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BASED ON

For non-Abelian models
▶ arXiv:1706.08194 - D. Klevers, D. Morrison, NR, W. Taylor

For abelian models
▶ arXiv:1711.03210 - NR
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BROAD QUESTIONS

Which charged maħer representaধons can be obtained in F-theory?
▶ How do codim. 2 singulariধes→ charged maħer?
▶ How do you construct explicit Weierstrass models w/ certain
maħer spectra?

In F-theory, tough to get more than a few simple reps.
▶ Some reps. drop out easily

▶ e.g. in Tate’s algorithm construcধons
▶ For reps beyond these, models are complicated

▶ Greater algebraic complexity
▶ Few systemaধc methods for obtaining models
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EXOTIC VS. NON-EXOTIC REPS.

EXOTIC REPS: Reps difficult to obtain in F-theory construcধons

SU(N) U(1)

Fundamentals
NOT EXOTIC 2-anধsymmetrics Charge 1 and 2

Adjoints

3-anধsym.
EXOTIC 4-anধsym. Charge 3 and above

Symmetric
3-sym.
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WHY STUDY EXOTICS?

We cannot characterize full F-theory landscape without
understanding exoধc representaধons

▶ Match between SUGRA and F-theory
▶ Can all 6D SUGRAs be realized as F-theory compacধficaধons?
▶ Non-abelian: Models with some reps, spectra cannot
▶ Abelian: Potenধally infinite number of consistent SUGRA models

▶ See upcoming work by [Taylor and Turner]
▶ Which abelian models have F-theory construcধons?

▶ Learn more about codim-2 singulariধes & physical interpretaধon
▶ Classificaধon of EFCY manifolds
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OUTLINE

PART I NON-ABELIAN MODELS
1. Higher Genus Representaধons
2. Non-Realizable Representaধons and Maħer Spectra

PART II ABELIAN MODELS
1. Models with q = 3 and q = 4 Maħer
2. Conjectures on Larger Charges
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PART I NON-ABELIAN MODELS



TYPICAL REPRESENTATIONS

Typical charged maħer: singularity type enhances on codim-two locus
▶ Resoluধon introduces excepধonal curves forming Dynkin diagram

EXAMPLE Fundamental of SU(n)

Codim-one Singularity Codim-Two Singularity
In → In+1

An−1 An
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HIGHER GENUS REPRESENTATIONS
▶ Certain reps. involve 7-branes wrapped on higher genus divisors
▶ Exoধc reps. can be localized at singular loci

FOR SU(N)
Smooth Curve with

Genus g
Double Point
Singularity

Triple Point
Singularity

g Adjoints Adjoint or
+

3 Adjoints or
+ 2×
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HIGHER GENUS DIFFICULTIES I
[Sadov ’96] Double points give symmetrics

ISSUE
1. Start with smooth higher genus curve

▶ Adjoints supported, no symmetrics

2. Tune a double point
3. Has the maħer content changed?

[Morrison, Taylor ’12]
▶ Double points can also give adjoints
▶ Just tuning double point doesn’t give
symmetrics

↓

How do you disধnguish adjoint vs. symmetric double points?
How do you construct models with symmetrics?
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HIGHER GENUS DIFFICULTIES II
There are prior models with higher genus exoধcs:

SU(3) with symmetrics [Cveধc, Klevers, Piragua, Taylor ’15]
[Anderson, Gray, NR, Taylor ’15]

SU(2) with 3-sym. [Klevers, Taylor ’16]

But they
▶ Relied on previous construcধons w/ different gauge groups

▶ How would we systemaধcally construct models from scratch?
▶ Realize a limited set of maħer spectra

▶ Can we find more general models?
▶ Have complicated “non-Tate” structure in Weierstrass models

▶ Can we explain this structure?
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AN EXAMPLE OF NON-TATE STRUCTURE
y2 = x3 + f x+ g ∆ = 4f3 + 27g2 SU(N): ∆ ∝ σN

Expand f and g as

f = f0 + f1σ + f2σ2 + . . . g = g0 + g1σ + g2σ2 + . . .

For zeroth order cancellaধon: 4f03 + 27g20 ≡ 0 mod σ

OPTION 1 Exact Cancellaࣅon (Tate’s algorithm)

f0 = −3ϕ2 g0 = 2ϕ3.

