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Complete Intersection Calabi-Yau (CICYs)
• A family of CICYs is described by a configuration 

matrix:

with m rows and K+1 columns.

• Ambient space is 
• Remaining columns give degree of defining relations:
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Calabi-Yau condition: D-fold condition:



Example:

• An example of a configuration 
matrix (CICY four-fold 244):

• The different choices of defining relation 
corresponds to a redundant description of part of 
complex structure moduli space:

• This example is a Calabi-Yau four-fold.
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CICY Data Sets:
• Three-Folds:

• Hübsch, Commun.Math.Phys. 108 (1987) 291
• Green et al, Commun.Math.Phys. 109 (1987) 99
• Candelas et al, Nucl.Phys. B 298 (1988) 493
• Candelas et al, Nucl.Phys. B 306 (1988) 113

• Data Set classified: 7890 configuration matrices in the 
set.

• This data set has been used extensively in the study of 
compactifications of heterotic string theory. 



• Four-Folds:

• Brunner et al, Nucl.Phys. B498 (1997) 156-174
• JG et al, JHEP 1307 (2013) 070
• JG et al, JHEP 1409 (2014) 093

• Data set classified: 921,497 configuration matrices in 
the set.
• Technology is being developed to use this data set for 

studying F-theory compactifications– as I will 
describe later.
• All Hodge data etc. are available for these manifolds:
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Properties of CICYs: Torus Fibrations
• Consider configuration matrices which can be put in the 

form:

• This is an torus fibred four-fold
• Essentially all CICYs are fibered in this manner. For 

example 7837 out of 7890 threefolds (99.3%)


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A2 B T
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• Example:

• This is not an artifact of the threefolds. For fourfolds 
921,020 out of 921,497 configuration matrices are 
obviously torus fibered in this way (99.9%)
• See also related work for other constructions: 

arXiv:1406.0514 and 1605.08052 by S. Johnson and 
W. Taylor.
• A given manifold/configuration matrix may admit 

many obvious elliptic fibrations…
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Here, the entries in the matrix F , and the dimension of the product of projective
spaces A1, are chosen such that [A1|F ] is one dimensional. This is then a Calabi-
Yau onefold, i.e. a torus. The configuration matrix (3.14) in such a case describes
an fibration of this onefold over the base [A2|B], where the variation of the fibre
over the base is described by the matrix T . Clearly, configurations of the form
(3.14) which are related by a permutation of rows and columns which do not mix
up the fibre and base pieces describe the same elliptic fibration. Redundancies
of this and related forms have been removed in enumerating the elliptic fibration
structures which are exhibited by the CICY fourfold data set [18].

We find that the 921,497 CICY fourfold configuration matrices exhibit a total
of 50,114,908 di↵erent obvious elliptic fibrations, with an average of approximately
54 di↵erent fibrations per configuration matrix. The distribution of the number of
elliptic fibrations per configuration matrix is plotted in Figure 3.
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Figure 3. A plot of the number of CICY fourfold configuration
matrices exhibiting given numbers of obvious elliptic fibrations.

To give a specific example, we can enumerate the obvious elliptic fibrations
exhibited by our example configuration matrix (2.2). Rewriting this configuration
matrix in the form (3.14) in every inequivalent way leads to the following possibil-
ities.
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Number of torus fibrations per 
threefold:
• 139,597 fibrations

in total.

• The average
CICY threefold
admits 17.7 
different 
fibrations

• The largest number of fibrations admitted by one 
example is 93.
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• In our simple example we also have:

• Note that we have a variety of different bases here 
(Hirzebruchs,                 ,        etc in this case).
• It doesn’t just have to be torus fibration structures that 

exist in a CICY…
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matrices exhibiting given numbers of obvious elliptic fibrations.

