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A class of systems arising from the study of vortex
configurations in self-dual gauge field theories

• Consider the problem:{
−∆wi =

∑m
j=1 aije

wj − 4πNiδ0 in R2∫
R2 e

wi <∞.
(1)

• Here Nj > −1, j = 1, ...,m and A = {aij} is a symmetric matrix.
• By setting: wi (x) = ui (x) + 2Ni ln |x |, we reduce (1) to:{

−∆ui =
∑m

j=1 aij |x |2Nj euj in R2

1
2π

∫
R2 |x |2Ni euidx < +∞

(2)

• Clearly If ui solves (2) and for every R > 0 we define

u
(R)
i (x) := ui

(
x/R

)
− 2(Ni + 1) ln (R) ∀i = 1, ...,m, (3)

then u
(R)
i also solves (2) and moreover

1

2π

∫
R2

|x |2Ni eu
(R)
i dx =

1

2π

∫
R2

|x |2Ni euidx . (4)
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• We focus on the radial solvability of the problem{
−∆ui =

∑m
j=1 aij |x |2Nj euj in R2

1
2π

∫
R2 |x |2Ni euidx = βi .

(5)

• It is well known that any solution to (5) satisfies Pohozaev
identity:

m∑
i=1

m∑
j=1

1

2
aijβiβj −

m∑
k=1

2(Nk + 1)βk = 0. (6)

So (6) is one of the necessary conditions of solvability of problem
(5).
• Moreover, the following condition, arising from the finiteness of
integrals in (5):

m∑
j=1

aijβj > 2(Ni + 1) ∀i = 1, ...,m, (7)

is also one of the necessary conditions of radial solvability of
problem (5).
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The ”classical” Liouville equation

• In the case of m = 1, and N = 0 problem (2) reduces to:{
−∆v = λev in R2∫
R2 e

vdx < +∞.
(8)

Theorem (Chen-Li)

If λ > 0 then Eq.(8) ⇒ λ

2π

∫
R2

evdx = 4, (9)

and all the solutions are fully classified.
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The ”singular” Liouville equation

• In the case of m = 1, and N 6= 0 problem (2) reduces to:{
−∆v = |x |2N ev in R2∫
R2 |x |2N evdx < +∞ .

(10)

Theorem (Prajapat-Tarantello)

Eq.(10) ⇒ 1

2π

∫
R2

|x |2N evdx = 4(N + 1), (11)

and all the solutions are fully classified.
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The system (2) when aij > 0.

Consider the conditions:
βi > 0 i ∈ {1, . . . ,m}(∑m

i=1

∑m
j=1

1
2aijβiβj

)
−
∑m

i=1 2(Ni + 1)βi = 0(∑
i∈J

∑
j∈J

1
2aijβiβj

)
−
∑
i∈J

2(Ni + 1)βi < 0 ∀J, 1 ≤ |J| < m

(12)

Theorem (Chipot-Shafrir-Wolanski)

If aij > 0, det A 6= 0 and Ni = 0 then (12) are necessary and
sufficient condition for radial solvability of (5).

Theorem (C.S.Lin-Zhang)

In the settings of previous theorem a radial solution to (5) is
unique (up to scaling (3)).
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Theorem (P-Tarantello)

If aij > 0 and Ni > −1 then (12) are necessary and sufficient
condition for radial solvability of (5). Moreover, such a solution is
unique (up to scaling (3)).

Here A can be degenerate. The particular case when det A 6= 0
was treated independently by C.S.Lin and Zhang.
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A degenerate system arisen in the study of selfgravitating
strings

• For b > 0 and N > −1 consider the problem:{
−∆v = ebv + |x |2Nev in R2

1
2π

∫
R2

(
ebv + |x |2Nev

)
dx = α.

(13)

• It can be easily verified that if b = 1/(N + 1) then α = 4(N + 1).
• Then by setting u1 = bv − ln b, u2 = v we reduce (13) to the
degenerate system of the form (5):

−∆u1 = b2eu1 + b|x |2Neu2 in R2

−∆u2 = beu1 + |x |2Neu2 in R2

1
2π

∫
R2 e

u1dx = β1
1
2π

∫
R2 |x |2Neu2dx = β2

bβ1 + β2 = α.

