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We work over an algebraically closed field k .

Let G be a finite group.

A G-graded fusion category is C = ⊕x∈G Cx with ⊗ : Cx × Cy → Cxy . If
C1 = B we say that C is a G -extension of B.

Classification of extensions (Etingof-N-Ostrik) via higher cat groups

{ Groupoid of G -extensions of B } ' { groupoid of monoidal

2-functors G → BrPic(B) } (invertible B-bimodule categories).

Equivalently: monoidal functors with a vanishing obstruction in
H4(G , k×) (parameterization by a torsor over H3(G , k×)).

Equivalently: homotopy classes of maps BG → BBrPic(B).

For braided B { G -crossed graded extensions of B } ' { monoidal
2-functors G → Pic(B)} (invertible B-module categories).

BrPic(B) is a 2-categorical group. It determines the homotopy class of a
topological space (a 3-type) with π1 = BrPic(B), π2 = Inv(Z(B)), and
π3 = k×.
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Problem

Let A be a finite abelian group. Let B be a braided fusion category.
Classify braided A-extensions of B.

Solution

{ Groupoid of braided A-extensions of B } ' { groupoid of braided

monoidal 2-functors A→ Picbr(B) }.
Here Picbr(B) consists of invertible braided B-bimodule categories), we
call it the braided Picard group of B.

Plan of the talk

Describe the structures involved

Prove the classification result

Explain relevant higher categories and functors algebraically (using
the language of obstructions)

Compute braided Picard groups in interesting cases
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Explanation of terms

Let M be a right B-module category and N be a left B-module category.

The B-module tensor product M�B N
consists of pairs (V ∈M�N , γ = {γX}), where the middle balancing

γX : V ⊗ (X � 1)→ (1 � X )⊗ V , X ∈ B
is associative. This is similar to tensor product of modules over a ring. If
M, N are bimodule categories then so is M�B N .

B-Bimod is a monoidal 2-category via �B
Objects = B-bimodule categories, 1-cells = B-bimodule functors, 2-cells =
B-bimodule natural transformations.
We will suppress the assocativity 2-cells for �B.

The Brauer-Picard categorical 2-group BrPic(B) is the “pointed part”
of B-Bimod

Objects are invertible w.r.t �B, all cells are isomorphisms.
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Let B be a braided fusion category with braiding cX ,Y : X ⊗ Y → Y ⊗ X .
Let M be a B-module category, i.e., there is ⊗ : B ×M→M
B-Mod := the 2-category of B-module categories

Two tensor products on B-Mod

There are two tensor functors αM± : B → EndB(M) (α-inductions of
Böckenhauer-Evans-Kawahigashi): αM± (X ) = X⊗? with the
B-module structure given by cX ,Y (resp. c−1Y ,X )

Since M is a B − EndB(M)-bimodule, one can turn M into a
B-bimodule category in 2 different ways: M± (using αM± ).

Two monoidal 2-categories: B-Mod± with products M± �B N .

Relation between ± products:

There is natural equivalence N− �BM
∼−→M+ �B N

given by the transposition of factors N �M→M�N ,
so that B-Mod− ' B-Modop+
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Böckenhauer-Evans-Kawahigashi): αM± (X ) = X⊗? with the
B-module structure given by cX ,Y (resp. c−1Y ,X )

Since M is a B − EndB(M)-bimodule, one can turn M into a
B-bimodule category in 2 different ways: M± (using αM± ).

Two monoidal 2-categories: B-Mod± with products M± �B N .

Relation between ± products:

There is natural equivalence N− �BM
∼−→M+ �B N

given by the transposition of factors N �M→M�N ,
so that B-Mod− ' B-Modop+

Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 8 / 28



Let B be a braided fusion category with braiding cX ,Y : X ⊗ Y → Y ⊗ X .
Let M be a B-module category, i.e., there is ⊗ : B ×M→M
B-Mod := the 2-category of B-module categories

Two tensor products on B-Mod

There are two tensor functors αM± : B → EndB(M) (α-inductions of
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Böckenhauer-Evans-Kawahigashi): αM± (X ) = X⊗? with the
B-module structure given by cX ,Y (resp. c−1Y ,X )

Since M is a B − EndB(M)-bimodule, one can turn M into a
B-bimodule category in 2 different ways: M± (using αM± ).