To give a specific example, we can enumerate the obvious elliptic fibrations
exhibited by our example configuration matrix (2.2). Rewriting this configuration
matrix in the form (3.14) in every inequivalent way leads to the following possibil-
ities.
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The dotted lines in (3.15) are intended to guide the eye so that one may easily
isolate the form (3.14) in these examples. For these examples one may immediately
read o↵ from the form of B and A2 that, F1 is an elliptic fibration over a P1

fibration over F1, F2 is an elliptic fibration over P1 ⇥ F1 and F3,F4 and F5 are all
elliptic fibrations over P1 ⇥ P2.
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Number of K3 fibrations per 
threefold:
• 98.5% of CICY 

threefolds are K3
fibered.
• 30,974 fibrations 

in total
• The average 

CICY threefold
admits 3.9
different fibrations
• The largest number of fibrations admitted by one 

example is 9.
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• In our simple example:

• Again this example is slightly less rich than the average 
case…

• One could ask if the K3 fibers are elliptically fibred…
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Number of nested fibrations per 
threefold:

• 208,987 torus 
fibrations nested
in K3 fibrations.
• The average

CICY threefold
admits 26.6
different such
structures.
• The largest number of such nested fibration structures 

admitted by one example is 174.
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• Note these numbers are bigger than the related 
numbers for torus fibrations on their own… 
• Example in our case:

(there are six in total in the two K3 fibrations)

CALABI-YAU FOURFOLDS IN PRODUCTS OF PROJECTIVE SPACE 9

0

BBBB@

P1 0 0 1 1 0 0
P2 0 0 0 0 2 1
P3 0 1 0 1 1 1
P1 1 1 0 0 0 0
P2 1 0 2 0 0 0

1

CCCCA

0

BBBB@

P2 0 0 0 0 2 1
P2 1 0 2 0 0 0
P3 0 1 0 1 1 1
P1 1 1 0 0 0 0
P1 0 0 1 1 0 0

1

CCCCA

0

BBBB@

P1 1 1 0 0 0 0
P1 0 0 1 1 0 0
P2 0 0 0 0 2 1
P3 0 1 0 1 1 1
P2 1 0 2 0 0 0

1

CCCCA

0

BBBB@

P1 1 1 0 0 0 0
P1 0 0 1 1 0 0
P2 1 0 2 0 0 0
P3 0 1 0 1 1 1
P2 0 0 0 0 2 1

1

CCCCA

0

BBBB@

P2 0 0 0 0 2 1
P3 0 0 1 1 1 1
P1 1 0 1 0 0 0
P2 1 2 0 0 0 0

P1 0 1 0 1 0 0

1

CCCCA

0

BBBB@

P2 0 0 1 1 0 0
P3 0 0 0 0 2 1
P1 1 0 2 0 0 0
P2 0 1 0 1 1 1

P1 1 1 0 0 0 0

1

CCCCA

0

BBBB@

P2 0 0 0 0 2 1
P3 0 0 1 1 1 1
P1 1 0 1 0 0 0
P2 1 2 0 0 0 0

P1 0 1 0 1 0 0

1

CCCCA

F1 =

2

66664

P1 0 0 0 0 0 2
P4 0 0 1 1 2 1
P1 1 1 0 0 0 0
P2 0 1 0 1 1 0
P2 1 1 1 0 0 0

3

77775
, F2 =

2

66664

P2 0 0 1 1 0 1
P4 0 1 1 2 1 0
P1 1 0 0 0 0 1
P1 0 0 0 0 2 0
P2 1 1 0 0 0 1

3

77775



Can we go beyond these obvious 
fibrations?
• Conjecture by Kollar (rough description):

A Calabi-Yau threefold is genus one fibered if and only if 
there exists a divisor       such that

for every algebraic curve

(and similarly in higher dimensional cases)
• Proven in threefold case by Oguiso, Wilson.

D

D · C � 0

D3 = 0



• The question is, do we have good computational control 
over all of the elements of       ?
• In favorable cases we do. For example in the case,

all divisor classes descend from divisor classes in the 
ambient space.
• In non-favorable cases we don’t. For example

has                     but          of the ambient space is only     .
• Of 7890 CICY threefolds in the original list, only 4874 are 

favorable.