(14)
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bβ1 + β2 = α.

(14)
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Theorem (P-Tarantello)

Assume that v is a radial solution of (13).

if b >
1

N + 1
then max

{
4

b
, 4(N + 1)− 4

b

}
< α < 4(N + 1),

if 0 < b <
1

N + 1
then max

{
4(N + 1) ,

4

b
− 4(N + 1)

}
< α <

4

b
.

Moreover, in the later cases there exist the unique radial solution
to (13).

Arkady Poliakovsky On non-topological solutions for planar Liouville Systems of Toda-type



A system (5) with positively defined matrix A

• What can we say about solvability of (5) if A is positively defined
but can contain negative entries.
• We focus on the case m = 2.
• Then (5) reeds as:

−∆ψ = a11|x |2N1eψ + a12|x |2N2eϕ in R2

−∆ϕ = a22|x |2N2eϕ + a12|x |2N1eψ in R2

1
2π

∫
R2 |x |2N1eψdx = β

1
2π

∫
R2 |x |2N2eϕdx = α,

(15)

and positive definiteness reeds as:

a11 > 0, a22 > 0, and a212 < a11a22. (16)
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• Defining in (15):

u1(x) = ψ(x)− ln (a11) and u2(x) = ϕ(x)− ln (a22) (17)

we rewrite (15) as:
−∆u1 = |x |2N1eu1 − τ1|x |2N2eu2 in R2

−∆u2 = |x |2N2eu2 − τ2|x |2N1eu1 in R2

1
2π

∫
R2 |x |2N1eu1dx = β1,

1
2π

∫
R2 |x |2N2eu2dx = β2,

(18)

where

τ1 := −a12
a22

, τ2 := −a12
a11

and β1 =
β

a11
, β2 =

α

a22
. (19)

Moreover, in the case a12 6= 0 (16) reeds as:

0 < τ1τ2 < 1. (20)

Arkady Poliakovsky On non-topological solutions for planar Liouville Systems of Toda-type



• Defining in (15):

u1(x) = ψ(x)− ln (a11) and u2(x) = ϕ(x)− ln (a22) (17)

we rewrite (15) as:


−∆u1 = |x |2N1eu1 − τ1|x |2N2eu2 in R2

−∆u2 = |x |2N2eu2 − τ2|x |2N1eu1 in R2

1
2π

∫
R2 |x |2N1eu1dx = β1,

1
2π

∫
R2 |x |2N2eu2dx = β2,

(18)

where

τ1 := −a12
a22

, τ2 := −a12
a11

and β1 =
β

a11
, β2 =

α

a22
. (19)

Moreover, in the case a12 6= 0 (16) reeds as:

0 < τ1τ2 < 1. (20)

Arkady Poliakovsky On non-topological solutions for planar Liouville Systems of Toda-type



• Defining in (15):

u1(x) = ψ(x)− ln (a11) and u2(x) = ϕ(x)− ln (a22) (17)

we rewrite (15) as:
−∆u1 = |x |2N1eu1 − τ1|x |2N2eu2 in R2

−∆u2 = |x |2N2eu2 − τ2|x |2N1eu1 in R2

1
2π

∫
R2 |x |2N1eu1dx = β1,

1
2π

∫
R2 |x |2N2eu2dx = β2,

(18)

where

τ1 := −a12
a22

, τ2 := −a12
a11

and β1 =
β

a11
, β2 =

α

a22
. (19)

Moreover, in the case a12 6= 0 (16) reeds as:

0 < τ1τ2 < 1. (20)

Arkady Poliakovsky On non-topological solutions for planar Liouville Systems of Toda-type



