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1. Examples of K3’s and elliptic fibrations in number theory

Overview:

Like elliptic curves (and more familiar building blocks such

as rational functions, calculus, and Fourier analysis), K3

surfaces and elliptic fibrations are a central enough mathe-

matical structure that “of course” they figure prominently

also in some parts of number theory.

Number theorists need to know about varieties such as

K3’s, and invariants such as Néron-Severi groups, not just

over C but also over small fields such as Q and even over

finite fields such as Z/pZ.

WARNING: CONTAINS EXPLICIT MATERIAL
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i) Diophantine equations

In general: rational solution of Diophantine equation ⇐⇒
rational point on alg. variety V

Dim.1: rational, elliptic, or general type (g ≥ 2).

Dim.2: K3’s are analogous to elliptic curves; next level

of difficulty past rational surfaces. (Not abelian surfaces?

That’s a closer analogue but much rarer in practice.)

Examples include simple equations, geom. constructions,

algebraic identities, moduli spaces; these often overlap, and

often give V with ρ at or near the maximum of 20 (thanks

to symmetry or “trivial” divisors).
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Euler already found parametric solutions (rational curves

on V ) for

(d2, e2, f2) = (b2 + c2, c2 + a2, a2 + b2)

(“Euler bricks”, e.g. (a, b, c; d, e, f) = (44,117,240; 267,244,125)),

xyz(x+ y + z) = a

(triangles with rational sides and given area a1/2, for any

a ∈ Q∗), and

a4 + b4 = c4 + d4

(e.g. (133,134; 59,158); NB in number theory that’s very

different from a4 +b4 +c4 = d4 and a4 +b4 +c4 +d4 = 0 !).
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Also:

• Triangles with rational sides and medians: again 3 quadrics

in P5, here 4m2
c = 2(a2 + b2)− c2 etc.;

• Points at rational distances from the vertices of a unit

equilateral triangle (the quartic surface

3∑
i=0

x4
i =

∑
0≤i<j≤3

x2
i x

2
j ,

with distances xi/x0 for i = 1,2,3) ⇐⇒ rational triangles

with a rational Fermat distance;

• Pairs of Pythagorean triangles with the same area:

(ab(a2− b2) = cd(c2− d2), a quartic surface; here and later

there are isolated ADE singularities to resolve before we

get the smooth K3 model).
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Examples from more “advanced” math:

• split sextics x6+ax2+bx+c (the roots satisfy
∑6
i=1 x

d
i = 0

for d = 1,2,3, so a complete (2,3) intersection in P4)

[count mod p: 6th moment of exp. sums
∑p−1
x=0 e

2πi(rx3+sx2)/p];

• likewise, split quintics x5 +ax3 +bx2 +c (the roots satisfy∑5
i=1 xi =

∑5
i=1 1/xi = 0, so a quartic in P3) [count mod p:

5th moment of Kloosterman sums
∑p−1
x=1 e

2πi(rx+sx−1)/p];

• for G = Z/7Z, Z/8Z, (Z/2Z)× (Z/6Z), and (Z/4Z)2, the

universal elliptic curves over the modular curves X1(G),

which parameterize elliptic curves with torsion G and a

rational point;

• for any elliptic curve E0 : y2 = x3 + a0x + b0: quadratic

twists cy2 = x3 +a0x+ b0 with two rational points (it’s the

Kummer of E0 × E0).
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ii) Moduli problems

Thanks to the Torelli theorem for K3 surfaces, there is a

rich structure of moduli spaces, call them KL for K3 sur-

faces, indexed by even lattices L of signature (1, ρ−1) that

embed primitively into the K3 lattice U3 ⊕ E2
8〈−1〉 (a.k.a.

II3,19). Each KL classifies K3’s with isometric embedding

L ↪→ NS; it is the union of components of dimension 20−ρ,

and embeds into KL′ for any primitive sublattice L′. [Here

and earlier, “primitive”: L′ = (L′⊗Q)∩L, so geometrically

L′ is a slice of L.]

