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• Generalization of the typical framework of string theory; allows for 
more general physics than is realizable in weakly-coupled string 
theory.


• Dictionary between a Calabi-Yau elliptic (or genus-one) fibration X 
over a base B, and a physical theory. 
 
 

• Here B is the geometry of physical extra spatial dimensions. The 
fibration encodes data necessary to determine gauge group, matter 
content, Yukawa coupling etc. that are all important data for a 
physical theory. 


• Elliptically-fibered Calabi-Yau fourfold X with threefold base B is 
most relevant for physics of our universe, since this gives a physical 
theory in four dimensions. We will focus on such fourfolds.

What is F-theory?

X ! B ⇠ physical theory

Morrison, Vafa



• Different elliptically fibered X define different physical theories, 
and we are therefore immediately led to asking some questions:


1. Is the set of X finite in any sense?


2. If so, how many are there? What are their features?


3. Are models that give physics close to that of our universe 
common or uncommon? Is there a geometric reason for 
this?


4. Are there any universal features that may serve as a sort of 
“prediction”? 

• This talk will concentrate on (2) and a little bit (4), which I will 
elaborate on.

Physics questions

A great deal of progress: many people here!

See talk by Di Cerbo, Svaldi



• Elliptic fibration parametrized by Weierstrass equation 
 
 
f and g are global sections of line bundle: 
 

• Singularities of the elliptic fibration play an important role. The subloci 
where the elliptic fiber becomes singular is given by the discriminant locus: 

• Physically, the vanishing of the discriminant marks the location of 7-
branes, which are divisors in B. Let z be a local coordinate where the fiber 
becomes singular. The MOV (a, b, c) along z= 0 of (f, g,    ), respectively,  
determine, by Kodaira’s classification of singular fibers, a geometric gauge 
group, which is some of the data for our physical theory.  
 
 

y2 = x3 + f(zi)x+ g(zi)

f 2 �(O(�4KB)) g 2 �(O(�6KB))

A few details

� = 4f3 + 27g2 = 0

f = zaF g = zbG � = zc�̃

�



• In some cases, we may have a > 0 and  b > 0 for all choices of 
complex structure moduli. 


• The locus z = 0 then has a non-Higgsable 7-brane. We say these are 
non-Higgsable because the fiber type is independent of complex 
structure, and the gauge group therefore cannot be broken/changed by 
a complex structure deformation (Higgsing). 
 
 
 

Non-Higgsable 7-branes

Kodaira

Some selective progress: Halverson, Grassi, Morrison, Shaneson, Taylor, Wang

Morrison, Taylor



• What bases give well-defined F-theory models? Not every base will do. 
First, 
 
 
must have global sections to construct the elliptically fibered Calabi-Yau.


• Second, we need the base to give sensible physics. We have good 
control over the theory when we can make the Calabi-Yau X smooth. We 
can directly control the model when (not mutually exclusive):


1. X admits a crepant resolution.


2. X admits a deformation in complex structure to a smooth Calabi-
Yau.


• However, we don’t expect that the only physically admissible  B are 
those for which X is smoothable; in particular, if X is at finite distance in 
moduli space from another elliptically fibered Calabi-Yau X’ , we expect 
X’ to be a physically reasonable as well. 

Bases for F-theory

O(�4KB) O(�6KB)



• Starting with an elliptically fibered Calabi-Yau X -> B, one can crepantly pass to 
another elliptically fibered Calabi-Yau X’’ -> B’ by a base-change, and pass to a 
minimal Weierstrass model.


• This procedure is


1. Perform a blowup B’ -> B in the base along a subvariety C and perform a 
base change 

2. Perform a change of coordinates and pass to a minimal Weierstrass model  
X’’ -> B’.


• For this procedure to be crepant we need 
 
 
 

• This produces a new elliptic Calabi-Yau X’’ -> B’, with a new base B’ which is a 
blowup of B.

Base transitions

MOVC(f, g) � (4, 6)

MOVC(f, g) � (8, 12)

if C is a curve in B

if C is a point in B

X
0
= X ⇥B B

0
! B

0

Candelas, Diaconescu, Florea, Morrison, Rajesh



• On the other hand, we’d like to be at finite distance in moduli 
space from a Calabi-Yau we understand. 