• Defining in (15):

u1(x) = ψ(x)− ln (a11) and u2(x) = ϕ(x)− ln (a22) (17)

we rewrite (15) as:
−∆u1 = |x |2N1eu1 − τ1|x |2N2eu2 in R2

−∆u2 = |x |2N2eu2 − τ2|x |2N1eu1 in R2

1
2π

∫
R2 |x |2N1eu1dx = β1,

1
2π

∫
R2 |x |2N2eu2dx = β2,

(18)

where

τ1 := −a12
a22

, τ2 := −a12
a11

and β1 =
β

a11
, β2 =

α

a22
. (19)

Moreover, in the case a12 6= 0 (16) reeds as:

0 < τ1τ2 < 1. (20)

Arkady Poliakovsky On non-topological solutions for planar Liouville Systems of Toda-type



• Defining in (15):

u1(x) = ψ(x)− ln (a11) and u2(x) = ϕ(x)− ln (a22) (17)

we rewrite (15) as:
−∆u1 = |x |2N1eu1 − τ1|x |2N2eu2 in R2

−∆u2 = |x |2N2eu2 − τ2|x |2N1eu1 in R2

1
2π

∫
R2 |x |2N1eu1dx = β1,

1
2π

∫
R2 |x |2N2eu2dx = β2,

(18)

where

τ1 := −a12
a22

, τ2 := −a12
a11

and β1 =
β

a11
, β2 =

α

a22
. (19)

Moreover, in the case a12 6= 0 (16) reeds as:

0 < τ1τ2 < 1. (20)

Arkady Poliakovsky On non-topological solutions for planar Liouville Systems of Toda-type



• Defining in (15):

u1(x) = ψ(x)− ln (a11) and u2(x) = ϕ(x)− ln (a22) (17)

we rewrite (15) as:
−∆u1 = |x |2N1eu1 − τ1|x |2N2eu2 in R2

−∆u2 = |x |2N2eu2 − τ2|x |2N1eu1 in R2

1
2π

∫
R2 |x |2N1eu1dx = β1,

1
2π

∫
R2 |x |2N2eu2dx = β2,

(18)

where

τ1 := −a12
a22

, τ2 := −a12
a11

and β1 =
β

a11
, β2 =

α

a22
. (19)

Moreover, in the case a12 6= 0 (16) reeds as:

0 < τ1τ2 < 1. (20)

Arkady Poliakovsky On non-topological solutions for planar Liouville Systems of Toda-type



• In the case a12 < 0 we have τ1 > 0, τ2 > 0 and τ1τ2 < 1.

Then, Pohozaev identity (6) reeds as:

τ2β
2
1−4τ2(N1+1)β1+τ1β

2
2−4τ1(N2+1)β2−2τ1τ2β1β2 = 0. (21)

Moreover, (6) and (7) together reed as:

β2 <
2

1−τ1τ2

(
(N2 + 1) + τ2(N1 + 1)

+
√

(N2 + 1)2 + 2τ2(N2 + 1)(N1 + 1) + τ2
τ1

(N1 + 1)2
)
,

β2 >
2

1−τ1τ2

(
(N2 + 1) + τ2(N1 + 1)

+
(√
τ1τ2

)√
(N2 + 1)2 + 2τ2(N2 + 1)(N1 + 1) + τ2

τ1
(N1 + 1)2

)
,

β1 =
(
2(N1 + 1) + τ1β2

)
+
√(

2(N1 + 1) + τ1β2
)2 − τ1

τ2
β2
(
β2 − 4(N2 + 1)

)
.

(22)
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)2 − τ1

τ2
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(
β2 − 4(N2 + 1)

)
.

(22)
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Moreover, similarly as it was done in the case a12 > 0, in the case
a12 < 0 we also can find that the following condition

β1 > 4(N1 + 1) and β2 > 4(N2 + 1), (23)

is also one of the necessary conditions of radial solvability of
problem (18).
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The following cases of system (18) are special:

τ1 = τ2 = 1
2 ,

Either τ1 = 1
2 and τ2 = 1, or τ1 = 1 and τ2 = 1

2 .

Either τ1 = 1
2 and τ2 = 3

2 , or τ1 = 3
2 and τ2 = 1

2 .