These KL are arithmetic quotients, and for large ρ include

more familiar moduli varieties like modular curves (both

classical and Shimura), the modular threefold A2 classify-

ing principally polarized abelian surfaces (ppas), and the

Humbert surfaces MD ⊂ A2 that classify ppas with real

multiplication.
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Remarkably some of these old moduli spaces are easier to

get at via their KL description than via the abelian surfaces

that they parametrize. (One explanation is that the diffi-

culty roughly groups with |discL|, and inclusions KL ⊂ KL′
let us deal even with moderately large |discL|, say / 103,

by organizing the calculation as a sequence of steps of dif-

ficulty measured by |discL| /
∣∣discL′

∣∣.)
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This was done for some Shimura curves [NDE 2008]; and

later, systematically, for Humbert surfaces MD, and with

some further work also for the Hilbert surfaces “Y−(D)”

that cover MD 2:1 and parametrize ppas with an action

of OD. Not surprisingly, these Y−(D) tend to get more

complicated as D increases, and a few are themselves K3;

e.g. the first of these, Y−(21), is singular (ρ = 20) with

discriminant −1008 = 24327. [NDE-Kumar 2014]
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iii) Diophantine records

Record ranks for elliptic curves:

Theorem (Mordell c.1920): E(Q) is finitely generated for

any elliptic curve E/Q.

Theorem (Mazur 1977): Torsion group E(Q)tors is either

Z/NZ for 1 ≤ N ≤ 10 or N = 12 or (Z/2Z) ⊕ (Z/2NZ) for

N = 1,2,3,4. (Each arises infinitely often: all 15 modular

curves are rational.)

Open question: Given E(Q)tors, what ranks are possible?

Is the rank unbounded?

While it’s open: can we find specific E/Q of high rank?
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Standard strategy: start from a family of elliptic curves Et
with the target torsion group and moderately large rank;

these are retained by most specializations (e.g. by Silver-

man for t ∈ P1), and then we search for t that have new

points.

Simplest case is when the base of t’s is P1, and then we

have an elliptic surface. Rational elliptic surfaces have rank

at most 8 (more on this later), so the next step is elliptic

K3’s.

Example: trivial torsion. General theory: ρ ≤ 20 so MW

rank ≤ 18. Can be attained over C (and thus over some

number fields), e.g. y2 = x3 + P12(t) with icosahedral P12

[G.Zaytman found the MW lattice explicitly here]; but not

over Q! Why not? . . .
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By Tate-Shioda (stated later), rank 18 implies that NS is

U⊕L〈−1〉 with L of minimal norm 4. But if NS = NSQ then

D = |discL| is one of the 13 “Euler-Heegner numbers”

D = 3,4,7,8,11,12,16,19,27,28,43,67,163

for which the quadratic order of discriminant −D has unique

factorization [Schütt 2010]. And even 163 is too small —

indeed it turns out that this surface has many thousands

of elliptic fibrations but all of rank at most 11.

Fortunately, with much effort we found a single elliptic K3

surface of MW rank 17, from a sporadic rational point on a

Shimura curve parametrizing a certain family of K3’s with

(ρ,disc) = (19,948). This eventually produced Et/Q of

rank as large as 28 ([NDE 2006], and still the only known

source of rank > 24). These curves also give new records

for 2-rank of class group of cubic number fields [Klagsbrun-

Sherman-Weigandt 2016].
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Here’s a simpler example where we can use the (20,−163)

surface. The general elliptic curve with 4-torsion is

y2 + axy + aby = x3 + bx2

(torsion generator (x, y) = (0,0). Taking

(a, b) = ((8t− 1)(32t+ 7), (t+ 1)(15t− 8)(31t− 7))

yields K3/P1
t with Mordell–Weil group (Z/4Z) ⊕ Z4; one

choice of generators has x-coordinates

−15
4 (t+ 1)(31t− 7)(32t+ 7), (8t− 1)(15t− 8)(31t− 7)(32t+ 7),

−(t+ 1)(8t− 1)(15t− 8)(32t+ 7), −4(t+ 1)(2t+ 5)(15t− 8)(32t+ 7).