• For elliptically fibered Calabi-Yau fourfolds (with smooth 
threefold base), X’’ is finite distance from X if 
 
 
 
 
 
 
 

Finite distance in moduli space

D

C

P

for all divisors

for all curves

for all points

We’ll refer to this generally as the (4,6) condition

Hayakawa, Wang

Candelas, Diaconescu, Florea, Grassi, Morrison, Rajesh

MOVD(f, g) < (4, 6)

MOVC(f, g) < (8, 12)

MOVP (f, g) < (12, 18)



• Our goal will be to generate a large ensemble of bases, and understand the 
associated physics.


• This is an explorative approach to understanding bases for F-theory: see 
what we can generate and what we can learn from it.


• The strategy will be to:


1. Start with some “minimal” geometry whose associated physics we 
understand (i.e. we can smooth it with complex structure deformation, 
or there is a crepant resolution).


2. Move through Calabi-Yau moduli space by performing base transitions.


3. Do so without violating the (4,6) condition, so that each Calabi-Yau is 
connected in moduli space to the original model.


• We will use toric threefolds as bases, which are combinatorial, and very nice 
to work with.

Strategy for generating bases



x0

x1

x2

Toric combinatorics

• Toric varieties are combinatorial: they admit a description in 
terms of a fan of rational polyhedral cones. 


• Each ray of the fan       corresponds to a homogeneous (toric) 
coordinate     and therefore each ray corresponds to a divisor 

• n-dimensional cones then correspond to  
codimension-n subvarieties, by 
 setting the corresponding 
toric coordinates to zero.


• Example:     

vi
xi

Di = {xi = 0}

P2



• Some fans correspond to face fans of triangulations of boundaries of 
reflexive polytopes. Such reflexive polytopes give a rich class of toric 
varieties. 
 
 
 
 
 
 
A fine, regular, star triangulation (FRST) of a 3d reflexive polytope 
corresponds to a smooth projective toric 3-fold.


• These toric varieties are weak Fano toric varieties (WFTV), and the 
generic CY 4-fold elliptic fibrations over them are smooth, which implies 
there are no non-Higgsable 7-branes, and no gauge groups generically.


• There are 4319 3d reflexive polytopes, and ~10^15 triangulations total, 
and so these are a rich class of toric threefolds. 

Toric varieties and polytopes

Halverson, Tian, Carifio, Kriokov, Nelson

Batyrev, Kreuzer, Skarke



• As stated before, WFTVs have no non-Higgsable 7-branes. Can tune 
gauge groups by tuning degenerating fibers, but are not forced with any.


• We will generate the ensemble via toric blowups of these WFTVs.


• Blowups can only decrease the number of sections in f and g, which 
increases the likelihood of having a NH7, and moves us closer to the (4,6) 
condition.


• For a given toric variety V, corresponding to a fan F with rays      and 
homogenous coordinates      , a global section of                 corresponds to 
 

• The corresponding section is then of the form 
 
 
 

Weak Fano toric threefolds as minimal geometries

{m|hm, vii � �n 8 vi}

xi O(�nKB)
vi

Y
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• Consider a WFT threefold given by a FRST T of a 3d reflexive 
polytope. Toric subvarieties are toric points and toric curves. 
Toric points are represented by 2-simplices (faces) in T, and 
toric curves are represented by 1-simplices (edges) in T. 


• Blowups are done by adding rays. For a subvariety 
corresponding to the cone 
 
 
one blows up this subvariety by adding a ray  
 
 
 
Can iterate this to continually blowup and form a chain of new 
varieties from the original one.

Blowups along toric subvarieties

{v1, . . . , vn}

ve =
X

i

vi



Blowups along toric subvarieties

• For visualization it is easiest to project down the exceptional rays 
arising from the blowups down to the polytope, so blowing up 
corresponds to subdividing simplices

Blowing up a toric curve

Blowing up a toric point



• Adding additional rays to the fan adds additional 
hyperplane constraints, and generically decreases the 
number of global sections of                                
 

• Example:               ,                    :

Blowups cut out sections 
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P1 ⇥ P1

O(�nKB), n � 0

O(�4KB)
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Example: P1 ⇥ P1
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Fan Global Sections

Example: P1 ⇥ P1

• Intuitively, these blowups force higher MOV, and move us 
from smooth elliptic fibration towards ones that saturate the 
(4,6) condition. We’ll see this is true in more detail later. 