• We can obtain new configuration matrices describing the 
same manifolds by the process of contraction/splitting:

• Use this to increase the size of the ambient space 
affording the configuration a better chance of being 
favorable

• By splitting we have obtained favorable descriptions of 
all but 7842 of the 7890 CICYS.

• We can then compute data such as intersection 
numbers, line bundle cohomology etc completely in 
these cases.


n 1 1 . . . 1 0
n u1 u2 . . . un+1 q

�
 !

⇥
n

Pn+1
a=1 ua q

⇤

Euler number doesn’t change            manifolds same



What about the remaining 48?
• It turns out that these can all be written as 

hypersurfaces in direct products of del Pezzo surfaces.
• For example:

can be written as the anti-canonical hypersurface inside 

• Enough is known about the divisors of del Pezzo’s that 
we can then find a favorable description of these spaces 
too.

Thus we find a favorable description of all CICYs.

times



• The final ingredient required to investigation the 

fibrations of CICYs is knowledge of the Kahler cone.

• We have been able to show that the Kahler cone 

descends simply from the ambient product of projective 

spaces in 4874 cases (we call these Kahler favorable).

• For the Kahler favorable cases, obvious fibrations and

Kollar fibrations coincide. 

However, in general there can be many more Kollar

fibrations than obvious ones.

• A good example is the Split-Bicubic/Schoen manifold –

which admits an infinite number of genus one fibrations!

(See also Grassi,Morrison; Aspinwall, Gross; 

Oguiso; Piateckii-Shapiro, Shafarevich).



Fibrations and quotients
• One can create a new (non-simply connected) Calabi-Yau by 

quotienting a CICY by a freely acting symmetry.
• Example: Take the bicubic:

• With homogeneous coordinates:

• And quotient by the following        group action:

• Clear in this case, the quotienting preserves the fibration.

X =


P2 3
P2 3

�

xa,i

g : xa,j ! !

j
xa,j

a = 1, 2 i = 0, 1, 2

Z3



•More generally what can we say about 

fibrations in quotients of CICYs?

• Classification of symmetries:

• Braun, JHEP 1104 (2011) 005

(The equivalent classifications for the four-folds has   
not yet been carried out.)

• A lot of work has already been done classifying the 

properties of the associated quotients:

• Candelas et al, arXiv:1602.06303

• Braun et al, arXiv:1512.08367

• Candelas et al, arXiv:1511.01103

• Constantin et al, arXiv:1607.01830



Unpublished work with Lara Anderson and Brian 
Hammack:
• Of the 1632 symmetry-CICY pairs (for manifolds with 

fibration), 1552 of them preserve some fibration (95%).
• Of 20700 fibration/symmetry pairs, 17161 preserved.

Symmetry Fibs preserved Fibs not preserved %preserved

Z2 8812 464 95%

Z3 175 201 46.5%
Z4 120 244 33.0%
Z5 0 30 0.0%
Z6 62 438 12.4%

Z2 ⇥ Z2 7711 1488 83.8%
Z2 ⇥ Z4 105 200 34.4%
Z3 ⇥ Z3 176 0 100%



• There are several larger symmetries that appear 
(including non-Abelian symmetries), none of which 
preserve any fibrations:

• In any case where the fibration is preserved, the base of 
the quotiented fibration is divided by same group as 
total space.
• Classifications of the bases that appear will be provided 

in the paper.

Z8 , Z10 , Z12 , Q8 , Z2 ⇥Q8 , Z3 o Z4 ,

Z8 ⇥ Z2 , Z4 o Z4 , Z8 o Z2 , Z4 ⇥ Z4 ,

Z10 ⇥ Z2



Multiple fibrations and F-theory
• We can use these multiple nested fibration 

structures to derive some interesting dualities in F-
theory. For example:
• Start with two different fibrations of the same 

Calabi-Yau. This will correspond to two F-theory 
models that share an M-theory limit.