In these cases it was proved (C.S.Lin,Wei and thair coauthors) that
the set of (β1, β2) for which we have a radial solvability of (18)
reduces to a single point.
For example: if τ1 = τ2 = 1

2 then necessarily
β1 = β2 = 4(N1 + 1) + 4(N2 + 1)
and if τ1 = 1

2 , τ2 = 1 then necessarily β1 = 8(N1 + 1) + 4(N2 + 1)
and β2 = 8(N1 + 1) + 8(N2 + 1).

Arkady Poliakovsky On non-topological solutions for planar Liouville Systems of Toda-type



The following cases of system (18) are special:

τ1 = τ2 = 1
2 ,

Either τ1 = 1
2 and τ2 = 1, or τ1 = 1 and τ2 = 1

2 .

Either τ1 = 1
2 and τ2 = 3

2 , or τ1 = 3
2 and τ2 = 1

2 .

In these cases it was proved (C.S.Lin,Wei and thair coauthors) that
the set of (β1, β2) for which we have a radial solvability of (18)
reduces to a single point.
For example: if τ1 = τ2 = 1

2 then necessarily
β1 = β2 = 4(N1 + 1) + 4(N2 + 1)
and if τ1 = 1

2 , τ2 = 1 then necessarily β1 = 8(N1 + 1) + 4(N2 + 1)
and β2 = 8(N1 + 1) + 8(N2 + 1).

Arkady Poliakovsky On non-topological solutions for planar Liouville Systems of Toda-type



The following cases of system (18) are special:

τ1 = τ2 = 1
2 ,

Either τ1 = 1
2 and τ2 = 1, or τ1 = 1 and τ2 = 1

2 .

Either τ1 = 1
2 and τ2 = 3

2 , or τ1 = 3
2 and τ2 = 1

2 .

In these cases it was proved (C.S.Lin,Wei and thair coauthors) that
the set of (β1, β2) for which we have a radial solvability of (18)
reduces to a single point.
For example: if τ1 = τ2 = 1

2 then necessarily
β1 = β2 = 4(N1 + 1) + 4(N2 + 1)
and if τ1 = 1

2 , τ2 = 1 then necessarily β1 = 8(N1 + 1) + 4(N2 + 1)
and β2 = 8(N1 + 1) + 8(N2 + 1).

Arkady Poliakovsky On non-topological solutions for planar Liouville Systems of Toda-type



The following cases of system (18) are special:

τ1 = τ2 = 1
2 ,

Either τ1 = 1
2 and τ2 = 1, or τ1 = 1 and τ2 = 1

2 .

Either τ1 = 1
2 and τ2 = 3

2 , or τ1 = 3
2 and τ2 = 1

2 .

In these cases it was proved (C.S.Lin,Wei and thair coauthors) that
the set of (β1, β2) for which we have a radial solvability of (18)
reduces to a single point.
For example: if τ1 = τ2 = 1

2 then necessarily
β1 = β2 = 4(N1 + 1) + 4(N2 + 1)
and if τ1 = 1

2 , τ2 = 1 then necessarily β1 = 8(N1 + 1) + 4(N2 + 1)
and β2 = 8(N1 + 1) + 8(N2 + 1).

Arkady Poliakovsky On non-topological solutions for planar Liouville Systems of Toda-type



The following cases of system (18) are special:

τ1 = τ2 = 1
2 ,

Either τ1 = 1
2 and τ2 = 1, or τ1 = 1 and τ2 = 1

2 .

Either τ1 = 1
2 and τ2 = 3

2 , or τ1 = 3
2 and τ2 = 1

2 .

In these cases it was proved (C.S.Lin,Wei and thair coauthors) that
the set of (β1, β2) for which we have a radial solvability of (18)
reduces to a single point.

For example: if τ1 = τ2 = 1
2 then necessarily

β1 = β2 = 4(N1 + 1) + 4(N2 + 1)
and if τ1 = 1

2 , τ2 = 1 then necessarily β1 = 8(N1 + 1) + 4(N2 + 1)
and β2 = 8(N1 + 1) + 8(N2 + 1).