• Now we have a refined strategy:


1. Start with a WFT threefold base, and corresponding elliptically fibered 
Calabi-Yau fourfold.


2. String together as many toric blowups as possible to produce new bases 
and corresponding Calabi-Yau fourfolds, without violating the (4,6) 
condition. 


• The ensemble of such geometries turns out to be enormous (we don’t know 
the actual size).


• Two complimentary approaches to understand/probe this space:


1. Sample the space using random walks, use statistical techniques to 
estimate the size and other properties of the ensemble (See Yinan’s talk). 


2. Find a way to factorize (some of) the blowups in order to derive a strict 
lower bound on the number of admissible bases (this talk).

Strategy again

Taylor, Wang

Halverson, C.L., Sung



• Easiest to describe in combinatorial language with a 
picture. Consider this FRST of a face of a 3d reflexive 
polytope, and the following observation about toric 
blowups:

Factorizing blowups

Subdivision of edges does not respect 
original FRST of polytope.

Subdivision internal to a face (2-simplex) DOES 
 respect original FRST of polytope!

• If we first consider sequences of subdivisions (blowups) 
internal to each face on the original triangulation, then we 
can perform such blowups without affecting the toric fan 
elsewhere, and so can work locally with each face. We can 
then subdivide each edge, corresponding to blowups of 
toric curves.



• We can now consider possible subdivisions of faces and edges. A 
priori there is an infinite number of such subdivisions.


• However, we need to fulfill the (4,6) condition, which will prevent us 
from performing arbitrary blowups.


• Recall that the ray in the toric fan corresponding to an exceptional 
divisors from a blowup can be written as  
 
 
 
where the      are points on the original reflexive polytope.


• We define the height as                          .


• Theorem: if h        for all rays in the fan corresponding to the toric 
threefold base, then the (4,6) condition is satisfied.

The height bound

h =
X

i

ai

e =
X

i

aivi

 6

vi



• We’ll refer to a sequence of blowups as a “tree”, 
exceptional ray in fan from blowup as a “leaf”


• Trees over edges = “edge trees”


• Trees over faces = “face trees”


• Points on polytope = “roots”


• Need to classify all trees with h        for all leaves.


• Do so by exhaustively constructing the toric blowups.

Trees of geometries

 6



Classification of trees



• Now that we’ve classified all of the trees (local subdivisions), we can start 
with a FRST of a reflexive polytope, and construct an ensemble of 
geometries by building trees over it to perform base transitions (a forest). 


• Given the number of face-trees, the reflexive polytope whose FRST has the 
largest number of faces will dominate the ensemble (independent of 
particular triangulation). 


• There are two such polytopes, each with 108 edges and 72 faces. Each has 
a very large facet:

Forests from trees

��
1 ��

2large face of large face of



• Trees over these two large polytopes generate  
 
 
                             ,  
 
bases, respectively. Each one is explicitly constructable!


• All other reflexive polytopes give 


• This is an explicit lower bound on the number of admissible 
geometries for F-theory, not an estimate. 

Ensemble of compact bases

2.96

3
⇥ 10755 2.96⇥ 10755

 3.28⇥ 10692



• Now we have some large ensembles. Do these large ensembles 
display any universal physical behavior? What can we learn from 
these ensembles?


• Look for high-probability features with interesting associated 
physics.


1. Non-Higgsable 7-branes are universal.


2. The gauge group has generically high rank.


3. Weak coupling limits, which connect F-theory to weakly-
coupled string theory, do not exist generically.


• These conclusions follow from facts about reflexive polytopes and 
some linear algebra, so I will just report results.

Physics things we learn from these bases



• Consider an edge or facet of a polytope, and perform a height > 2 
blowup on that edge or facet.


• This cuts out a special monomial in f, g, forces type II NH7 on all 
divisors corresponding to points interior to the edge or facet.

1. Universality of NH7

blow up

type II NH7

All face trees (except for one on ground) have a h > 2 leaf.
All but two edge trees have a h > 2 leaf.



• This behavior is universal: higher height blowups force NH7 with 
higher and higher vanishing in f and g, push us further towards (4,6) 
boundary (but not all the way when h <= 6). 