Two monoidal 2-categories: B-Mod± with products M± �B N .

Relation between ± products:

There is natural equivalence N− �BM
∼−→M+ �B N

given by the transposition of factors N �M→M�N ,
so that B-Mod− ' B-Modop+

Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 8 / 28



Let B be a braided fusion category with braiding cX ,Y : X ⊗ Y → Y ⊗ X .
Let M be a B-module category, i.e., there is ⊗ : B ×M→M
B-Mod := the 2-category of B-module categories

Two tensor products on B-Mod

There are two tensor functors αM± : B → EndB(M) (α-inductions of
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A braided B-module category [Brochier, Ben-Zvi - Brochier - Jordan]

is a B-module category M equipped with a collection of isomorphisms
σMX ,M : X ∗M → X ∗M (module braiding) natural in X ∈ B, M ∈M with
σ1,M = 1M and such that the diagrams

X ∗ (Y ∗M)
σMX ,Y∗M //

mX ,Y ,M

��

X ∗ (Y ∗M)

mX ,Y ,M

��
(X ⊗ Y ) ∗M

cX ,Y

��

(X ⊗ Y ) ∗M

c−1
Y ,X
��

(Y ⊗ X ) ∗M

m−1
Y ,X ,M

��

(Y ⊗ X ) ∗M

m−1
Y ,X ,M
��

Y ∗ (X ∗M)
σMX ,M // Y ∗ (X ∗M)

(X ⊗ Y ) ∗M
σMX⊗Y ,M //

c−1
Y ,X
��

(X ⊗ Y ) ∗M
cX ,Y

��
(Y ⊗ X ) ∗M

m−1
Y ,X ,M

��

(Y ⊗ X ) ∗M

m−1
Y ,X ,M
��

Y ∗ (X ∗M)

σMX ,M ((

Y ∗ (X ∗M)

Y ∗ (X ∗M)
σMY ,X∗M

66

commute for all X ,Y ∈ B and M ∈M.

B-module braided functors are required to respect module braiding.
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Interpretation of module braidings

Terminology justification

A module braiding on M gives rise to the pure braid group representation
on EndM(X1 ⊗ · · · ⊗ Xn ⊗M) for X1, . . . ,Xn ∈ B and M ∈M.

A module braiding on M is precisely an isomorphism of tensor functors

αM+
∼−→ αM− . It gives a B-bimodule equivalence M+

∼−→M−.

Tensor product of braided module categories

(M, σM) �B (N , σN ) := (M+ �B N , σM �B σN ).
The unit object is the regular B with σBX ,Y = cY ,X ◦ cX ,Y .

Denote B-Modbr the resulting monoidal 2-category.
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Module braiding = central structure

Let N = (N , σN ) be a braided B-module category and M be any
B-module category.

Let us combine previously mentioned equivalences:

BM,N :M+ �B N
transposition−−−−−−−→ N− �BM

module braiding of N−−−−−−−−−−−−−→ N+ �BM.

Let us denote B−Mod+ simply B−Mod and its tensor product �B.

The above BM,N :M�B N
∼−→ N �BM equips M with a structure of

an object in the Z(B−Mod) (= the 2-center of the monoidal 2-category
B-Mod) and vice versa.

Thus, B−Modbr ' Z(B−Mod).
In particular, B−Modbr is a braided monoidal 2-category.
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What is a braided monoidal 2-category?

Defined by Kapranov-Voevodsky, Breen.
Just like usual braided category, but equalities now become isomorphisms
(natural 2-cells):

βL,M,N : (idM �B BL,N )(BL,M �B idN )
∼−→ BL,M�BN ,

γL,K,N : (BL,N �B idK)(idL �B BK,N )
∼−→ BL�BK,N

for all braided B-module categories L, K,M, N .

These satisfy coherence of their own.
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The braided 2-categorical Picard group Picbr(B)

For our purposes we will need the “pointed part” of B−Modbr consisting
of braided module categories invertible w.r.t. �B and equivalences
between them: Picbr(B) = Inv(B−Modbr ) .

If we view Picbr(B) as a 3-categorical group with a single object, then the
homotopy groups of the corresponding topological space are
π1 = 1, π2 = Picbr (B), π3 = Inv(Zsym(B)), and π4 = k×.

