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BASED ON

For non-Abelian models
» arXiv:1706.08194 - D. Klevers, D. Morrison, NR, W. Taylor

For abelian models
» arXiv:1711.03210 - NR
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BROAD QUESTIONS

Which charged matter representations can be obtained in F-theory?
» How do codim. 2 singularities — charged matter?
» How do you construct explicit Weierstrass models w/ certain
matter spectra?
In F-theory, tough to get more than a few simple reps.
» Some reps. drop out easily
» e.g. in Tate’s algorithm constructions
» For reps beyond these, models are complicated

» Greater algebraic complexity
» Few systematic methods for obtaining models

20F 33



EXOTIC VS. NON-EXOTIC REPS.

EXOTIC REPS:  Reps difficult to obtain in F-theory constructions
SU(N) u(1)

Fundamentals
NOT EXOTIC | 2-antisymmetrics Charge 1 and 2
Adjoints

3-antisym.

EXOTIC 4-antisym. Charge 3 and above

Symmetric
3-sym.
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WHY STUDY EXOTICS?

We cannot characterize full F-theory landscape without
understanding exotic representations
» Match between SUGRA and F-theory

» Can all 6D SUGRAs be realized as F-theory compactifications?

» Non-abelian: Models with some reps, spectra cannot
» Abelian: Potentially infinite number of consistent SUGRA models

» See upcoming work by [Taylor and Turner]
» Which abelian models have F-theory constructions?

» Learn more about codim-2 singularities & physical interpretation
» Classification of EFCY manifolds
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OUTLINE

PART | NON-ABELIAN MODELS
1. Higher Genus Representations
2. Non-Realizable Representations and Matter Spectra

PART Il ABELIAN MODELS
1. Models with g = 3 and g = 4 Matter
2. Conjectures on Larger Charges
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PART | NON-ABELIAN MODELS



TYPICAL REPRESENTATIONS

Typical charged matter: singularity type enhances on codim-two locus
» Resolution introduces exceptional curves forming Dynkin diagram

EXAMPLE Fundamental of SU(n)

Codim-one Singularity Codim-Two Singularity
In — In+1
-1 An

O OCO
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HIGHER GENUS REPRESENTATIONS

» Certain reps. involve 7-branes wrapped on higher genus divisors
» Exotic reps. can be localized at singular loci

FOR SU(N)

Smooth Curve with Double Point Triple Point

Genus g Singularity Singularity
> >0 \\« »

/ N/ / - /
, , L/

g Adjoints Adjoint or 3 Adjoints or
m—+H IO+ 2 x 0
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HIGHER GENUS DIFFICULTIES |

[Sadov '96] Double points give symmetrics

ISSUE N
1. Start with smooth higher genus curve / ‘:i\w/;
» Adjoints supported, no symmetrics
2. Tune a double point " L
3. Has the matter content changed?

[Morrison, Taylor '12]
» Double points can also give adjoints

» Just tuning double point doesn't give
symmetrics

How do you distinguish adjoint vs. symmetric double points?
How do you construct models with symmetrics?
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HIGHER GENUS DIFFICULTIES I

There are prior models with higher genus exotics:

[Cvetic, Klevers, Piragua, Taylor '15]

SU(3) with symmetrics [Anderson, Gray, NR, Taylor '15]
SU(2) with 3-sym. [Klevers, Taylor '16]
But they

» Relied on previous constructions w/ different gauge groups
» How would we systematically construct models from scratch?

» Realize a limited set of matter spectra
» Can we find more general models?

» Have complicated “non-Tate” structure in Weierstrass models
» Can we explain this structure?
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AN EXAMPLE OF NON-TATE STRUCTURE

v2=x3+fx+g A = 4f3 + 2742 SU(N): A « o
Expand f and g as
f=fo+fio+f0? +... §=90+810 + 820% + ...

For zeroth order cancellation: 4f03 + 27g§ =0mod o
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AN EXAMPLE OF NON-TATE STRUCTURE

v2=x3+fx+g A = 4f3 + 2742 SU(N): A « o
Expand f and g as
f=fo+fo+f0o+... g=80+810+820" + ...
For zeroth order cancellation: 4f03 + 27g§ =0mod o
OPTION 1 Exact Cancellation (Tate’s algorithm)
fo = —3¢7 80 = 2¢°.
4f° + 27802 =0
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AN EXAMPLE OF NON-TATE STRUCTURE

v =x+fx+g A =43 4 278 SU(N): A o o™
Expand f and g as
f=fo+fo+f0o+... g=80+810+820" + ...

For zeroth order cancellation: 4f03 + 27g§ =0mod o
OPTION 1 Exact Cancellation (Tate’s algorithm)

fo = —3¢° 9o = 2¢°.