Arkady Poliakovsky On non-topological solutions for planar Liouville Systems of Toda-type



The following cases of system (18) are special:

τ1 = τ2 = 1
2 ,

Either τ1 = 1
2 and τ2 = 1, or τ1 = 1 and τ2 = 1

2 .

Either τ1 = 1
2 and τ2 = 3

2 , or τ1 = 3
2 and τ2 = 1

2 .

In these cases it was proved (C.S.Lin,Wei and thair coauthors) that
the set of (β1, β2) for which we have a radial solvability of (18)
reduces to a single point.
For example: if τ1 = τ2 = 1

2 then necessarily
β1 = β2 = 4(N1 + 1) + 4(N2 + 1)

and if τ1 = 1
2 , τ2 = 1 then necessarily β1 = 8(N1 + 1) + 4(N2 + 1)

and β2 = 8(N1 + 1) + 8(N2 + 1).

Arkady Poliakovsky On non-topological solutions for planar Liouville Systems of Toda-type



The following cases of system (18) are special:

τ1 = τ2 = 1
2 ,

Either τ1 = 1
2 and τ2 = 1, or τ1 = 1 and τ2 = 1

2 .

Either τ1 = 1
2 and τ2 = 3

2 , or τ1 = 3
2 and τ2 = 1

2 .

In these cases it was proved (C.S.Lin,Wei and thair coauthors) that
the set of (β1, β2) for which we have a radial solvability of (18)
reduces to a single point.
For example: if τ1 = τ2 = 1

2 then necessarily
β1 = β2 = 4(N1 + 1) + 4(N2 + 1)
and if τ1 = 1

2 , τ2 = 1 then necessarily β1 = 8(N1 + 1) + 4(N2 + 1)
and β2 = 8(N1 + 1) + 8(N2 + 1).

Arkady Poliakovsky On non-topological solutions for planar Liouville Systems of Toda-type



The system (18) in the case τ1 = τ2

For τ ∈ (0, 1) consider the system:
−∆u1 = |x |2N1eu1 − τ |x |2N2eu2 in R2

−∆u2 = |x |2N2eu2 − τ |x |2N1eu1 in R2

1
2π

∫
R2 |x |2N1eu1dx = β1,

1
2π

∫
R2 |x |2N2eu2dx = β2,

(24)

• If τ = 1/2 then it is well known Toda system, the radial solution
exists if and only if β1 = β2 = 4(N1 + N2 + 2) and they are
completely classified (C.S.Lin-Wei-Ye).
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Theorem (P-Tarantello)

For every τ ∈ (0, 1) \ {1/2} the necessary and sufficient conditions
on (β1, β2) for the existence of a radial solution to (24) are the
following:

1
2β

2
1 − 2(N1 + 1)β1 + 1

2β
2
2 − 2(N2 + 1)β2 − τβ1β2 = 0,

β
1
(τ) < β1 < β1(τ)

β
2
(τ) < β2 < β2(τ).

(25)
where β

1
(τ), β1(τ), β

2
(τ), β2(τ) are given by some formulas.
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Definitions of β
1
(τ), β1(τ), β

2
(τ), β2(τ)

There exists unique δ1 ∈ (0, 1/2) such that

4(N2 + 1) = 2δ1
(

4(N1 + 1) + 8δ1(N2 + 1)
)

(26)

there exists unique δ2 ∈ (1/2, 1/
√

2) such that

8(N2 + 1) +
2

δ2
(N1 + 1) = 2δ2

(
8δ2(N2 + 1) + 4(N1 + 1)

)
(27)

there exists unique σ1 ∈ (0, 1/2) such that

4(N1 + 1) = 2σ1
(

4(N2 + 1) + 8σ1(N1 + 1)
)

(28)

there exists unique σ2 ∈ (1/2, 1/
√

2) such that

8(N1 + 1) +
2

σ2
(N2 + 1) = 2σ2

(
8σ2(N1 + 1) + 4(N2 + 1)