There is an exact sequence for the underlying group Picbr (B) of Picbr(B):

0→ Inv(Zsym(B)) −→ Inv(B) −→ Aut⊗(idB) −→ Picbr (B) −→ Pic(B) −→ Autbr (B).

Here Inv() denotes the group of invertible objects, Pic(B) is the usual
Picard group of B.
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Whitehead products πk × πl → πk+l−1

Picbr (B) (the 1-categorical truncation of Picbr(B)) is a braided categorical
group.
So there is a canonical quadratic form

QB : Picbr (B)→ Inv(Zsym(B))

by [Joyal-Street].
This comes from π2 × π2 → π3.

There is a well-defined bilinear map

PB : Inv(Zsym(B))× Picbr (B)→ k×

given by PB(Z ,M) = σZ ,X ∈ Aut(Z ⊗ X ) = k×, X ∈M.
This is π3 × π2 → π4.
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Outline

1 Graded extensions of fusion categories

2 Braided module categories over braided fusion categories

3 Braided extensions
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From extensions to braided monoidal 2-functors and back

Let A be a finite Abelian group. Let B be a braided fusion category with
braiding c .

Given a braided extension

C =
⊕
x∈A
Cx , C1 = B,

we have Cx ∈ Picbr (B), x ∈ X with the module braiding given by
σX ,V = cX ,V cV ,X , V ∈ B, X ∈ Cx .

Furthermore, the tensor products ⊗x ,y : Cx �B Cy → Cxy gives rise to
B-module equivalences Mx ,y : Cx × Cy

∼−→ Cxy .

This gives a (usual) monoidal functor

A→ Picbr (B) : x 7→ Cx .

It upgrades to a braided monoidal 2-functor:
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Namely, the associativity and braiding constraints of C give rise to natural
2-cells involving Mx ,y , x , y ∈ A:

Cx �B Cy �B Cz
My,z //

Mx,y

��

Cx �B Cyz
Mx,yz

��
Cxy �B Cz

Mxy,z

// Cxyz ,

αx,y,z *2

and

Cx �B Cy
Bx,y //

Mx,y $$

Cy �B Cx

My,xzz
Cxy .

δx,y +3

Here Bx ,y is the braiding in Picbr(B).

The moral: Structure morphisms in C ←→ structure 2-cells in Picbr(B).
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Consequently, the pentagon (for the associativity of C) and two hexagons
(for the braiding of C) diagrams ←→ commuting polytopes in Picbr(B).

Namely, the pentagon becomes a cube:

Cf �D Cg �D Ch �D Ck

Mf ,g

vv

Mg,h

��

Mh,k

''
Cfg �D Ch �D Ck

Mfg,h

��

Mh,k

((

Cf �D Cgh �D Ck
Mf ,gh

vv

Mgh,k

''

Cf ,g ,hk

Mf ,g

ww

Mg,hk

��
Cfgh �D Ck

Mfgh,k

((

Cfg �D Chk

Mfg,hk

��

Cf �D Cghk

Mf ,ghk

ww
Cfghk ,

αf ,gh,k .6

αf ,g,h )1

αg,h,k +3

αfg,h,k
'/

αf ,g,hk

�&

Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 20 / 28



Consequently, the pentagon (for the associativity of C) and two hexagons
(for the braiding of C) diagrams ←→ commuting polytopes in Picbr(B).

Namely, the pentagon becomes a cube:

Cf �D Cg �D Ch �D Ck

Mf ,g

vv

Mg,h

��

Mh,k

''
Cfg �D Ch �D Ck

Mfg,h

��

Mh,k

((

Cf �D Cgh �D Ck
Mf ,gh

vv

Mgh,k

''

Cf ,g ,hk

Mf ,g

ww

Mg,hk

��
Cfgh �D Ck

Mfgh,k

((

Cfg �D Chk

Mfg,hk

��

Cf �D Cghk

Mf ,ghk

ww
Cfghk ,

αf ,gh,k .6

αf ,g,h )1

αg,h,k +3

αfg,h,k
'/

αf ,g,hk

�&

Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 20 / 28



Consequently, the pentagon (for the associativity of C) and two hexagons
(for the braiding of C) diagrams ←→ commuting polytopes in Picbr(B).