Et/Q for t = 18745/6321 has rank 12 (NDE 2006), the

current rank record for torsion Z/4Z (and all other known

curves with MW group (Z/4Z) ⊕ Z12 are of the form Et
too).

13



Curves of fixed genus g > 1:

Theorem (Faltings 1983, conjectured by Mordell c.1920):

Let C be an algebraic curve of genus g > 1 over a number

field K. Then |C(K)| <∞.

Now fix K and g > 1, and vary C. Can that |C(K)| < ∞
get arbitrarily large? In other words: Is

B(g,K) := sup
C
|C(K)|

infinite?

Theorem (Caporaso-Harris-Mazur 1997): Assume Bombieri-

Lang conjecture. Then B(g,K) <∞ for all g > 1 and K.
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The Bombieri-Lang conjecture is an analogue of Mordell-
Faltings for algebraic varieties of arbitrary dimension:

Conjecture (Bombieri-Lang 1986): Suppose V is an alge-
braic variety of general type. Then all its rational points
are in a finite union of subvarieties V ′i each of dimension
< dim(V ).

So, under Bombieri-Lang, we have B(g,K) <∞ by C-H-M.

What’s the Caporaso-Harris-Mazur bound on B(g,K)?

Alas the proof gives no explicit upper bound, because (as
with Faltings) the argument is ineffective — as it must be:
already for dim(V ) = 1 the exceptional V ′i are the rational
points of the curve V , and in general we have no control
over their number.

So again we’re record hunting . . .
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Genus 2: use a K3 surface with a degree 2 polarization,

a.k.a. “double plane” y2 = P6(x0, x1, x2). Lines tangent to

the sextic P6 = 0 at three points lift to pairs of rational

curves. Generic line ` ∈ P2 lifts to a genus-2 curve with at

least as many pairs of rational points as we have tritangent

lines.

Here’s such a model of the (20,−163) surface:
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Current record (NDE + M.Stoll 2008–09): at least 2 · 321

points on

Y 2 = 82342800X6 − 470135160X5 + 52485681X4

+ 2396040466X3 + 567207969X2 − 985905640X + 157402,

with X equal

0, −1, −4, 4, 5, 6, 1/3, −5/3, −3/5, 7/4, . . . , 148596731/35675865,

58018579/158830656, 208346440/37486601,

−1455780835/761431834, −3898675687/2462651894.
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Likewise for genus 3 we try plane sections of a quartic

K3 surface with many lines. Over Q, the same (ρ,∆) =

(20,−163) surface has a smooth model with 46 lines; here’s

a nice picture of another model with 42:
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2. Elliptic fibrations

Genus-1 fibrations, and especially elliptic fibrations, are a

useful tool for many of these problems. This is clear when

hunting for elliptic-curve records; but such fibrations are

prominent also in our other contexts.
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• We can build on the rich structure and theory of elliptic

curves. Euler already used this to find rational curves of

“Euler bricks” and a4+b4 = c4+d4 solutions by (as we now

describe it) using the group structure to make new non-

trivial solutions from trivial ones. Likewise we first found

nontrivial rational solutions of a4 + b4 + c4 = d4 using a

genus-1 fibration.

• For an elliptic fibration of a surface S, the Tate-Shioda

theorem relates the “arithmetic” of the fibration (reducible

fibers, torsion and Mordell–Weil rank, canonical height of

sections) with the geometry of the surface (intersection

pairing on NS(S) = U ⊕ L〈−1〉: the MW group is L/R

where R is the ADE lattice coming from reducible fibers).
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• K3 surfaces can have numerous elliptic fibrations, corre-

sponding to different decompositions NS(S) = U ⊕ L′〈−1〉
with L′ “in the same genus” as L but not isomorphic.