4fo° + 270> = 0

OPTION 2 Suppose o = £ — bn® w/ triple point at ¢ =n =0

fo = —3b&n go = 2b%°

4f3 + 27,2 = —108b%° (53 - b773)

Models with exotics have structures similar to Option 2
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NON-UFD STRUCTURE

Why is non-Tate structure allowed?
» Consider quotient ring R/(c) (x = x + ao)
» Cancellation condition becomes

4fo° = —27g3

Is there a Do polynomials Is R/{g) a

; 0o . . - unique factorization
non-Tate option? factorize uniquely? domain (UFD)?

» When ¢ is singular, quotient ring is not a UFD.

» One can consider normalization of 0 = 0

» Add elements from field of fractions to R/ (o)

» Resulting ring is called the normalized intrinsic ring (NIR)
» Find appropriate tunings by treating NIR as a UFD
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NON-UFD TUNINGS
Foro =¢—bn® =0.
1. Introduce new parameter B, with

B =b ¢£=Bny

Adding B gives us the normalized intrinsic ring
2. Start with the UFD tunings

fo ~ —3¢° 9o ~ 2¢°
3. Let ¢ depend on B, but fo, go cannot directly depend on B
¢=B%
fo ~ —3B*)? — —3b¢n 90 ~ 2B%n® — 2b2¢8

These are the non-Tate tunings from before.
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DERIVED MODELS

SU(N) W/ SYMMETRICS
(DOUBLE PTS)

» Generalizes previous constructions

SU(2) W/ 3-SYM.
(TRIPLE PTS)

» Adjoint models & exotic models connected by matter transitions
» At transition point: f, g vanish to orders (4,6) on codim-two locus
» See [Anderson, Gray, NR, Taylor '15] or
[Klevers, Morrison, NR, Taylor, '17] for more description
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NON-REALIZABLE REPS

Reps must involve embedding in
standard Dynkin diagram
Extended Dynkin not allowed

REASON

» Resolution introduces exceptional
curves

» (Negative of) Cartan matrix gives
intersection numbers

» Must contract all curves in diagram
» For extended diagram, intersection
matrix not negative definite
IN PRACTICE

» Attempts lead to codim-2 (4,6)
singularities

Hypothetical 4-sym. of SuU(2)
A? — D4

-2 0 1 0 0O
o -2 1 0 O
1 1 -2 1 1
0 © 1 -2 O
0 © 1 0o -2

Negative of 154 Cartan Matrix

14 OF 33



NON-REALIZABLE REPS I

Examples of non-realizable reps include
» 3-sym. of SU(3) (35)
» 4-antisym. of SU(8) (70)
» 4-sym. of SU(2) (5)
even though they appear in seemingly consistent 6D SUGRAs

Further analysis suggests Sp, SO, exceptional gauge groups cannot
support exotics in F-theory.

» Suggests F-theory can only realize “standard” reps plus a few
exotics
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NON-REALIZABLE SPECTRA

Some matter spectra seem non-realizable in F-theory
EXAMPLE  Quintic Curve on P2

6D SUGRA suggests there should be a model with
» A P?base
» An SU(2) tuned on a quintic curve
» Two triple points supporting 3-sym. (4) matter

SUGRA anomalies care only about whether genus is high enough
» Quintic has genus 6
» Each triple point eats up genus 3
» Should be enough genus

But you cannot have a quintic curve on P? with two triple points
» Suggests this model cannot be realized in F-theory
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NON-ABELIAN SUMMARY

» Exotic reps associated with singular divisors can be understood
» Models can be systematically derived using normalized intrinsic ring
» Non-UFD nature of models with singular divisors explains intricate
Weierstrass structure
» Some models seem non-realizable in F-theory

» Certain reps seem non-realizable
» Certain combinations of reps non-realizable
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PART Il ABELIAN MODELS



ABELIAN WEIERSTRASS MODELS

Global Weierstrass Form:  y?> = x° + fxz* + g2°
X:y:z)=[\x: N3y )7

Interested in models w/ a U(1) gauge group, no non-abelian factors
» Generating section s
» Section described by components [X :  : Z]
» (X,V,2) depend on position in base
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I, SINGULARITIES

Global Weierstrass Form: y? =x° +fxz* +g2°

Codim-two [, singularities occur at

y=3+f*=0

» After resolution, fiber splits into two
components

» “Extra” component denoted ¢

» All charged matter, regardless of
charge, occurs at I, singularities
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CHARGED MATTER

Shioda Map ¢: Homomorphism from MW group to Neron-Severi

I, singularities occur at Charge of matter
§=3%2+f*=0 g=o0(5)-c
Two ways matter can appear
1. Standard Intersection
» Typically gives g = 1 matter

2. X, ¥, and Z simultaneously vanish
» Naively seems ill-defined
» Must resolve section
» Section wraps a component
» Cangiveq > 1
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MORRISON-PARK FORM

