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Complete Intersection Calabi-Yau (CICYs)

e A family of CICYs is descrlbed by a conflguratlon

matrix: n | ¢t .. gL

n|q] =

| Nim Q1

with m rows and K+1 columns.

* Ambient spaceis P"* x ... x P"m
* Remaining columns give degree of defining relations:

Calabi-Yau condition: D-fold condition:

K
qu:nr—l—l an—KéD
a=1 r



Example:

P11
« An example of a configuration P21 2
matrix (CICY four-fold 244): P30 4

* The different choices of defining relation
corresponds to a redundant description of part of
complex structure moduli space:

i,a TyeueyO

* This example is a Calabi-Yau four-fold.



CICY Data Sets:

* Three-Folds:

e Hibsch, Commun.Math.Phys. 108 (1987) 291

* Green et al, Commun.Math.Phys. 109 (1987) 99
e Candelas et al, Nucl.Phys. B 298 (1988) 493

* Candelas et al, Nucl.Phys. B 306 (1988) 113

* Data Set classified: 7890 configuration matrices in the
set.

* This data set has been used extensively in the study of
compactifications of heterotic string theory.



e Four-Folds:

e Brunner et al, Nucl.Phys. B498 (1997) 156-174
* JGetal, JHEP 1307 (2013) 070
e JG et al, JHEP 1409 (2014) 093

e Data set classified: 921,497 configuration matrices in
the set.

* Technology is being developed to use this data set for
studying F-theory compactifications— as | will
describe later.

* All Hodge data etc. are available for these manifolds:



Example: fourfold Hodge data

N N
10°) ARRAT '
T, 10° |
104 - o
*. 10
1000 -
T 1000
100 ‘. . 100!
10 - 10+
1 | | | | | ] hl,l 1
10 15 20 25
N N
105 L
104 4
107+
1000 - 1000+
100’ 100,
10 10
1 1

1000 1500



Properties of CICYs: Torus Fibrations

* Consider configuration matrices which can be put in the
form:

A F =T
A | 0 f’P
Base:[.Az‘B} H_AQ BT_

* This is an torus fibred four-fold

 Essentially all CICYs are fibered in this manner. For
example 7837 out of 7890 threefolds (99.3%)



* Example: (P?]0 0,0 0 2 1)
P5l0 011 1 1 1
P00 00
PO 1,0 1 0 O
\P2|1 2'0 0 0 0 |

* This is not an artifact of the threefolds. For fourfolds

921,020 out of 921,497 configuration matrices are
obviously torus fibered in this way (99.9%)

e See also related work for other constructions:
arXiv:1406.0514 and 1605.08052 by S. Johnson and
W. Taylor.

* A given manifold/configuration matrix may admit
many obvious elliptic fibrations...



Number of torus fibrations per
threefold:

500+
* 139,597 fibrations il
in total. 100 1T 77,
8 50 - N
* The average § 10
CICY threefold < 5
admits 17.7 |
different A ERRR R AR AR RN
fibrations 0 20 40 60 80

Number of torus fibrations per configuration

* The largest number of fibrations admitted by one
example is 93.



* In our simple example we also have:

IP10|11000\ IP’10|01100\
P21010 0 0 2 1 P21010 0 0 2 1
PPlOo,0 1 1 1 1 PPl0o;1 01 11
‘P{1,0 0 1 0 O Pl{1,1 0 0 0 O
\P>[2'1 0 0 0 0 \P2|170 2 0 0 0
/P2i000021\(191;110000\ PL[1 10 0 0
P21 0 2 0 0 0 PLio 01 1 0 0 P00 1 1 0
PPl0 1 01 11 P2l'o 0 0 0 2 1 P21 0 2 0 0
PPl 1000 O P20 1 0 1 1 1 PPlo 1 0 1 1
\P 0 0 1 10 0) \@—rf—o——g——o—@—()') P20 0 0 0 2

* Note that we have a variety of different bases here
(Hirzebruchs, P! x P!, P? etc in this case).

* It doesn’t just have to be torus fibration structures that
exist in a CICY...




Number of K3 fibrations per
threefold:

e 98.5% of CICY
threefolds are K3 1282
fibered. 8
* 30,974 fibrations £
in total < 50
* The average |
CICY threefold ; , ; . ;
admits 3.9 Number of K3 fibrations per configuration

different fibrations

* The largest number of fibrations admitted by one
example is 9.