• Start with two different fibrations of the same 
Calabi-Yau in a heterotic compactification. These will 
have seemingly different F-theory duals which 
actually give the same physics.

• And so on…



Example:
• Let us consider the first of those possibilities in this case:

Just considering these two possible fibrations – one with   
and one with       base. 

• To analyze this it would be nice to put these two cases in 
Weierstrass form (blow down every component of the 
fiber that doesn’t intersect zero section).

• To do this we need sections of these fibrations.

Figure 2: Some examples of double points singularity at origen drawn from left to right, up to dowm:
acnode, crnode, cusp, tacnode.

For counting the U(1) charged matter, both nodes and tacnodes of double singularity points will
countribute. On the locates of nodes, the fiber degenerate to I

2

singularity while for cusps, they
fibered with type II fiber. One should note that when considering genus-one curve, which does not
comtains section but multi-sections, these nodes and tacnodes will contribute to neutral hyper matter
Hu.

3.2 (non-)Abelian/Abelian duality

We first consider a complete intersection Calabi-Yau threefolds with four di↵erent fibration structures.
The Hodge number of it are h1,1(X

3

) = 4, h2,1(X
3

) = 47. When compactify M-theory on such manifold
to 5D, it contains V = 3 vector multiplets and H = 48 hypermultiplets.

3.2.1 non-Abelian example E
1

with GX = SU(2)⇥ U(1)

We first consider F-theory compactify on this geometry with such fibration structure.

XE1
3

=

2

664

P1 1 1 0 0
P2 1 0 2 0
P2 0 1 1 1
P2 1 0 1 1

3

775 (3.28)

where the Base is P2 and h1,1(B) = 1. It was defined by four polynomials p
1

, p
2

, p
3

, p
4

comoplete
intersect in the the ambient space A = P1 ⇥ P2 ⇥ P2 ⇥ P2, where p

1

2 H0(A,OA(1, 1, 0, 1)), p2 2
H0(A,OA(1, 0, 1, 0), p3 2 H0(A,OA(0, 2, 1, 1), p4 2 H0(A,OA(0, 0, 1, 1)). In order to determine the
non-Abelian gauge theory in F-theory in 6D, one can relate the gauge fields of the resulting low-energy
e↵ective theory to singularities of the compactification manifold that occur at codimension one in
the base. In general, we have three ways to push the manifold to the singular limits, i.e, Deligne
procedure, Jacobi procedure and minimal model procedure. We will apply the previous two methods
and compare the results.

8

In this example we need Hc = 273 + 4� 48 = 229 charged hypermultiplets. One contribute for Hc

comes from the intersection of I
2

and I
1

locus of discriminant. In total they intersect at 28 points
and contribute 34 singularity points, i.e. # of I

2

\ I
1

= 28. Among the 28 points, 22 points are
I
3

locus with multiplicities 1 while 6 of them contribute type III singularity with multiplicities 2.
Furthermore, these 22 type I

3

points are transverse intersection points of I
1

, I
2

locus while these type
III points are tangent intersection points which does not contribute matters (similar reason that
cusp does not contribute singlet discussed before). Those I

3

locus will contribute the doubled under
the decomposition of 8 = 1+ 2+ 2̄+ 3 , i.e. 22 ⇥ 2, which contribute 22 ⇥ 2 = 44 charged hyper
multipltets.

Counting U(1) charged matter are more involved, they comes from the typical singularity of the I
1

locus. One observation is that only a subsets of double point singularities, i,e. nodes and tacnodes,
will contribute U(1) matters. Now, we start analyze the singularity points of self-intersection I

1

locus
in this example. The total number of double singularity points is counted by vector space dimension
of standard basis of I

double

, denoted by vsdim(I
double

), which gives us 581. More precisely,

• The number of nodes calculated by vsdim(I
node

) = 185.

