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Main issues with this approach:

« Requires white-box modification of standard non-private learners.

« Often requires some knowledge about structure of 7.

* Sometimes, yields error with necessary dependence on dimensions or
size of H even for simple classes, e.g., learning thresholds [Bun et al. 2015].
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Main issues with this approach:

« Requires white-box modification of standard non-private learners.

« Often requires some knowledge about structure of 7.

* Sometimes, yields error with necessa

size of TH even for simple classes, e.g B€come more challenging with the
rise of modern over-parameterized

machine learning.
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DP Learning: Alternative Approach
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Goals: J
* Black-box use of any non-private learner. final classifier /1

new training set

» Answer lots of queries: conservative use of the privacy budget.
« Transferrable guarantees: non-private accuracy —> private accuracy.

« Knowledge transfer. public features + private labels used to train a final
private classifier.
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Related Work

Knowledge transfer based on aggregated classifiers ensemble dates back to
[Breiman’94].

» |In privacy literature, general subsample-and-aggregate framework was
introduced in [NRS’07].

« Subsample-and-aggregate for label prediction
[Bilenko-Dwork-Muthukrishnan-Rothblum-Thakurta-Wang'12 ]

« Knowledge transfer for private classification was first explored in
[Hamm-Cao-Belkin'16]:
» White-box construction with weaker guarantees.

» Better constructions were given in [Papernot et al.’17, Papernot et al’18]
(PATE framework), but without formal accuracy guarantees.

» [Papernot et al.”18]: report-noisy-max + sparse-vector
» Very recently, [Dwork-Feldman’18] considers the problem of private prediction

(focuses on the single-query case):.
» Different constructions, more general settings
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Generic paradigm for answering stable queries

A stable query is a function (of the dataset) whose outcome does not change
unless we change a “relatively large” number of points in the dataset.



Generic paradigm for answering stable queries

A stable query is a function (of the dataset) whose outcome does not change
unless we change a “relatively large” number of points in the dataset.

Any good learner can be used in natural way to achieve this notion, e.g., via
aggregating ensemble of classifiers (Bagging [Breiman’'94]).



Generic paradigm for answering stable queries

A stable query is a function (of the dataset) whose outcome does not change
unless we change a “relatively large” number of points in the dataset.

Any good learner can be used in natural way to achieve this notion, e.g., via
aggregating ensemble of classifiers (Bagging [Breiman’'94]).

Idea: Combining distance-to-instability and sparse-vector techniques:

« Distance-to-instability [ST'13] exploits stability to produce noiseless outputs
for stable queries.

« Sparse-vector [DNRRV’09, DR14] enables us to pay a privacy cost only for
unstable queries > efficient use of privacy budget - answer more queries
than what advanced composition suggests.
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Inputs:
Private training set S € {(x,,,),...,(x,,y )} drawn i.i.d.

Queries )~Cl ,..,)~cm . public feature-vectors i.i.d. (from same distribution).
Privacy parameters €, )

Cut-off T : number of unstable queries we allow before terminating.

———

3) Private stability test: dist_ (S)> Thres ?

/ |

dist, (S)+Lap(2/€)  Thres=Thres+Lap(l/¢)

‘ distx]_(S)
l Thres =log(m/0)/¢€
j_- ¢’ ~ /[T log(1/8)
1 2 .. v* .. L



Privately answering classification queries

Inputs:
Private training set S € {(x,,,),...,(x,,y )} drawn i.i.d.

Queries )~Cl ,..,)~cm . public feature-vectors i.i.d. (from same distribution).
Privacy parameters €, )

Cut-off T : number of unstable queries we allow before terminating.

——

3) Private stability test: dist_ (S)> Thres ?

- Output v* = label with largest # of votes.

- Go to next query.
‘ distxj(S)
‘ Thres =log(m/0)/¢€

l ¢ =¢/\Tlog(1/8)

1 2 .. v* .. L




Privately answering classification queries

Inputs:
Private training set S € {(x,,,),...,(x,,y )} drawn i.i.d.

Queries 561 ,..,)~cm . public feature-vectors i.i.d. (from same distribution).
Privacy parameters €, )

Cut-off T : number of unstable queries we allow before terminating.

——

3) Private stability test: dist_ (S)> Thres ?

4?‘5’/ NG
- Output v* = label with largest # of votes. Output |
- Go to next query. counter = counter + 1

If counter > T, then Abort.
Go to next query.

‘ dist, (S)
‘ Thres =log(m/0)/¢€

l ¢ =¢/\Tlog(1/8)

1 2 .. v* .. L




Privately answering classification queries

Theorem: This algorithm is (¢, O )-DP.

Proof idea: The construction can be viewed as a composition of a
(e, 0 /2)-DP sparse-vector algorithm [DR’14] and a (0, 6 /2)-DP
distance-to-instability algorithm [ST°13].

