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For j € N and v € Z we define Fourier weights
ayj=(1+[v])"

and the corresponding scale of Korobov spaces

= {f € [x([0,1]) : Zal/,] (f,e)) Ly([o, 1])| < oo},
VEZ

(F.8)H =Y owj- (Fren) (o)) - (evs &) La(0,1])-
VvEZ

Remark H; <> H;i1 compact < rj < rjy1.
Finally, based on the unit vectors ¢y = 1,

H =) H;.

jEN
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Consider L»([0,1]) w.r.t the product p of the uniform distribution
o on [0,1]. Put

4]

0 = liminf

J—0o0 |n(j) < [0700]

Lemma 0 >0 = H < L([0,1]") compact.

A Hilbert space F is a RKHS on a domain E # () if
» F CKEF,
» F — K: f — f(x) is continuous for every x € E.
Lemma H; RKHS on [0,1] & r; > 1.
Lemma

(n>1A0In(2) >1) = HRKHS on [0,1]Y = (n > 1A0In(2) > 1).
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Common assumption, if H? is a RKHS:
» Evaluation of f € HY at any x € [0,1]? at cost one.

Actually, we consider

H =) H;.

jeN
Assumption, if H is a RKHS:
» Fix a € [0,1]. Evaluation of f € H at any x € [0, 1] with
active(x) = [{j € N: x; # a}| < o0

at cost active(x). See Kuo, Sloan, Wasilkowski, Wozniakowski
(2010), and cf. Creutzig, Dereich, Miiller-Gronbach, R (2009).
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Let G=Ror G = L»([0,1]V), and let S: H — G be given by

S(F) :/ fdu o S(f)=f.
[0,1]%
We study deterministic linear algorithms
A(f) =) f(x) &
i=1

with g; € G and x; € [0, 1]. Error and cost
error(A) = sup{|[S(f) — A(f)llc : f € H, [Iflln <1},

m
cost(A) = > active(x;).
i=1
Key quantity: n-th minimal error

en = inf{error(A) : cost(A) < n}.

Questions
» Order of convergence of the minimal errors e,?
» Optimal choice of the sampling points x1,...,x,7?
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[1l. Results and Remarks

Recall that r
= liminf —=
e= S In0)

Put
s=3-min(r, oIn(2) — 1).

Theorem Assume that r; > 1 and ¢In(2) > 1. Then the minimal
errors e, for integration and Ly-approximation satisfy

Ve>0dc,co>0VneN:
can ) <o < yn (579,
Remark For Ly-approximation using linear functionals at cost one
s =3 -min(r, oIn(2)).

See Papageorgiou, WozZniakowski (2010), Siedlecki (2014), Diing, Griebel
(2016), Diing, Griebel, Huy, Rieger (2018).
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Abstract approach, based on
» a probability measure pg on any set D # (),
» an orthonormal system (e,),en, in L2(D) with eg =1,

» Fourier weights «, ; such that, for v,j € N,

061,1>1:Ck0’j

and
Qy j > max(aml,ald-).
Example o, = exp(v?) with 0 < by < by < ...
Cf. Irrgeher, Kritzer, Pillichshammer, WoZniakowski (2016).
Example
» Walsh, Haar, Jacobi (Legendre) basis ~ domain [a, b]".

» Hermite basis ~» domain ¥ C R,
Cf. Gnewuch, Mayer, R (2014).

» Gaussian kernels with increasing shape parameters.
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V. Embeddings and Optimal Algorithms

Notation
» H(K) RKHS with reproducing kernel K,
> u any finite subset of N,
> 1o uniform distribution on [0, 1],
» 1 product of g on [0, 1]N, uy product of g on [0, 1]Y.

We have H = H(K) with

K(x, H(l—i—Za W)Z(Z@k)xy

JjeN v#0 u jeu
~——
—ky

=ki(x},y})
Since H(1) L H(kj) in H(1 + k;), we have the orthogonal decomposition
=P H(k)
u

For the corresponding projections f, € H(k,) of f € H(K)

Fdpy = / £, dyia.
/[0,1]N a ; [0,1]v s )
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Recall that
fdp= / fu dftu-
/[0,11N zu: [0.1]"

Basic idea: approximate the most relevant finite-dimensional
integrals based on function values of f.