Well-understood model with Charge 1 & 2 matter [Morrison, Park '12]

1 2
f=cic3 — 56% —cob? g= c0c§ - 3C1C263 + = 27 - §coczb2 + clb2
s . 2 N
Z=5>b X= c% - §c2b2 V= —c% + coc3b? — %bA'

Charge-2 matter occurs atb =c3 =0
» (2,%,Y) vanish to orders (1,2,3) on this locus

Are there constructions admitting charges greater than 2?
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PRIOR MODELS WITH LARGE CHARGES

Not many models with charge greater than 2
» There is a class of charge-3 models

» [Klevers, Mayorga-Pena, Oehlmann, Piragua, Reuter '14]
» Found within set of constructions (toric hypersurface fibrations)
» Weierstrass model has intricate structure, not in MP form

» Charge-4+ even more challenging
» To my knowledge, no previously published models

QUESTIONS

» How would we construct charge-3 models from scratch?
» Can we explain intricate structure in charge-3 Weierstrass model?
» Can we get charge-4 or greater?
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BASIC IDEA

Orders of vanishing of the (2, X, ) section components tell us about
the charge

Charge-2 Loci (2,X, ¥) vanish to orders (1, 2, 3) (Morrison-Park form)
Charge-3+ Loci (2,X, ¥) vanish to higher orders

Evidence comes from
» Explicit models supporting charge-3 and charge-4 matter
» Non-generator sections in g = 1 model
» 6D anomaly relations (won't discuss here)
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DERIVING U(1) MODELS

For a single U(1), need an additional rational section [X : § : 2]
Global Weierstrass Form: y% — % = 2% (ff( +g22>
LHS has similar algebraic form to discriminant.

STRATEGY FOR CONSTRUCTION
1. Start with ansatz for z. Assume 2, X and y are holomorphic.
2. Expand X, y as series in Z.
3. Tune X and ¥ so that §2 — &3 « 2*
» Similar to tuning an 4 singularity
4. If necessary, further tune X and ¥ so that y2 — X3 takes form above

5. Read off fand g
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OBTAINING MORRISON-PARK FORM

Natural First Attempt: Assume R/(Z) is a UFD
1. Write xand ¥ as
X = X0 +x12 + X222 4. .. §=vyo+yi2+y2®...

3

2. To have 92 — %3 & 2%, use UFD I4 tuning with altered coefficients:

A . N 3 . .
R=¢? +x,2° y:¢3+§¢>xzzz+y4z4

3. Without any further tuning,

4

f 38
4. With the redefinitions

o a3 a 3 o) o x3 . 2 -
P52 =2" [ <2¢y4 —Zx5+ fzzz> X+ <Xzy4¢ -2+ ya2® — sz) zz]

X 2 1
Z—b x2—>—§c2 ¢ —C3 y4—>§c1 fo = —co

we recover Morrison-Park form!
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OBTAINING CHARGE-3 MODEL

Using UFD tunings leads to Morrison-Park form
» Z = b vanishes to order 1 at charge-2 locib =¢c3 =0

Suppose Z has singular structure
» Z vanishes to orders higher than 1
» R/(Z) may not be a UFD
» Now can have non-UFD structure in the tunings

» Introduces deviations from Morrison-Park form

» Use normalized intrinsic ring techniques to tune U(1)
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DERIVING CHARGE 3 MODELS

1) Start with ansatz 2 = byn2 + 2b1namp + bon?
» Double point singularities at 5, = n, =0
» Identical Z to that in the previous g = 3 models

2) Tuning steps lead to generalization of previous g = 3 construction
» Can derive g = 3 models essentially from scratch
» Entire structure motivated by singular nature of Z
» Can obtain new models with previously unrealized matter spectra
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CHARGE 4 MODELS

NIR process is algebraically difficult, use alternative strategy

1. Start with U(1) x U(1) model admitting (2, 2) matter
» [Cvetic, Klevers, Piragua, Taylor '15]
» Two generating sections Q and R
> A codim-2 I, locus for which ¢(Q) - ¢ = 2,0(R) -c =2

2. Deform model in a way that preserves Q[+]R but not Q, R
individually
> [+]: elliptic curve addition law
» Now only a single generator

3. Now have a single U(1) with charge-4 matter
> Previous (2, 2) locus now supports charge-4, as

c(Q+R)-c=0(Q+c(R)=2+2=4

Charge-4 model has higher orders of vanishing and NIR structure
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LEARNING ABOUT LARGER CHARGES

Based on [Morrison, Park '12]
Can we conjecture about charge-5+ matter without explicit models?