* In our simple example:

(IP2;;000021\ P2”001100\
P30 0 1 1 1 1 IP>3::000021
PLi1 0 1 0 0 0 PLy1 0 2 0 0 0
P21 2 0 0 0 0 PZit0 1 0 1 1 1
P "0 10100/ \B|110000)/

* Again this example is slightly less rich than the average
case...

* One could ask if the K3 fibers are elliptically fibred...



Number of nested fibrations per
threefold:

» 208,987 torus ot e
fibrationsnested & T - L
in K3 fibrations. é ol
* The average 5 f
CICY threefold |
admits 26.6 'L | | |
. 0 50 100 150
different such Number of nestings of torus fibrations per configuration
structures.

* The largest number of such nested fibration structures
admitted by one example is 174.



* Note these numbers are bigger than the related
numbers for torus fibrations on their own...

* Example in our case:
(there are six in total in the two K3 fibrations)

P2|,0 0,0 0 2 1\
PPmo 0'1 11 1
PUTT 70,1 0 0 0
‘P21 210 0 0 0
'Pl_”ﬁ_ffo"l_b_()')




Can we go beyond these obvious
fibrations?

* Conjecture by Kollar (rough description):

A Calabi-Yau threefold is genus one fibered if and only if
there exists a divisor 1) such that

D -C >0 foreveryalgebraic curve C
D? =0
D? #£ 0

(and similarly in higher dimensional cases)
* Proven in threefold case by Oguiso, Wilson.



* The question is, do we have good computational control
over all of the elements of p1:1?

* In favorable cases we do. For example in the case,
P? | 3
=p|3

all divisor classes descend from divisor classes in the
ambient space.

* In non-favorable cases we don’t. For example
PL]1 1]
X' =| P2 |3 0

P20 3

has h''! = 19 but A! of the ambient space is only 3 .

e Of 7890 CICY threefolds in the original list, only 4874 are
favorable.



* We can obtain new configuration matrices describing the
same manifolds by the process of contraction/splitting:

n| 1 1 ... 1 0
n

(8 §] U9 e Unp+41 q
Euler number doesn’t change < manifolds same

— [n| Y u, q]

e Use this to increase the size of the ambient space
affording the configuration a better chance of being
favorable

* By splitting we have obtained favorable descriptions of
all but 7842 of the 7890 CICYS.

* We can then compute data such as intersection
numbers, line bundle cohomology etc completely in
these cases.



What about the remaining 487

* It turns out that these can all be written as
hypersurfaces in direct products of del Pezzo surfaces.

PLl1 0 0 1°
Xs=|P2|2 0 0 1
P10 2 2 1

can be written as the anti-canonical hypersurface inside

* For example:

]P)l
IP)?

1

dP4=[ 2] times dPs=|P*|2 2]

* Enough is known about the divisors of del Pezzo’s that
we can then find a favorable description of these spaces
too.

Thus we find a favorable description of all CICYs.



* The final ingredient required to investigation the
fibrations of CICYs is knowledge of the Kahler cone.

* We have been able to show that the Kahler cone
descends simply from the ambient product of projective
spaces in 4874 cases (we call these Kahler favorable).

* For the Kahler favorable cases, obvious fibrations and
Kollar fibrations coincide.

However, in general there can be many more Kollar
fibrations than obvious ones.

* A good example is the Split-Bicubic/Schoen manifold —
which admits an infinite number of genus one fibrations!

(See also Grassi,Morrison; Aspinwall, Gross;
Oguiso; Piateckii-Shapiro, Shafarevich).



Fibrations and quotients

* One can create a new (non-simply connected) Calabi-Yau by
qguotienting a CICY by a freely acting symmetry.

* Example: Take the bicubic: _

v_ | B3
B i P2 |3 ]
* With homogeneous coordinates:
La,i a=1,2 +=0,1,2

Y

* And quotient by the following Z5; group action:
g:%q i — wxy

* Clear in this case, the quotienting preserves the fibration.



* More generally what can we say about
fibrations in quotients of CICYs?

* Classification of symmetries:
* Braun, JHEP 1104 (2011) 005

(The equivalent classifications for the four-folds has
not yet been carried out.)

* A lot of work has already been done classifying the
properties of the associated quotients:

e Candelas et al, arXiv:1602.06303

* Braun et al, arXiv:1512.08367

e Candelas et al, arXiv:1511.01103

e Constantin et al, arXiv:1607.01830



Unpublished work with Lara Anderson and Brian
Hammack:

e Of the 1632 symmetry-CICY pairs (for manifolds with
fibration), 1552 of them preserve some fibration (95%).

e Of 20700 fibration/symmetry pairs, 17161 preserved.