4f03 + 27g02 = 0

OPTION 2 Suppose σ = ξ3 − bη3 w/ triple point at ξ = η = 0

f0 = −3bξη g0 = 2b2η3

4f30 + 27g02 = −108b3η3
(
ξ3 − bη3

)
Models with exoধcs have structures similar to Opধon 2
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NON-UFD STRUCTURE
Why is non-Tate structure allowed?

▶ Consider quoধent ring R/⟨σ⟩ (x = x+ aσ)
▶ Cancellaধon condiধon becomes

4f03 = −27g20

Is there a
non-Tate opধon?

Do polynomials
factorize uniquely?

Is R/⟨σ⟩ a
unique factorizaধon
domain (UFD)?

▶ When σ is singular, quoধent ring is not a UFD.
▶ One can consider normalizaধon of σ = 0
▶ Add elements from field of fracধons to R/⟨σ⟩
▶ Resulধng ring is called the normalized intrinsic ring (NIR)
▶ Find appropriate tunings by treaধng NIR as a UFD
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NON-UFD TUNINGS
For σ = ξ3 − bη3 = 0.
1. Introduce new parameter B̃, with

B̃3 = b ξ = B̃η

Adding B̃ gives us the normalized intrinsic ring
2. Start with the UFD tunings

f0 ∼ −3ϕ2 g0 ∼ 2ϕ3

3. Let ϕ depend on B̃, but f0, g0 cannot directly depend on B̃

ϕ = B̃2η

f0 ∼ −3B̃4η2 → −3bξη g0 ∼ 2B̃6η3 → 2b2ξ3

These are the non-Tate tunings from before.
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DERIVED MODELS
SU(N) W/ SYMMETRICS SU(2) W/ 3-SYM.

(DOUBLE PTS) (TRIPLE PTS)

▶ Generalizes previous construcধons
▶ Adjoint models & exoধc models connected by maħer transiধons

▶ At transiধon point: f, g vanish to orders (4,6) on codim-two locus
▶ See [Anderson, Gray, NR, Taylor ’15] or
[Klevers, Morrison, NR, Taylor, ’17] for more descripধon
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NON-REALIZABLE REPS
Reps must involve embedding in
standard Dynkin diagram
Extended Dynkin not allowed

REASON
▶ Resoluধon introduces excepধonal
curves

▶ (Negaধve of) Cartan matrix gives
intersecধon numbers

▶ Must contract all curves in diagram
▶ For extended diagram, intersecধon
matrix not negaধve definite

IN PRACTICE
▶ Aħempts lead to codim-2 (4,6)
singulariধes

Hypotheࣅcal 4-sym. of SU(2)
A41 → D̂4


−2 0 1 0 0
0 −2 1 0 0
1 1 −2 1 1
0 0 1 −2 0
0 0 1 0 −2


Negaࣅve of D̂4 Cartan Matrix
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NON-REALIZABLE REPS II

Examples of non-realizable reps include
▶ 3-sym. of SU(3) (35)
▶ 4-anধsym. of SU(8) (70)
▶ 4-sym. of SU(2) (5)

even though they appear in seemingly consistent 6D SUGRAs

Further analysis suggests Sp, SO, excepধonal gauge groups cannot
support exoধcs in F-theory.

▶ Suggests F-theory can only realize “standard” reps plus a few
exoধcs
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NON-REALIZABLE SPECTRA
Some maħer spectra seem non-realizable in F-theory

EXAMPLE Quinࣅc Curve on P2

6D SUGRA suggests there should be a model with
▶ A P2 base
▶ An SU(2) tuned on a quinধc curve
▶ Two triple points supporধng 3-sym. (4) maħer

SUGRA anomalies care only about whether genus is high enough
▶ Quinধc has genus 6
▶ Each triple point eats up genus 3
▶ Should be enough genus

But you cannot have a quinধc curve on P2 with two triple points
▶ Suggests this model cannot be realized in F-theory

16 OF 33



NON-ABELIAN SUMMARY

▶ Exoধc reps associated with singular divisors can be understood
▶ Models can be systemaধcally derived using normalized intrinsic ring
▶ Non-UFD nature of models with singular divisors explains intricate
Weierstrass structure

▶ Some models seem non-realizable in F-theory
▶ Certain reps seem non-realizable
▶ Certain combinaধons of reps non-realizable
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PART II ABELIAN MODELS