More precisely, embed H(K) into another RKHS on the domain
[0, 1]N, where this makes sense.
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Proof of the Upper Bound
Step 1: Weighted kernels instead of increasing smoothness

Put
v = sup =217,
v#£0 au,j
We have
» Hi = H(1 + vjki) with equivalent norms for every j € N, but
» H; — H(1 + vjk1) with norm one, and compactly if r; > ry.

Furthermore, for f € Hy and I(f) = [jg 1) f dpo,

2 1
111y = ()™ + Pl 1= 1) s )
J

Lemma For

L=QR+yk)=> [ Rk

JEN u  jeu J€Eu
——
=Yu
we have H(K) — H(L) with norm one.
10



Step 2: Anchored kernels instead of ANOVA kernels
Lemma Gnewuch, Hefter, Hinrichs, R (2017)
For every a € [0, 1] there exists
» a reproducing kernel m: [0, 1] x [0,1] — C and
» aconstant c > 1
such that
m(a,a) =0, H(1+ m) = Hs,
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Lemma Gnewuch, Hefter, Hinrichs, R (2017)
For every a € [0, 1] there exists

» a reproducing kernel m: [0, 1] x [0,1] — C and

» aconstant c > 1

such that
m(a,a) =0, H(1+ m) = Hy,
and for
M = ®(1 +cyym) = Z cluly, ® m
JjEN u jEuU
=m
we have

H(L) < H(M) continuously.

Key property: M is a superposition of weighted tensor products
of an anchored kernel.

11
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xj, if j € u,
Yji = .
! a, otherwise.

Lemma Kuo, Sloan, Wasilkowski, WozZniakowski (2010)
Values of f, can be efficiently computed from a ‘small’ number of
values of f using only a ‘few’ active variables.

Theorem Plaskota, Wasilkowski (2011), Wasilkowski (2012)
The minimal errors e, for int/app on H(M) satisfy
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Step 3: The multivariate decomposition method

We have the orthogonal decomposition
= @ H(vamy).
u

The corresponding projections f, € H(vyyky) of f € H(M) are given by

fp=f(a,a,...) and f((xj)jcu) :< Zf)

vCu
for u # (), where

xj, if j € u,
Yi = .
a, otherwise.

Lemma Kuo, Sloan, Wasilkowski, Wozniakowski (2010)
Values of f, can be efficiently computed from a ‘small’ number of
values of f using only a ‘few’ active variables.

See Gilbert, Kuo, Nuyens, Wasilkowski (2017) for the implementation.
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Proof of the Lower Bound for Integration

Since H; — H(K) with norm one, we get
dc>0VneN: e,,zcn*’lp.
To verify
Ve>0dc>0VneN: e, > cn(en(@)-1+e)/2

we
» start with span{ep, e1} C H(1 + kj),
> apply the two embedding steps reversely,

» employ the lower bound from Plaskota, Wasilkowski (2011)
for superpositions of weighted tensor products of anchored kernels.

13
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Does randomization help?

Put
s =1 . min(r +1, oIn(2) — 1).

Theorem Assume that r; > 1 and ¢In(2) > 1. Then the minimal
errors ;" of randomized algorithms for integration satisfy

Ve>0dc,co>0VneN:

e ) < g < gy ()

Proof: Use embeddings and Dick, Gnewuch (2014).

14
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Summary
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Function spaces: countable tensor products of (Korobov)
spaces of increasing smoothness.

n-th minimal error for integration and Ly-approximation of order

s == min(n, oIn(2) — 1).

Main tool: embeddings, see Hefter, R (2015), . ...

Here: weights and anchored kernels instead of increasing
smoothness.

Form a complexity point of view: excessive amount of
smoothness in the tensor products of (Korobov) spaces of
increasing smoothness.
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