Symmetry | Fibs preserved | Fibs not preserved | %preserved ‘
Zs 3812 464 95%

Z3 175 201 46.5%

Ly 120 244 33.0%

Zs 0 30 0.0%

T 62 438 12.4%

Lo X Lo 7711 1488 83.8%
Lo x 74 105 200 34.4%
T3 X 73 176 0 100%




* There are several larger symmetries that appear
(including non-Abelian symmetries), none of which
preserve any fibrations:

Lg , Lo , ZLaz, Qs , Lo X Qg , L3 X Ly
1ig X Lig y Loy X Ly, Lig X Lag , iy X Ly
Lo X Zig

* In any case where the fibration is preserved, the base of
the quotiented fibration is divided by same group as
total space.

* Classifications of the bases that appear will be provided
in the paper.



Multiple fibrations and F-theory

* We can use these multiple nested fibration
structures to derive some interesting dualities in F-
theory. For example:

e Start with two different fibrations of the same
Calabi-Yau. This will correspond to two F-theory
models that share an M-theory limit.

e Start with two different fibrations of the same
Calabi-Yau in a heterotic compactification. These will
have seemingly different F-theory duals which
actually give the same physics.

e And so on...



Example:

* Let us consider the first of those possibilities in this case:

"PLI1 10 0] P2{0,1 2 0
P21 0 2 0 P2l0'1 1 1
P20 1 1 1 P11 0 0
‘P2/1 0 1 1 P2 1'0 1 1 |

Just considering these two possible fibrations — one with
P? and one with [F'; base.

* To analyze this it would be nice to put these two cases in
Weierstrass form (blow down every component of the
fiber that doesn’t intersect zero section).

* To do this we need sections of these fibrations.



 Necessary conditions that a divisor, S, describing a
section must obey:

e Oguiso (intersection number with fiber should be
generically one).

* A condition on the cohomology of the associated line

bundle:
R (O(S)) =1
e A condition on the Euler number c.f. that of the base:
X(S) > x(B)

* A condition following from birationality to the base
(see Morrison, Park, JHEP 1210 (2012) 128):

S-S-Dy=—c1(B)-S-D,



* Koszul derivation of second condition as example:

0—>0(-S5)—-0—=0|s—0

h? 7
ht ?
h? ?
h3 ?

1

1



Pl |1
* For P2 |1

P2 |0
P21 0 1 1

following section: O(S) = O(—1,1,0,1)

0 0
9 o | .forexample we find the
I 1

* Build the explicit description of the section
(remember r°(O(S)) =1 ) in the same way we built
gCICYs.

* Now we have an explicit section we can put the
fibration in Weierstrass form using the Deligne
procedure.

* (see Ovrut, Pantev and Park, JHEP 0005 (2000) 045)



* |dea:
ze H(X,S) (X, S) =1
r€ H' (X, S*® Kz?)
W(X,8° @ Kz°) =29
y € H(X,8° ® K;°)
h(X,8° @ K;°) = 66
* Then get (Weierstrass) relation between them in:

W e HY(X,S® @ Kz°)



What do the theories look like:

* M-Theory:
* 3 Vector multiplets
e 48 Hyper multiplets

* F-theory 1:
« SU(2) x U(1) gauge group
* 0 Tensor multiplets

e 4 Vector multiplets
e 277 Hyper multiplets (48 Neutral)

* F-theory 2:
« U(1)gauge group
e 1 Tensor multiplet
1 Vector multiplet
e 245 Hyper multiplets (48 Neutral)



* As a slightly more non-trivial example, consider the
following configuration matrix:

* This admits nine obvious genus one fibrations...



Eq: U(1)*

ny =4, np =1, ng = 248

Eog

non-flat fiber

/

Eg: SU(2) x U(1)*

ny =7, nr =0, ng =280

|

5D M-theory Limit
with

Eo: SU(2) x U(1)3

nV=6,nT:1,nH:25O

\

Es: SU(2) x U(1)3

ny =6, nyr =1, ng = 250

ngD) = 6, ngD) =27 /

E7

non-flat fiber

N\

E6Z SU(2)2 X

ny =9, nr =0, ng = 282

E4

non-flat fiber

/

U(1)?

ny =6, nr =1, ng = 250

Es: SU(2) x U(1)?

Figure 7: F-theory models in 6D with the same 5D M-theory limit where ng)D) =6 and ngD) = 27.



