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•  Sometimes, yields error with necessary dependence on dimensions or 

size of      even for simple classes, e.g., learning thresholds [Bun et al. 2015].  H
Become more challenging with the 
rise of modern over-parameterized 
machine learning. 
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 !x1,…, !xm{ }
Public features 

Black-box access to a 
non-private learner 

Goals:  
•  Black-box use of any non-private learner. 

•  Transferrable guarantees: non-private accuracy ! private accuracy. 
•  Knowledge transfer: public features + private labels used to train a final 

private classifier. 

•  Answer lots of queries: conservative use of the privacy budget. 
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•  Better constructions were given in [Papernot et al.’17, Papernot et al’18]  
   (PATE framework), but without formal accuracy guarantees.  

"  [Papernot et al.’18]: report-noisy-max + sparse-vector 

•  Very recently, [Dwork-Feldman’18] considers the problem of private prediction 
(focuses on the single-query case): 
"  Different constructions, more general settings 

•  Subsample-and-aggregate for label prediction 
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A stable query is a function (of the dataset) whose outcome does not change 
unless we change a “relatively large” number of points in the dataset. 

Any good learner can be used in natural way to achieve this notion, e.g., via 
aggregating ensemble of classifiers (Bagging [Breiman’94]). 

•  Distance-to-instability [ST’13] exploits stability to produce noiseless outputs 
for stable queries.   

•  Sparse-vector [DNRRV’09, DR14] enables us to pay a privacy cost only for 
unstable queries ! efficient use of privacy budget ! answer more queries 
than what advanced composition suggests. 

Idea: Combining distance-to-instability and sparse-vector techniques: 
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We also obtain analogous bounds for the agnostic setting. 

Hence, we can give the following guarantees in the standard PAC model.   
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Private  
Training set 

S = {(x1, y1), …, (xn, yn)} 

A black-box construction for a private learner (outputs a classifier) 
for any of the following settings:  

•  Training set is private but we can access public unlabeled data. 

•  This construction:  

"  is efficient as long as the non-private learner is efficient.  

"  allows for transferring accuracy guarantees of the non-private learner 
to accuracy guarantees of the private learner. 
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A black-box construction for a private learner (outputs a classifier) 
for any of the following settings:  

•  Only the labels of the training set are considered private 
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Idea: 

 B

1)  The labels of the new training set are generated by our previous algorithm. 
2)  We can bound the classification error for our previous algorithm. 

3)  A good non-private learner     will yield      whose classification error is 

close to the classification error in the new training set.  
 B h

We obtain formal accuracy guarantees for the final learner. 

ĥPublishes a 
final classifier 



Private learner via Knowledge Transfer 

A black-box construction for a private learner (outputs a classifier) 
for any of the following settings:  

•  Only the labels of the training set are considered private 
(known as label-private learning [Chaudhuri-Hsu’11,  

       Beimel-Nissim-Stemmer’14]) 

•  Training set is private but we can access public unlabeled data. 

     Our           -DP Algorithm     

    for classification queries 
 (ε,δ )

ŷ1,…, ŷm{ }
 !x1,…, !xm{ }

(Agnostic) PAC 
         learner 
            for   ĥ∈H

Private  
Training set 

S = {(x1, y1), …, (xn, yn)} 

 B
 H

 Let       be of VC-dim V.  Let      be an agnostic PAC learner for     .                        

 For any              let                          .  
 H

α > 0,
 
m = !O V /α 2( )

 B  H

•  Realizable case: if                               , then w.h.p. the output             has 

                    
 
n = !O V 3/2 /α 3/2( )
 
Ex,y 1(ĥ(x) ≠ y)⎡⎣ ⎤⎦ =O(α )

•  Agnostic case: if                                , then w.h.p. output              has 

                                                                                , where 

  h! ∈H

 
Ex,y 1(ĥ(x) ≠ y)⎡⎣ ⎤⎦ =O(e

* +α )
 
n = !O V 3/2 /α 5/2( )

  
e* = min

h∈H
 Ex,y 1(h(x) ≠ y)[ ]

  h! ∈H



#  Prior work on label-privacy [CH’11, BNS’14]: 
•  Pure DP, white-box constructions. 

•  [CH’11] obtains sample complexity bounds: involves smoothness 

assumptions on the distribution. 

•  [BNS’14] obtains upper bounds for the realizable setting only. 

Private learner via Knowledge Transfer 



Extension: privately answering soft-label queries  
 

#  A soft-label             for a feature-vector    is an estimate for the 
conditional probability   

#  Applications: ranking and product recommendation.  

∈[0,1] x
p(y = 1  x  )



#  A construction with private predictions nearly as accurate as the 
    non-private ones with a small cost                    in sample size assuming: 

"  # queries with low label-noise (high margin)  
  
!O T / ε( )

 p(y = 1 x)− 0.5 

≥ m −T

Extension: privately answering soft-label queries  
 

#  A soft-label             for a feature-vector    is an estimate for the 
conditional probability   

#  Applications: ranking and product recommendation.  

∈[0,1] x
p(y = 1  x  )



#  A construction with private predictions nearly as accurate as the 
    non-private ones with a small cost                    in sample size assuming: 

"  # queries with low label-noise (high margin) 

"  the non-private learner satisfies a weak notion of stability 

    (on-average stability), satisfied by SGD.   

  
!O T / ε( )

≥ m −T

Extension: privately answering soft-label queries  
 

#  A soft-label             for a feature-vector    is an estimate for the 
conditional probability   

#  Applications: ranking and product recommendation.  

∈[0,1] x
p(y = 1  x  )



Summary 

1.  A new general paradigm for answering “stable” queries: 
"  Based on a new approach combining distance-to-instability   

    [Smith-Thakurta’13] with sparse-vector [DNRRV’09, DR14] techniques. 

2.  New construction for privately answering classification queries: 
"  Bounds on misclassification rate in the standard PAC model:    

better than what is implied by advanced composition. 

3.  A black-box construction for a private learner via knowledge 
transfer with rigorous guarantees  
"  Sample complexity bounds in terms of VC-dimension. 

"  also, serves as label-private learner. 

4.  Extension: construction for privately answering soft-label queries 