We’ve seen examples already; e.g.

y2 = x3 +Ax+ (B+t+B +B−t
−1)

has elliptic fibrations x and t with L = E8 ⊕ E8 and D+
16

respectively. These are the only two fibrations for generic

A,B,B±, but our (−20,163) surface has a total of 167889

elliptic fibrations — each with Q coefficients for all equa-

tions and sections — corresponding to the 167889 even

Euclidean lattices of rank 18 and discriminant 163. [This

enumeration finished NDE 22.i.2018, just in time; MW

ranks 1, . . . ,11. These lattices (= quadratic forms) and

their genera are themselves of number-theoretic interest.]
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Moreover, we can move systematically among them using

“neighbor method” (L,L′ are “p-neighbors” if they have

isomorphic sublattices of index p; in practice we use p = 2

and maybe p = 3.) See e.g. [NDE-Kumar 2014], where

we use this to move from a convenient elliptic fibration to

one with E7 and E8 fibers (Kodaira II∗, III∗) and can apply

Kumar’s formulas for the Igusa-Clebsch invariants of the

associated genus-2 curve. This let us and others search

the rational points of these surfaces to find points whose

corresponding ppas account for some Galois representa-

tions computed by other means.
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3. Shioda’s “excellent families” (1990+)

Suppose S → P1 is a rational elliptic surface (DP8?) with

an additive singular fiber (Type II, cusp) at t = ∞. Then

the fibration has Weierstrass model

y2 = x3 +

 3∑
i=0

pit
i

x+

 5∑
j=0

qjt
j

 .
Not unique because of affine maps t → αt + β of P1 and

scaling (x, y) → (λ2x, λ3y). Using these we may assume

q5 = 1 and q4 = 0 . This leaves only multiplicative scal-

ings, with total weight 30; thus pi and qj have weight 20−3i

and 30− j respectively:

t x y p3 p2 p1 p0 q3 q2 q1 q0

6 10 15 2 8 14 20 12 18 24 30

The set of pi and qj weights should look familiar!
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Shioda relates this with the Mordell–Weil lattice E8 of

y2 = x3 +

 3∑
i=0

pit
i

x+

t5 +
3∑

j=0

qjt
j

 ,
generated by 240 “roots” = sections (x, y) of the form

x = x2t
2 + x1t+ x0, y = y3t

3 + y2t
2 + y1t+ y0

with x3
2 = y2

3, i.e. (x2, y3) = (a−2, a−3) with a of weight 1:

t x y a p3 p2 p1 p0 q3 q2 q1 q0

6 10 15 1 2 8 14 20 12 18 24 30

This a identifies the additive t =∞ fiber with Ga (lemma:

3 points (a−2
i , a−3

i ) on Y 2 = X3 collinear ⇐⇒
∑3
i=1 ai = 0).

The pi and qj determine the 240 a’s up to the action of

the Weyl group W (E8) — and what’s “excellent” here and

in a series of similar examples is that the coefficients pi, qj
generate the invariant ring!
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This is nice for number theory because it gives a family of

rank-8 surfaces parametrized by P(Hom(E8,Ga)) = P7, a

family of Galois extensions of generic Galois groups W (E8)

(parametrized by t, pi, qj in appropriately weighted P8, etc.).

We also get a family of elliptic fibrations CY5 → P4 by

restricting to any linear P4 ⊂ P7 and specializing t to any

sextic form on this P4.