Consider a U(1) model and only charge-1 matter:
» Has a generating section s.
» There are codim-two I, loci at which o(5) -c =1

» There are also sections ms for all integers m
» Generated using elliptic curve addition

v

At codimension-two loci, o(mS) - ¢ = m
» Looks like charge m
» Local behavior of ms likely mimics that of generator for an actual
charge-m model

Punchline: Use mé$ sections to conjecture about higher charge models
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ORDERS OF VANISHING |

EXAMPLE What is order of vanishing of ms section components at
the codim-two loci?

» Should be related to orders of vanishing for charge-m models.
» Calculate sections one by one and read off orders of vanishing:

zZ X 1%
m=110"19 ! These match known
m=211 2 3 _
behavior at charge-1
m=3812 2 7 through charge-4 loci
m=4,|4 8 12 ug g
m=5|6 12 19
m=619 18 24 Maybe these match as
well?
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ORDERS OF VANISHING I

The orders seem to follow a pattern

2 X ) For even m, the orders of vanishing are
m=1|0 0 1
il B m? 2m? 3
e =T dd m, the ord ishi
m=51|6 12 19 For odd m, the orders of vanishing are
m=elv 18 m -1 2 1) 3m2-1)
4 4 ’ 4

» |'ve verified these patterns up tom = 26
» Would be interesting to verify/prove patterns for arbitrary m.
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GENERAL CHARGE LOCI

CONJECTURE
At charge-q loci, the (2, %, ) of the generator § vanish to orders

2 9.2 2

For even q: <Z,2Z,3Z>

2 2 2

9°—1 2(g° 1) 3(¢* - 1)
a2 g 1

For odd g: <

» If true, could provide heuristic way of reading off charges from
Weierstrass model
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ABELIAN CONCLUSIONS

» Orders of vanishing of (X, ¥,2) seem related to charges supported

» Can derive charge-3 models from scratch using normalized
intrinsic ring

» Charge-4 models found, also display normalized intrinsic ring
structure
» Conjectures on larger charge models

Thank you!
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PART Il BACK UP SLIDES



SYMMETRICS AND THE SPLIT CONDITION

To tune SU(N) on o = £2 — by
1. Introduce parameter B: B2 = b, By = ¢
2. Tunings: f=—3¢2+... §=2¢%+...
3. Must implement Split Condition: ¢ = ¢3

4. Near double point, curve looks like (¢ + Bn)(¢ — Bn)
» The two “components” should be identified with each other

Adjoint Symmetric
Generic ¢g ¢g = B
Bo-B Bo-B
../_O\.. “/“.
Dynkin index [1, 1] Dynkin index [2, 0]
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INTERESTING DIRECTION

Direction for further understanding: 3-antisym of SU(9) (84)
» Argument suggests 3-antisym. of SU(9) (84) cannot be realized in
F-theory
» But there are heterotic orbifolds with the 84 rep
» Example: In 6D, heterotic on T4/Z3 with SU(9) x Eg gauge group

» When orbifold smoothed to K3, SU(9) Higgsed down to SU(8)
» 3-antisym. of SU(8) is allowed in F-theory
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CHARGE-4 DEFORMATION

Initial U(1) < U(1) Model: Describe via embedding in P2
u (51u2 + 52UV + 53V2 + S5UW + SgVW + sgw2>
+ (a1v + baw)(azv + bow)(azv + bzw) = 0

Three Sections: P=[0:—by:a1] Q=[0:—by:a] R=1[0:—bs:aj]
» P taken as zero section

» Q, R interchanged under a, < as, by < bs
DEFORMATION  Remove all instances of a», as, by, b3 using

a»as — do asbs + asby — dq bobs — d,

» Deformation involve expressions invariant under a,, as, by, b3
» Preserve Q[+]R, not Q or R
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ANOMALIES AND ORDER OF VANISHING

6D anomalies hint at order of vanishing behavior:
1. Start with anomaly equations

—Kg-h Z q? : Height of the section
hypers
— h(s) = Z q* Kg : Canonical class of the base
hypers

2. Sum to get new relation
(—2Ks +h(3))-h(®) = 2 > a*(a* - 1)

which can often be rewritten as

(K + ()] = 15 3 @@~ 1)

hypers

3. £4d%(a® — 1) is always an integer, non-zero only for g > 2
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ANOMALIES AND ORDER OF VANISHING
Il

(—Ks +[2]) - [2] = Z a*(a* -

hypers

In all the examples considered

x=t24+0(2) §y=1t2+0(2) [t] = —Ks + [2]
Section components vanish wherevert =2 =0

Anomaly eqgn. tells us about section components vanishing
For Morrison-Park (only charges 1 and 2)

2=b X=c3+00b) §=S+0(b) [c3]=—Kp+ [b]

The anomaly equation suggests that, as expected

vyvyy

[c3] - [b] = No. of g = 2 hypers

v

For g = 3,4 models: $592(q? — 1) numbers automatically appear
in Res(t,2)!
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