Namely, the pentagon becomes a cube:

Cf �D Cg �D Ch �D Ck

Mf ,g

vv

Mg,h

��

Mh,k

''
Cfg �D Ch �D Ck

Mfg,h

��

Mh,k

((

Cf �D Cgh �D Ck
Mf ,gh

vv

Mgh,k

''

Cf ,g ,hk

Mf ,g

ww

Mg,hk

��
Cfgh �D Ck

Mfgh,k

((

Cfg �D Chk

Mfg,hk

��

Cf �D Cghk

Mf ,ghk

ww
Cfghk ,

αf ,gh,k .6

αf ,g,h )1

αg,h,k +3

αfg,h,k
'/

αf ,g,hk

�&

Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 20 / 28



Consequently, the pentagon (for the associativity of C) and two hexagons
(for the braiding of C) diagrams ←→ commuting polytopes in Picbr(B).

Namely, the pentagon becomes a cube:

Cf �D Cg �D Ch �D Ck

Mf ,g

vv

Mg,h

��

Mh,k

''
Cfg �D Ch �D Ck

Mfg,h

��

Mh,k

((

Cf �D Cgh �D Ck
Mf ,gh

vv

Mgh,k

''

Cf ,g ,hk

Mf ,g

ww

Mg,hk

��
Cfgh �D Ck

Mfgh,k

((

Cfg �D Chk

Mfg,hk

��

Cf �D Cghk

Mf ,ghk

ww
Cfghk ,

αf ,gh,k .6

αf ,g,h )1

αg,h,k +3

αfg,h,k
'/

αf ,g,hk

�&

Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 20 / 28



and hexagons become octahedra:

Cx �B Cy �B Cz

Bx�y,z

55

My,z

//

Mx,y

""

By,z

((
Cx �B Cyz

Mx,yz

��

Cx �B Cz �B Cy
Mz,yoo

Mx,z

��
Bx,z

��

Cxy �B Cz
Mxy,z //

Bxy,z

  

Cxyz Cxz �B Cy
Mxz,yoo

Cz �B Cxy

Mz,xy

OO

Cz �B Cx �B Cy ,
Mx,yoo

Mz,x

OO

δy,z

BJ

βx,y,z

nv

δx,z

�#

δxy,z

*2

αx,y,z

7?
αx,z,y

ck

αz,x,y
y�

can

S[
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and

Cx �B Cy �B Cz

Bx,y�z

55

Mx,y

//

My,z

""

Bx,y

((
Cxy �B Cz

Mxy,z

��

Cy �B Cx �B Cz
My,xoo

Mx,z

��
Bx,z

��

Cx �B Cyz
Mx,yz //

Bx,yz

  

Cxyz Cy �B Cxz
My,xzoo

Cyz �B Cx

Myz,x

OO

Cy �B Cz �B Cx .
My,zoo

Mz,x

OO

δx,y

BJ

βx,y,z

nv

δx,z

�#

δx,yz

*2

αx,y,z

w�
αy,x,z

#+

αy,z,x

9A

can

S[
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A functor A→ Picbr(B) with these structures (associativity and braiding
cells α and δ) such that the above polytopes commute is a braided
monoidal 2-functor. So we went from extensions to functors.

Conversely, given a braided monoidal 2-functor A→ Picbr(B), x 7→ Cx ,
i.e., Mx ,y : Cx × Cy

∼−→ Cxy (x , y ∈ A) and cells α and δ such that the
polytopes commute we form a fusion category

C = ⊕x∈A Cx , C1 = B

and equip it with the tensor product ⊗x ,y : Cx × Cy → Cxy (coming from
Mx ,y ) and associativity and braiding constraints (coming from α and δ)
and get a braided fusion category.

Main theorem

{ Groupoid of braided A-extensions of B } ' { groupoid of braided

monoidal 2-functors A→ Picbr(B) }
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Understanding obstructions

Braided monoidal 2-functors A→ Picbr(B) can be understood using the
Eilenberg-MacLane cohomology of abelian groups

Hn
ab(A, N) = Hn+1(K (A, 2), N).

H2
ab(A,N) = ExtZ(A,N): symmetric 2-cocycles −→ abelian groups,

H3
ab(A,N) = Quad(A, N): abelian 3-cocycles = (ω : A3 → N, c : A2 → N)

satisfying pentagon + 2 hexagons −→ braided categorical groups ,

H4
ab(A,N) = triples (a : A4 → N, β, γ : A3 → N) satisfying certain

coherence conditions (cf. polytopes in the definition of a braided monoidal
2-category) −→ braided 2-categorical groups.