ABELIAN WEIERSTRASS MODELS

Global Weierstrass Form: y2 = x3 + f x z4 + g z2

[x : y : z] ≡ [λ2x : λ3y : λz]

Interested in models w/ a U(1) gauge group, no non-abelian factors
▶ Generaধng secধon ŝ
▶ Secধon described by components [x̂ : ŷ : ẑ]
▶ (x̂, ŷ, ẑ) depend on posiধon in base
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I2 SINGULARITIES

Global Weierstrass Form: y2 = x3 + f x z4 + g z2

Codim-two I2 singulariধes occur at

ŷ = 3x̂2 + fẑ4 = 0

▶ Ađer resoluধon, fiber splits into two
components

▶ “Extra” component denoted c
▶ All charged maħer, regardless of
charge, occurs at I2 singulariধes
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CHARGED MATTER
Shioda Map σ: Homomorphism from MW group to Neron-Severi

I2 singulariধes occur at Charge of maħer
ŷ = 3x̂2 + fẑ4 = 0 q = σ(ŝ) · c

Two ways maħer can appear
1. Standard Intersecধon

▶ Typically gives q = 1 maħer
2. x̂, ŷ, and ẑ simultaneously vanish

▶ Naively seems ill-defined
▶ Must resolve secধon
▶ Secধon wraps a component
▶ Can give q > 1
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MORRISON-PARK FORM

Well-understood model with Charge 1 & 2 maħer [Morrison, Park ’12]

f = c1c3 −
1
3
c22 − c0b2 g = c0c23 −

1
3
c1c2c3 +

2
27

c32 −
2
3
c0c2b2 +

1
4
c21b2

ẑ = b x̂ = c23 −
2
3
c2b2 ŷ = −c33 + c2c3b2 −

c1
2
b4

Charge-2 maħer occurs at b = c3 = 0
▶ (ẑ, x̂, ŷ) vanish to orders (1,2,3) on this locus

Are there construcধons admiষng charges greater than 2?
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PRIOR MODELS WITH LARGE CHARGES

Not many models with charge greater than 2
▶ There is a class of charge-3 models

▶ [Klevers, Mayorga-Pena, Oehlmann, Piragua, Reuter ’14]
▶ Found within set of construcধons (toric hypersurface fibraধons)
▶ Weierstrass model has intricate structure, not in MP form

▶ Charge-4+ even more challenging
▶ To my knowledge, no previously published models

QUESTIONS
▶ How would we construct charge-3 models from scratch?
▶ Can we explain intricate structure in charge-3 Weierstrass model?
▶ Can we get charge-4 or greater?
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BASIC IDEA

Orders of vanishing of the (ẑ, x̂, ŷ) secধon components tell us about
the charge
Charge-2 Loci (ẑ, x̂, ŷ) vanish to orders (1,2,3) (Morrison-Park form)
Charge-3+ Loci (ẑ, x̂, ŷ) vanish to higher orders

Evidence comes from
▶ Explicit models supporধng charge-3 and charge-4 maħer
▶ Non-generator secধons in q = 1 model
▶ 6D anomaly relaধons (won’t discuss here)
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DERIVING U(1) MODELS
For a single U(1), need an addiধonal raধonal secধon [x̂ : ŷ : ẑ]

Global Weierstrass Form: ŷ2 − x̂3 = ẑ4
(
f x̂+ gẑ2

)
LHS has similar algebraic form to discriminant.

STRATEGY FOR CONSTRUCTION
1. Start with ansatz for ẑ. Assume ẑ, x̂ and ŷ are holomorphic.
2. Expand x̂, ŷ as series in ẑ.
3. Tune x̂ and ŷ so that ŷ2 − x̂3 ∝ ẑ4

▶ Similar to tuning an I4 singularity

4. If necessary, further tune x̂ and ŷ so that ŷ2 − x̂3 takes form above
5. Read off f and g
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OBTAINING MORRISON-PARK FORM
Natural First Aħempt: Assume R/⟨ẑ⟩ is a UFD
1. Write x̂ and ŷ as

x̂ = x0 + x1ẑ+ x2ẑ2 + . . . ŷ = y0 + y1ẑ+ y2ẑ2 . . .