• The number of non-nodal points counted by vsdim(I
non�nodal

) = 198

– The number of cusp points counted by vsdim(I
cusp

) = 198.

– The number of non-nodal-cuspidal points counted by vsdim(I
non�nodal�cuspidal

) = 0.

These number we get is consistent with the total number of singularity: 581 = 185 + 198 ⇥ 2. As
a result, the number of nodes and tacnodes is 185, then the charged hypermultiplet in total is
Hc = 44 + 185 = 229 and the 6D gravity anomaly cancelation works.

Then we consider non-Abelian gauge anomaly cancelation. As discussed in eq.(??), when the base
is P2, a = KB, the anomaly cancelation condition simplified to:

18 b =
X

i

ARi �Aadj , 0 =
X

i

BRi �Badj , 3 b2 =
X

i

CRi � Cadj (3.54)

Recall that in our case there are 22 I
3

locus which will contribute the SU(2) doublet, i.e. 22⇥ 2. The
SU(2) anomaly coe�tents are:

A2 = 1, Aadj = 4, B2 = 0, Badj = 0, C2 =
1

2
, Cadj = 8. (3.55)

These number satisfy the anomaly cancelation condition eq.(??) once b = 1.
This 6D SU(2) ⇥ U(1) theory consistently contains V = 4, T = 0, H = 277 matter multiplets.

When compactify such theory further to 5D and push it to the coulomb branch and integrated out
massive modes, we get V = rkGI + r+ T + 1 = 3 vector multiplets and H = 48 hypermultiplets as we
expect.

3.2.2 Other configurations with purely Abelian gauge group

6D theory E
2

with GX = U(1)

This geometry admits another type of fibration structure with h1,1(X
3

) = 4, h1,1(B) = 2.

XE2
3

=

2

664

P2 0 1 2 0
P2 0 1 1 1
P1 1 1 0 0
P2 1 0 1 1

3

775 , B =


P1 1
P2 1

�
(3.56)

12P2 F1



• Necessary conditions that a divisor,      , describing a 
section must obey:
• Oguiso (intersection number with fiber should be 

generically one).
• A condition on the cohomology of the associated line 

bundle:

• A condition on the Euler number c.f. that of the base:

• A condition following from birationality to the base 
(see Morrison, Park, JHEP 1210 (2012) 128):

S

h0(O(S)) = 1

�(S) � �(B)

S · S ·D↵ = �c1(B) · S ·D↵



• Koszul derivation of second condition as example:

0 ! O(�S) ! O ! O|S ! 0

h0

h1

h2

h3

11

1

0

0 0

0

) h3(X ,O(�S)) = 1

) h0(X ,O(S)) = 1

0

?

?

?

?



• For                                         , for example we find the 

following section:

• Build the explicit description of the section 
(remember                      ) in the same way we built 
gCICYs.

• Now we have an explicit section we can put the 
fibration in Weierstrass form using the Deligne 
procedure.

• (see Ovrut, Pantev and Park, JHEP 0005 (2000) 045)

Figure 2: Some examples of double points singularity at origen drawn from left to right, up to dowm:
acnode, crnode, cusp, tacnode.

For counting the U(1) charged matter, both nodes and tacnodes of double singularity points will
countribute. On the locates of nodes, the fiber degenerate to I

2

singularity while for cusps, they
fibered with type II fiber. One should note that when considering genus-one curve, which does not
comtains section but multi-sections, these nodes and tacnodes will contribute to neutral hyper matter
Hu.

3.2 (non-)Abelian/Abelian duality

We first consider a complete intersection Calabi-Yau threefolds with four di↵erent fibration structures.
The Hodge number of it are h1,1(X

3

) = 4, h2,1(X
3

) = 47. When compactify M-theory on such manifold
to 5D, it contains V = 3 vector multiplets and H = 48 hypermultiplets.

3.2.1 non-Abelian example E
1

with GX = SU(2)⇥ U(1)

We first consider F-theory compactify on this geometry with such fibration structure.