A (usual) braided monoidal functor M : A→ Picbr (B) gives rise to a
braided monoidal 2-functor (i.e., to a braided A-extension of B) ⇐⇒
an obstruction o4(M) ∈ H4

ab(A, k×) (given by the cube + 2 octahedra

above) vanishes.
In this case 2-functors are parameterized by an H3

ab(A, k×)-torsor.
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The Pontryagin-Whitehead quadratic function

Braided monoidal functors M : A→ Picbr (B) : x 7→ Cx form a torsor over
H2
ab(A, Inv(Zsym(B)).

Given L ∈ H2
ab(A, Inv(Zsym(B)) compose Mx ,y : Cx �B Cy → Cxy with the

tensor multiplication by Lx ,y . Denote the new functor L ◦M.
(So the tensor product Vx ⊗ Uy is replaced by Lx ,y ⊗ Vx ⊗ Uy etc. This
was called “zesting” in the literature).

o4(L ◦M) = o4(M)pwM(L) in H4
ab(A, k×),

where pwM(L) = (a(L), βM(L), γM(L)) with

a(L) : A4 → k×,

βM(L) : A3 → k×,

γM(L) : A3 → k×

defined as follows:
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tensor multiplication by Lx ,y . Denote the new functor L ◦M.

(So the tensor product Vx ⊗ Uy is replaced by Lx ,y ⊗ Vx ⊗ Uy etc. This
was called “zesting” in the literature).

o4(L ◦M) = o4(M)pwM(L) in H4
ab(A, k×),

where pwM(L) = (a(L), βM(L), γM(L)) with

a(L) : A4 → k×,

βM(L) : A3 → k×,

γM(L) : A3 → k×

defined as follows:
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pwM(L) = (a(L), βM(L), γM(L)) ∈ H4
ab(A, k×)

Here L = {Lx ,y} ∈ H2
ab(A, Inv(Zsym(B)).

a(L) ∈ H4(A, k×) comes from the self braiding
Inv(Zsym(B))→ Z2 ⊂ k× : Z 7→ cZ ,Z

(in our case it is a homomorphism) composed with the cup product square:

H2
ab(A, Inv(Zsym(B))) −→ H2

ab(A, Z2)
∪2−→ H4(A, Z2)→ H4(A, k×),

βM(L), γM(L) : A3 → k× are defined using the map
PB : Inv(Zsym(B))× Picbr (B)→ k× (i.e., π3 × π2 → π4) by

βM(L)(x , y , z) = PB(Ly ,z , Cx)

γM(L)(x , y , z) = PB(Lx ,y , Cz).
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Computing Picbr(B)

The braided categorical group structure is determined by the canonical
quadratic form

QB : π2 = Picbr (B) −→ π3 = Inv(Zsym(B))).

Example: B is non-degenerate

Then Picbr(B) is trivial (i.e., contactible). Only trivial braided extensions
(tensoring with a pointed category): C = B � C(A, q).

Example: B = sVec

Picbr (sVec) ∼= Z2 × Z2.
QsVec takes values {I , I , I , Π}, where Inv(sVec) = {I , Π}.

Example: B is Tannakian

Picbr (Rep(G )) ∼= H2(G , k×)× Z (G ) with

QRep(G) : H2(G , k×)× Z (G )→ Ĝ , QRep(G)(µ, z) = µ(z,−)
µ(−, z) .
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µ(−, z) .

Dmitri Nikshych (University of New Hampshire) Braided extensions October 15, 2018 27 / 28



Computing Picbr(B)

The braided categorical group structure is determined by the canonical
quadratic form

QB : π2 = Picbr (B) −→ π3 = Inv(Zsym(B))).

Example: B is non-degenerate

Then Picbr(B) is trivial (i.e., contactible).

Only trivial braided extensions
(tensoring with a pointed category): C = B � C(A, q).

Example: B = sVec

Picbr (sVec) ∼= Z2 × Z2.
QsVec takes values {I , I , I , Π}, where Inv(sVec) = {I , Π}.

Example: B is Tannakian

Picbr (Rep(G )) ∼= H2(G , k×)× Z (G ) with

QRep(G) : H2(G , k×)× Z (G )→ Ĝ , QRep(G)(µ, z) = µ(z,−)
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Thanks for listening!
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