2. To have ŷ2 − x̂3 ∝ ẑ4, use UFD I4 tuning with altered coefficients:

x̂ = ϕ2 + x2 ẑ2 ŷ = ϕ3 +
3
2
ϕ x2 ẑ2 + y4 ẑ4

3. Without any further tuning,

ŷ2−x̂3 = ẑ4
[(

2ϕy4 −
3
4
x22 + f2ẑ2

)
︸ ︷︷ ︸

f

x̂+
(
x2y4ϕ−

x32
4

+ y4ẑ2 − f2x̂
)

︸ ︷︷ ︸
g

ẑ2
]

4. With the redefiniধons

ẑ → b x2 → −2
3
c2 ϕ → c3 y4 → 1

2
c1 f2 → −c0

we recover Morrison-Park form!
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OBTAINING CHARGE-3 MODEL

Using UFD tunings leads to Morrison-Park form
▶ ẑ = b vanishes to order 1 at charge-2 loci b = c3 = 0

Suppose ẑ has singular structure
▶ ẑ vanishes to orders higher than 1
▶ R/⟨ẑ⟩ may not be a UFD
▶ Now can have non-UFD structure in the tunings

▶ Introduces deviaধons from Morrison-Park form

▶ Use normalized intrinsic ring techniques to tune U(1)
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DERIVING CHARGE 3 MODELS

1) Start with ansatz ẑ = b2η2a + 2b1ηaηb + b0η2b
▶ Double point singulariধes at ηa = ηb = 0
▶ Idenধcal ẑ to that in the previous q = 3 models

2) Tuning steps lead to generalizaধon of previous q = 3 construcধon
▶ Can derive q = 3 models essenধally from scratch
▶ Enধre structure moধvated by singular nature of ẑ
▶ Can obtain new models with previously unrealized maħer spectra
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CHARGE 4 MODELS
NIR process is algebraically difficult, use alternaধve strategy

1. Start with U(1)× U(1) model admiষng (2,2) maħer
▶ [Cveধc, Klevers, Piragua, Taylor ’15]
▶ Two generaধng secধons Q and R
▶ A codim-2 I2 locus for which σ(Q) · c = 2,σ(R) · c = 2

2. Deform model in a way that preserves Q[+]R but not Q, R
individually

▶ [+]: ellipধc curve addiধon law
▶ Now only a single generator

3. Now have a single U(1) with charge-4 maħer
▶ Previous (2,2) locus now supports charge-4, as

σ (Q[+]R) · c = σ (Q) + σ (R) = 2+ 2 = 4

Charge-4 model has higher orders of vanishing and NIR structure
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LEARNING ABOUT LARGER CHARGES
Based on [Morrison, Park ’12]

Can we conjecture about charge-5+ maħer without explicit models?

Consider a U(1) model and only charge-1 maħer:
▶ Has a generaধng secধon ŝ.
▶ There are codim-two I2 loci at which σ(ŝ) · c = 1
▶ There are also secধons mŝ for all integers m

▶ Generated using ellipধc curve addiধon
▶ At codimension-two loci, σ(mŝ) · c = m

▶ Looks like charge m
▶ Local behavior of mŝ likely mimics that of generator for an actual
charge-m model

Punchline: Use mŝ secধons to conjecture about higher charge models
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ORDERS OF VANISHING I
EXAMPLE What is order of vanishing of mŝ secধon components at
the codim-two loci?

▶ Should be related to orders of vanishing for charge-m models.
▶ Calculate secধons one by one and read off orders of vanishing:

ẑ x̂ ŷ
m = 1 0 0 1 These match known

behavior at charge-1
through charge-4 loci

m = 2 1 2 3
m = 3 2 4 7
m = 4 4 8 12
m = 5 6 12 19 Maybe these match as

well?m = 6 9 18 24
...
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ORDERS OF VANISHING II

ẑ x̂ ŷ
m = 1 0 0 1
m = 2 1 2 3
m = 3 2 4 7
m = 4 4 8 12
m = 5 6 12 19
m = 6 9 18 24

...