XE1
3

=

2

664

P1 1 1 0 0
P2 1 0 2 0
P2 0 1 1 1
P2 1 0 1 1

3

775 (3.28)

where the Base is P2 and h1,1(B) = 1. It was defined by four polynomials p
1

, p
2

, p
3

, p
4

comoplete
intersect in the the ambient space A = P1 ⇥ P2 ⇥ P2 ⇥ P2, where p

1

2 H0(A,OA(1, 1, 0, 1)), p2 2
H0(A,OA(1, 0, 1, 0), p3 2 H0(A,OA(0, 2, 1, 1), p4 2 H0(A,OA(0, 0, 1, 1)). In order to determine the
non-Abelian gauge theory in F-theory in 6D, one can relate the gauge fields of the resulting low-energy
e↵ective theory to singularities of the compactification manifold that occur at codimension one in
the base. In general, we have three ways to push the manifold to the singular limits, i.e, Deligne
procedure, Jacobi procedure and minimal model procedure. We will apply the previous two methods
and compare the results.

8

O(S) = O(�1, 1, 0, 1)

h0(O(S)) = 1



• Idea:

• Then get (Weierstrass) relation between them in:

z 2 H0(X ,S)

x 2 H0(X ,S2 ⌦K�2
B )

y 2 H0(X ,S3 ⌦K�3
B )

h0(X ,S) = 1

h0(X ,S2 ⌦K�2
B ) = 29

h0(X ,S3 ⌦K�3
B ) = 66

W 2 H0(X ,S6 ⌦K�6
B )



What do the theories look like:
• M-Theory:

• 3 Vector multiplets
• 48 Hyper multiplets

• F-theory 1:
• gauge group
• 0 Tensor multiplets
• 4 Vector multiplets
• 277 Hyper multiplets  (48 Neutral)

• F-theory 2:
• gauge group
• 1 Tensor multiplet
• 1 Vector multiplet
• 245 Hyper multiplets  (48 Neutral)

SU(2)⇥ U(1)

U(1)



• As a slightly more non-trivial example, consider the 
following configuration matrix:

• This admits nine obvious genus one fibrations…

Studying the physics associated to such fibrations is beyond the scope of this paper, although we will
make a few comments in this direction at the end of this Section. It is interesting to note, that many
geometries in the CICY list exhibit at least one such non-flat OGF and that such structures seem to
be fairly common.

After completing our analysis of the configuration matrix (3.42) we conclude that it exhibits 6
OGFs. Of these three admit a section and one of those is a non-flat fibrations. We have computed the
spectrum associated to the Weierstrass model of the two flat fibrations with section and have shown
that we achieve a consistent anomaly free theory in both cases. Both 6D theories are non-Abelian,

with di↵erent gauge groups, and have a same 5D M-theory limit with n(5D)

V = 4 and n(5D)

H = 26. The
structure we have elucidated here is depicted in Figure 6.

E
1

: SU(2)2 ⇥ U(1)
nV = 7, nT = 0, nH = 280

E
2

: SU(2) ⇥ U(1)
nV = 4, nT = 1, nH = 248

E
3

: non-flat fiber

Figure 6: 6D compactifications of F-theory that share a M-theory limit. In this example the 6D
theories have di↵erent non-Abelian gauge groups but nevertheless give rise to the same theory in 5D

with n(5D)

V = 4 and n(5D)

H = 26.

3.5 Higher rank Mordell-Weil group

There is no known bound on the rank of the Mordell-Weil group that can be achieved in an elliptically
fibered Calabi-Yau three-fold. The favorable CICYs exhibit a rich structure of cases with higher rank
Mordell-Weil groups that can easily be studied with the techniques we have been discussing. Here, we
present an example of a geometry which exhibits nine di↵erent fibration structures and where the
total space has h1,1(X

3

) = 7, h2,1(X
3

) = 26. Among the nine fibrations, two of them, E
1

and E
8

, are
of Mordell-Weil rank r = 4.