‘ dist; (S)
I ' Thres =log(m/0)/¢€

- ¢ =~e/\[Tlog(1/8)




Privately answering classification queries

Accuracy depends on how accurate and consistent are the predictions of

the classifiers ensemble /,(x;),...,h, (X;) for each query )ch

‘ dist, (S)
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Privately answering classification queries

Accuracy depends on how accurate and consistent are the predictions of

the classifiers ensemble /,(x;),...,h, (X;) for each query )ch

Intuition: If A is a good non-private learner, then most of the ensemble
predictions will agree (consistency) on the correct label (accuracy).

‘ dist; (S)
I ' Thres =log(m/0)/¢€

- ¢ =~e/\[Tlog(1/8)
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Analysis of misclassification rate (binary labels case)

Idea: If each of h1 ye o ,hk has classification error O(,

\

E  [1h,(x)#y|<a, Vielk]

then except for at most = 3m ¢ queries, at least 2k /3 classifiers will agree

on the correct label.

#of X ineachrow=mo h1
Total #of X =kma h,

# of columns w/ more than
~k/3 Xis <3mo

X, X, X
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Privately answering classification queries

Analysis of misclassification rate (binary labels case)

Idea: If each of h1 ye o ,hk has classification error O(,
E  [1h,(x)#y|<a, Vielk]

then except for at most = 3m ¢ queries, at least 2k /3 classifiers will agree

on the correct label.

Setting T = 3m o and k = Thres = ﬁ/e, then our construction yields
a misclassificationrate 7 /m = 3«
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Privately answering classification queries

Hence, we can give the following guarantees in the standard PAC model.

Setup:

- Training set (of size n) and queries set (of size m) are i.i.d.
- True labels generated by a hypothesis from a class H of VC-dim V.

Let A be any non-private PAC learner for H,, then (ignoring logs!),
i) can privately answer up to m = n/V binary classification queries with the

optimal non-private misclassification rate = V/n (privacy for free).

i) Beyond n/V queries, our misclassification rate is = m V?/n?

Standard advanced composition would have led to error = \/% V/n for all m.

We also obtain analogous bounds for the agnostic setting.
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Private learner via Knowledge Transfer

 This construction:

> is efficient as long as the non-private learner is efficient.

» allows for transferring accuracy guarantees of the non-private learner
to accuracy guarantees of the private learner.

Private
Training set ——

S - {(X], y])’ sy (xn’ yn)}

Publishes a ~

. Y <——| Non-private learner
final classifier 1 P <€

-

for classification queries

-
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Our (€,0)-DP Algorithm
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new training set
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Private learner via Knowledge Transfer

We obtain formal accuracy guarantees for the final learner.

Idea:
1) The labels of the new training set are generated by our previous algorithm.
2) We can bound the classification error for our previous algorithm.

3) A good non-private learner 3 will yield /1 whose classification error is

close to the classification error in the new training set.

new training set

4 )

Eriyate Our (€,0)-DP Algorithm {551 yo s ,fm}
Training set —— - classificati o
or classification que A A
S = {(x], y]), ceey (xn, yn)} \ y {}71, ,ym}
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Private learner via Knowledge Transfer

Let H be of VC-dim V. Let B be an agnostic PAC learner for H.
Forany o >0, let m= 5(V/052).
* Realizable case: if n = 5(V3/2 /o ) then w.h.p. the output lAl € 'H has
E,,|1(h(x)#y) |= 0(@)
Agnostic case: if n = O(VS/2 /o ) then w.h.p. output ]/’\l € 'H has
E,, [1(ﬁ(x) ” y)] =0(¢’ +a) , where ¢’ =min E, [1(h(x)# y)]
4 )

Private Our (€,8)-DP Algorithm |1 X, -+ >, |
Training set ——

for classification queries 2 .
S={(X], y])’ ey (xn’ yn)} \_ )ﬁ{yl,...’ym}

A (Agnostic) PAC ‘
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for H




Private learner via Knowledge Transfer

* Prior work on label-privacy [CH’11, BNS’14].
* Pure DP, white-box constructions.
« [CH11] obtains sample complexity bounds: involves smoothness
assumptions on the distribution.

« [BNS’14] obtains upper bounds for the realizable setting only.
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Extension: privately answering soft-label queries

A soft-label €[0,1] for a feature-vector x is an estimate for the
conditional probability p(y =1 | X )

Applications: ranking and product recommendation.

= A construction with private predictions nearly as accurate as the
non-private ones with a small cost 0(\/7/6) In sample size assuming:

> # queries with low label-noise (high margin) > m — 1T
» the non-private learner satisfies a weak notion of stability

(on-average stability), satisfied by SGD.



Summary

1. A new general paradigm for answering “stable” queries:

» Based on a new approach combining distance-to-instability

[Smith-Thakurta’13] with sparse-vector [DNRRV’09, DR 14] techniques.

2. New construction for privately answering classification queries:

» Bounds on misclassification rate in the standard PAC model:
better than what is implied by advanced composition.
3. Ablack-box construction for a private learner via knowledge
transfer with rigorous guarantees
» Sample complexity bounds in terms of VC-dimension.

» also, serves as label-private learner.

4. Extension: construction for privately answering soft-label queries



