f_{\mathbf{v}}\right)(\mathbf{y})
$$

for $\mathbf{u} \neq \emptyset$, where

$$
y_{j}= \begin{cases}x_{j}, & \text { if } j \in \mathbf{u} \\ a, & \text { otherwise }\end{cases}
$$

Lemma Kuo, Sloan, Wasilkowski, Woźniakowski (2010)
Values of $f_{\mathbf{u}}$ can be efficiently computed from a 'small' number of values of f using only a 'few' active variables.

See Gilbert, Kuo, Nuyens, Wasilkowski (2017) for the implementation.

Proof of the Lower Bound for Integration

Since $H_{1} \hookrightarrow H(K)$ with norm one, we get

$$
\exists c>0 \forall n \in \mathbb{N}: \quad e_{n} \geq c n^{-r_{1} / 2} .
$$

Proof of the Lower Bound for Integration

Since $H_{1} \hookrightarrow H(K)$ with norm one, we get

$$
\exists c>0 \forall n \in \mathbb{N}: \quad e_{n} \geq c n^{-r_{1} / 2} .
$$

To verify

$$
\forall \varepsilon>0 \exists c>0 \forall n \in \mathbb{N}: \quad e_{n} \geq c n^{-(\varrho \ln (2)-1+\varepsilon) / 2}
$$

Proof of the Lower Bound for Integration

Since $H_{1} \hookrightarrow H(K)$ with norm one, we get

$$
\exists c>0 \forall n \in \mathbb{N}: \quad e_{n} \geq c n^{-r_{1} / 2} .
$$

To verify

$$
\forall \varepsilon>0 \exists c>0 \forall n \in \mathbb{N}: \quad e_{n} \geq c n^{-(\varrho \ln (2)-1+\varepsilon) / 2}
$$

we

- start with $\operatorname{span}\left\{e_{0}, e_{1}\right\} \subset H\left(1+k_{j}\right)$,
- apply the two embedding steps reversely,
- employ the lower bound from Plaskota, Wasilkowski (2011) for superpositions of weighted tensor products of anchored kernels.

Does randomization help?

Put

$$
s^{\mathrm{ran}}=\frac{1}{2} \cdot \min \left(r_{1}+1, \varrho \ln (2)-1\right) .
$$

Does randomization help?

Put

$$
s^{\mathrm{ran}}=\frac{1}{2} \cdot \min \left(r_{1}+1, \varrho \ln (2)-1\right)
$$

Theorem Assume that $r_{1}>1$ and $\varrho \ln (2)>1$. Then the minimal errors $e_{n}^{\text {ran }}$ of randomized algorithms for integration satisfy

$$
\begin{aligned}
& \forall \varepsilon>0 \exists c_{1}, c_{2}>0 \forall n \in \mathbb{N}: \\
& \quad c_{1} n^{-\left(s^{\mathrm{ran}}+\varepsilon\right)} \leq e_{n}^{\mathrm{ran}} \leq c_{2} n^{-\left(s^{\mathrm{ran}}-\varepsilon\right)} .
\end{aligned}
$$

Does randomization help?

Put

$$
s^{\mathrm{ran}}=\frac{1}{2} \cdot \min \left(r_{1}+1, \varrho \ln (2)-1\right)
$$

Theorem Assume that $r_{1}>1$ and $\varrho \ln (2)>1$. Then the minimal errors $e_{n}^{\text {ran }}$ of randomized algorithms for integration satisfy

$$
\begin{aligned}
& \forall \varepsilon>0 \exists c_{1}, c_{2}>0 \forall n \in \mathbb{N}: \\
& \quad c_{1} n^{-\left(s^{\mathrm{ran}}+\varepsilon\right)} \leq e_{n}^{\mathrm{ran}} \leq c_{2} n^{-\left(s^{\mathrm{ran}}-\varepsilon\right)} .
\end{aligned}
$$

Proof: Use embeddings and Dick, Gnewuch (2014).

Summary

- Function spaces: countable tensor products of (Korobov) spaces of increasing smoothness.
- n-th minimal error for integration and L_{2}-approximation of order

$$
s=\frac{1 \pm \varepsilon}{2} \cdot \min \left(r_{1}, \varrho \ln (2)-1\right)
$$

Summary

- Function spaces: countable tensor products of (Korobov) spaces of increasing smoothness.
- n-th minimal error for integration and L_{2}-approximation of order

$$
s=\frac{1 \pm \varepsilon}{2} \cdot \min \left(r_{1}, \varrho \ln (2)-1\right) .
$$

- Main tool: embeddings, see Hefter, R (2015),
- Here: weights and anchored kernels instead of increasing smoothness.

Summary

- Function spaces: countable tensor products of (Korobov) spaces of increasing smoothness.
- n-th minimal error for integration and L_{2}-approximation of order

$$
s=\frac{1 \pm \varepsilon}{2} \cdot \min \left(r_{1}, \varrho \ln (2)-1\right) .
$$

- Main tool: embeddings, see Hefter, R (2015),
- Here: weights and anchored kernels instead of increasing smoothness.
- Form a complexity point of view: excessive amount of smoothness in the tensor products of (Korobov) spaces of increasing smoothness.