Let us begin our discussion with the fibration,

XE1
3

=

2

6

6

6

6

6

6

6

6

4

P1 0 0 1 1 0 0 0 0 0
P2 0 0 1 0 1 1 0 0 0
P2 0 0 0 1 0 0 0 1 1
P2 0 1 0 0 1 0 0 1 0
P2 0 0 0 0 0 1 1 0 1
P1 1 1 0 0 0 0 0 0 0
P2 1 0 0 1 0 0 1 0 0

3

7

7

7

7

7

7

7

7

5

. (3.47)

In this case, we can identify S
0

= O
X

E1
3
(1,�1, 0, 0, 1, 0, 0) as a good choice of zero section. Computing

the discriminant locus of the fibration in the same manner as for previous examples, we find that
it only contains an I

1

locus. Since h1,1(B) = 2, the Shioda-Tate-Wazir decomposition of the Picard
lattice tells us that the Mordell-Weil group is of rank 4. Thus the gauge group of the associated 6D
compactification of F-theory is simply U(1)4.

One can study this rank 4 Mordell-Weil group of sections explicitly. Following the discussion
in [1], we can find “putative sections” that obey certain necessary topological constraints that must

18



E
1

: U(1)4

nV = 4, nT = 1, nH = 248

E
9

non-flat fiber

E
8

: SU(2)⇥ U(1)4

nV = 7, nT = 0, nH = 280

E
7

non-flat fiber

E
6

: SU(2)2 ⇥ U(1)3

nV = 9, nT = 0, nH = 282

E
2

: SU(2)⇥ U(1)3

nV = 6, nT = 1, nH = 250

E
3

: SU(2)⇥ U(1)3

nV = 6, nT = 1, nH = 250

E
4

non-flat fiber

E
5

: SU(2)⇥ U(1)3

nV = 6, nT = 1, nH = 250

5D M-theory Limit

with

n(5D)

V = 6, n(5D)

H = 27

Figure 7: F-theory models in 6D with the same 5D M-theory limit where n(5D)

V = 6 and n(5D)

H = 27.

based on one of the explicit examples above:

XE4
3

=

2

6

6

6

6

6

6

6

6

4

P1 1 1 0 0 0 0 0 0 0
P1 0 0 1 1 0 0 0 0 0
P2 0 0 1 0 1 1 0 0 0
P2 0 0 0 1 0 0 0 1 1
P2 0 1 0 0 1 0 0 1 0
P2 0 0 0 0 0 1 1 0 1
P2 1 0 0 1 0 0 1 0 0

3

7

7

7

7

7

7

7

7

5

. (3.49)

To begin with, from the first column of the configuration matrix, one can immediately see that
there exists a point in the P2 base, the fiber over which is two-dimensional. Such a non-flat fiber
is, in particular, itself a divisor, and is defined by vanishing of the global holomorphic section of
O

X
E4
3
(�1, 0, 0, 0, 0, 0, 1) (see Appendix A of [1] for a detailed analysis). Even in the presence of a

non-flat fiber, however, one may still proceed to find sections to the genus-one fibration and can
confirm that the following line bundles,

O
X

E4
3
(S

0

) = O
X

E4
3
(1, 0, 1, 0,�1, 0, 0) ,

O
X

E4
3
(S

1

) = O
X

E4
3
(0,�1, 1, 0, 0, 0, 0) ,

O
X

E4
3
(S

2

) = O
X

E4
3
(0,�1, 0, 1, 0, 0, 1) ,

O
X

E4
3
(S

3

) = O
X

E4
3
(0, 1,�1, 0, 1, 0, 0) ,

O
X

E4
3
(S

4

) = O
X

E4
3
(0, 1,�1, 0, 0, 1, 0) ,

O
X

E4
3
(S

5

) = O
X

E4
3
(0, 0, 0,�1, 1, 1, 0) ,

(3.50)
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