The orders seem to follow a paħern
For even m, the orders of vanishing are(

m2

4
,
2m2

4
,
3m2

4

)
For odd m, the orders of vanishing are(

m2 − 1
4

,
2(m2 − 1)

4
,
3(m2 − 1)

4
+ 1

)
▶ I’ve verified these paħerns up to m = 26
▶ Would be interesধng to verify/prove paħerns for arbitrary m.
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GENERAL CHARGE LOCI

CONJECTURE
At charge-q loci, the (ẑ, x̂, ŷ) of the generator ŝ vanish to orders

For even q:
(
q2

4
,
2q2

4
,
3q2

4

)
For odd q:

(
q2 − 1
4

,
2(q2 − 1)

4
,
3(q2 − 1)

4
+ 1

)
▶ If true, could provide heurisধc way of reading off charges from
Weierstrass model
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ABELIAN CONCLUSIONS

▶ Orders of vanishing of (x̂, ŷ, ẑ) seem related to charges supported
▶ Can derive charge-3 models from scratch using normalized
intrinsic ring

▶ Charge-4 models found, also display normalized intrinsic ring
structure

▶ Conjectures on larger charge models

Thank you!
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PART III BACK UP SLIDES



SYMMETRICSANDTHESPLITCONDITION
To tune SU(N) on σ = ξ2 − bη2:
1. Introduce parameter B̃: B̃2 = b, B̃η = ξ

2. Tunings: f = −3ϕ2 + . . . g = 2ϕ2 + . . .

3. Must implement Split Condiধon: ϕ = ϕ20

4. Near double point, curve looks like (ξ + B̃η)(ξ − B̃η)
▶ The two “components” should be idenধfied with each other

Adjoint Symmetric
Generic ϕ0 ϕ0 = B̃

Dynkin index [1,1] Dynkin index [2,0]
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INTERESTING DIRECTION

Direcধon for further understanding: 3-anধsym of SU(9) (84)
▶ Argument suggests 3-anধsym. of SU(9) (84) cannot be realized in
F-theory

▶ But there are heteroধc orbifolds with the 84 rep
▶ Example: In 6D, heteroধc on T4/Z3 with SU(9)×E8 gauge group
▶ When orbifold smoothed to K3, SU(9) Higgsed down to SU(8)
▶ 3-anধsym. of SU(8) is allowed in F-theory
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CHARGE-4 DEFORMATION
Iniধal U(1)×U(1) Model: Describe via embedding in P2

u
(
s1u2 + s2uv+ s3v2 + s5uw+ s6vw+ s8w2

)
+ (a1v+ b1w)(a2v+ b2w)(a3v+ b3w) = 0

Three Secࣅons: P = [0 : −b1 : a1] Q = [0 : −b2 : a2] R = [0 : −b3 : a3]
▶ P taken as zero secধon
▶ Q, R interchanged under a2 ↔ a3, b2 ↔ b3

DEFORMATION Remove all instances of a2, a3, b2, b3 using

a2a3 → d0 a2b3 + a3b2 → d1 b2b3 → d2

▶ Deformaধon involve expressions invariant under a2, a3, b2, b3
▶ Preserve Q[+]R, not Q or R
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ANOMALIES ANDORDER OF VANISHING
6D anomalies hint at order of vanishing behavior:
1. Start with anomaly equaধons

−KB · h(ŝ) =
1
6

∑
hypers

q2 h(ŝ) : Height of the secধon

−h(ŝ) · h(ŝ) = 1
3

∑
hypers

q4 KB : Canonical class of the base

2. Sum to get new relaধon

(−2KB + h(ŝ)) · h(ŝ) = 1
3

∑
hypers

q2(q2 − 1)

which can ođen be rewriħen as

(−KB + [ẑ]) · [ẑ] = 1
12

∑
hypers

q2(q2 − 1)

3. 1
12q

2(q2 − 1) is always an integer, non-zero only for q ≥ 2

4 OF 5



ANOMALIES ANDORDER OF VANISHING
II

(−KB + [ẑ]) · [ẑ] = 1
12

∑
hypers

q2(q2 − 1)

In all the examples considered

x̂ = t2 +O(ẑ) ŷ = t2 +O(ẑ) [t] = −KB + [ẑ]
▶ Secধon components vanish wherever t = ẑ = 0
▶ Anomaly eqn. tells us about secধon components vanishing
▶ For Morrison-Park (only charges 1 and 2)

ẑ = b x̂ = c23 +O(b) ŷ = c33 +O(b) [c3] = −KB + [b]

The anomaly equaধon suggests that, as expected

[c3] · [b] = No. of q = 2 hypers
▶ For q = 3,4 models: 1

12q
2(q2 − 1) numbers automaধcally appear

in Res(t, ẑ)!
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