• Gives the following cartoon for the bases we consider:

Aside: Weak Fanos in the space of bases

Weak Fano Toric Varieties

(4,6) boundarybases with large height trees



2. Algorithmic universality of gauge groups

•      roots are very common; require only a few blowups on 
the large facets to force      on all points interior to the facets.


• Thm: A leaf built on g roots with height ℎ = 1,2,3,4,5,6 has 
Kodaira fiber                                                         and 
geometric gauge group                                    respectively. 


• Let       be number of height i leaves above        roots.


• We then have a gauge group of the form 
 
 
 
 
with probability � .999995

E8, G2, SU(2),�,�
F = II⇤, IV ⇤

ns, I
⇤
0ns, IVns, II,�

Hi E8

E8

E8

• Confirmed by machine learning.



• A particular limit in complex structure moduli space, known 
as the Sen’s limit, can take us from F-theory to a weakly 
coupled type IIB limit.


• Sen’s limit requires us to tune only smooth,    , and       fibers,    
on the geometry  (           ).  


• This is generically obstructed due to NH7 on rigid divisors 
with too large                      (higher than     ).

3. No weak coupling limits

In I⇤n
n � 0

MOVD(f, g) I⇤0

Sen



3. No weak coupling limits

• Fraction of geometries that admit a Sen limit: < 


• These geometries are inherently strongly-coupled F-theory 
geometries that do not admit a weakly coupled string theory 
description.

A Sen limit is spoiled by:

3⇥ 10�391

Halverson, C.L., Sung



• Can we generalize beyond toric bases? Observation: the minimal 
geometries we’ve considered (WFTV) can be viewed as patching together 
crepant resolutions of orbifold singularities of       of the form:


1. Isolated singularities.


2.      singularities fibered over curves.


• A natural generalization to move beyond toric threefolds is to consider 
crepant resolutions of other orbifold singularities. What’s left are


1.      singularities fibered over a curve.


2.      singularities fibered over a curve.


• By looking at the Cox ring of the resolutions, we find that building any trees 
above these geometries forces non-Higgsable clusters on rigid divisors 
arising in the crepant resolution, and spoils the existence of a Sen’s limit. 
These geometries produce inherently strongly coupled physics as well!

Beyond toric bases

C3

An

Dn

En

Roan

Joyce

Halverson, C.L., Sung

 Facchini, Gonzalez-Alonso, Lason 

Degeratu, Yau



• Interesting feature: these geometries have a graph structure, where the 
edges in the graph are the topological transitions. 


• Of course, the graph is not a tree.


• This network structure may play an interesting physical role: there are 
physical processes that allow a universe in one vacuum/geometry to 
nucleate other universes in other vacua/geometry via bubble nucleation, 
gives rise to a rich cosmological history.


• If the graph structure plays a role in transitions (i.e. determining minimal 
actions instantons between geometries) it may give rise to vacuum 
selection determined by the geometry via a model of bubble cosmology 
on the network.


• A simple model of bubble cosmology on our network picks out a 
geometry with geometric gauge group:

4. Aside: network/graph structure

Taylor, Wang

E37
8 ⇥ F 85

4 ⇥G220
2 ⇥ SU(2)320

Carifio, Cunninnham, Halverson, Krioukov, C.L., Nelson

Coleman, De Lucia, Garriga, Schwartz-Perlov, Vilenkin, Winitzki,



Summary and thoughts
• Base transitions from a geometry we understand can generate 

large ensembles of admissible F-theory geometries.


• In the approach we took (factorizing blowups), we set a lower 
bound of  
 
 
 
geometries for F-theory.


• By understanding the construction algorithm we were able to 
understand universal results about the ensemble without actually 
generating it.


• These geometries exhibit non-Higgsable clusters, have generically 
high rank gauge groups, and for the most part do not admit weak 
coupling limits.

4

3
⇥ 2.96⇥ 10755



Summary and thoughts

• It would be very interesting to understanding if such universality 
arguments can be made in other ensembles, i.e. the one 
generated by random walks by Taylor and Wang.


• Questions: To what extent do toric bases capture features of 
general F-theory bases?


• How can one add flux to these geometries, when they do not 
admit a full crepant resolution or a deformation to smooth 
Calabi-Yau? What is the distribution of flux vacua? 


• How do we understand instantons interpolating between 
different singular geometries?



Thanks!
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