Likewise for some of the other “excellent families” found by

Shioda and others (Shioda-Usui, NDE, . . . ). For example,

Shioda’s E7 family, obtained by requiring the additive t =∞
fiber to be not II (cusp) but III (two tangent P1’s):
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y2 = x3 + (t3 + p1t+ p0)x+
4∑

j=0

qjt
j,

with 126 roots (x, y) = (a−2t2 + O(t), a−3t3 + O(t2)) as

before, and here also 56 dual roots with (x, y) = (x1t+x0,

at2 + y1t+ y0); the weights are

t x y a p1 p0 q4 q3 q2 q1 q0

4 6 9 1 8 12 2 6 10 14 18

so we get rank-7 elliptic fibrations CY3→ P2 by restricting

to a linear P2 ⊂ P6 and specializing t to any quartic form

on this P4. As with the E8 family, the coefficients for the

56 minimal sections are given by explicit polynomials.

But I’m told that rank-8 fibrations of CY3’s are already

known, so we must try harder to get a new record . . .
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Some “excellent families” of K3 surfaces

Consider elliptic K3’s S → P1 of the special form

y2 = x3 + (p7t
7 + p4t

4 + p1t)x+ (q12t
12 + q9t

9 + q6t
6 + q3t

9 + q0)

with action of a symplectic 3-cycle w : (t, x, y) 7→ (ωt, ω2x, y)

[“symplectic”: fixes the holomorphic 2-form dt ∧ dx/y].

The quotient is rational, with (h2,0, h1,1, h0,2) = (1,8,1);

the ω and ω2 eigenspaces each have just h1,1, namely

(h2,0, h1,1, h0,2) = (0,6,0), so contribute to NS(S); it turns

out that this rank-12 contribution is always the Coxeter-

Todd lattice K12, with (∆, Nmin, κ) = (36,4,756). NB the

dimension of this family is right: ρ = 2 + 12 = 14, and

8− 2 = 6 = 20− ρ.
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Now we can set q12 = 0 so the fiber above the fixed point

t =∞ is a cusp, and normalize p7 = 1 to get

y2 = x3 + (t7 + p4t
4 + p1t)x+

 3∑
j=0

q3jt
3j


which is an “excellent family” associated to Mitchell’s com-

plex reflection group of K12 (defined over Z[ω], Shephard-

Todd #34):

t x y p4 p1 p9 q6 q3 q0

4 14 21 12 24 6 18 30 42

But, while this is interesting for other reasons, it doesn’t

seem to give a rank-12 CY fibration over any Pn−1, because

the overall weight of 42 is just too large.

However, . . .
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Setting also p7 = 0 makes the t = ∞ fiber reducible of

Type IV (three coincident lines), contributing A2 to NS(S)

and leaving a rank-10 Mordell–Weil lattice (called K∗10):

y2 = x3 + (p4t
4 + p1t)x+

t9 +
2∑

j=0

q3jt
3j


This is an “excellent family” for a reflection group in U5(C),

Shephard-Todd #33:

t x y p4 p1 q6 q3 q0

2 6 9 4 10 6 12 18

Both the K12 and K10 families are NDE c.1999, used a few

times since for tasks such as high-rank “Mordell curves”

y2 = x3 + a6. More recently W.Taylor mentioned the

physics interest in high-rank fibrations of CY’s, so:
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4. A family of elliptically fibered CY3’s of rank 10

Since p4, p1, q6, q3, q0 are homogeneous forms of degrees

4,10,6,12,18 on P4, we can restrict to a generic P2 ⊂ P4,

and take for t any quadratic form on that P2, to get an

elliptic fibration over P2 given by the same formula

y2 = x3 + (p4t
4 + p1t)x+

t9 +
2∑

j=0

q3jt
3j


whose total space is birational CY3 for generic choices of

the P2 and t. Moreover, the special choice t = 0 yields

such fibrations of the special form y2 = x3 + a6 with a6 ∈
Γ(O(18)), obtained from a special degree-18 invariant of

the ST33 reflection group, again by restriction to some

P2 ⊂ P4.
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T H E E N D

Any (more) questions?
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