)
(29)
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β
1
(τ) =



4(N1 + 1) ∀τ ∈ (0, σ1)

2τ
(
4(N2 + 1) + 8τ(N1 + 1)

)
∀τ ∈ [σ1, 1/2)(

4(N1 + 1) + 8τ(N2 + 1)
)
∀τ ∈ [1/2, δ2)

2
(
(N1+1)+τ(N2+1)+τ

√
(N1+1)2+(N2+1)2+2τ(N1+1)(N2+1)

)
1−τ2

∀τ ≥ δ2
(30)

β1(τ) =



(
4(N1 + 1) + 8τ(N2 + 1)

)
∀τ ∈ (0, 1/2)

2τ
(
4(N2 + 1) + 8τ(N1 + 1)

)
∀τ ∈ [1/2, σ2)

2
(
(N1+1)+τ(N2+1)+

√
(N1+1)2+(N2+1)2+2τ(N1+1)(N2+1)

)
1−τ2

∀τ ≥ σ2.
(31)
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β
2
(τ) =



4(N2 + 1) ∀τ ∈ (0, δ1)

2τ
(
4(N1 + 1) + 8τ(N2 + 1)

)
∀τ ∈ [δ1, 1/2)(

4(N2 + 1) + 8τ(N1 + 1)
)
∀τ ∈ [1/2, σ2)

2
(
(N2+1)+τ(N1+1)+τ

√
(N2+1)2+(N1+1)2+2τ(N2+1)(N1+1)

)
1−τ2

∀τ ≥ σ2

(32)

β2(τ) =



(
4(N2 + 1) + 8τ(N1 + 1)

)
∀τ ∈ (0, 1/2)

2τ
(
4(N1 + 1) + 8τ(N2 + 1)

)
∀τ ∈ [1/2, δ2)

2
(
(N2+1)+τ(N1+1)+

√
(N2+1)2+(N1+1)2+2τ(N2+1)(N1+1)

)
1−τ2

∀τ ≥ δ2
(33)
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4(N2 + 1) + 8τ(N1 + 1)

)
∀τ ∈ (0, 1/2)

2τ
(
4(N1 + 1) + 8τ(N2 + 1)

)
∀τ ∈ [1/2, δ2)

2
(
(N2+1)+τ(N1+1)+

√
(N2+1)2+(N1+1)2+2τ(N2+1)(N1+1)

)
1−τ2

∀τ ≥ δ2
(33)
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Lemma

For every τ ∈ (0, 1) θ ∈ R consider (v
(θ)
1 , v

(θ)
2 ) be radial solution of


−∆v

(θ)
1 = |x |2N1ev

(θ)
1 − τ |x |2N2ev

(θ)
2 in R2

−∆v
(θ)
2 = |x |2N2ev

(θ)
2 − τ |x |2N1ev

(θ)
1 in R2

ψ(θ)(0) = θ

ϕ(θ)(0) = 0,

(34)

β̃1(θ) :=
1

2π

∫
R2

|x |2N1ev
(θ)
1 dx , β̃2(θ) :=

1

2π

∫
R2

|x |2N2ev
(θ)
2 dx .

Furthermore, let T
(1)
τ be the open interval with endpoints

limθ→±∞ β̃1(θ) and T
(2)
τ be the open interval with endpoints

limθ→±∞ β̃2(θ). Then

T (1)
τ =

(
β
1
(τ), β1(τ)

)
and T (2)

τ =
(
β
2
(τ), β2(τ)

)
.
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Lemma

For every τ ∈ (0, 1) θ ∈ R consider (v
(θ)
1 , v

(θ)
2 ) be radial solution of

−∆v
(θ)
1 = |x |2N1ev

(θ)
1 − τ |x |2N2ev

(θ)
2 in R2

−∆v
(θ)
2 = |x |2N2ev

(θ)
2 − τ |x |2N1ev

(θ)
1 in R2

ψ(θ)(0) = θ

ϕ(θ)(0) = 0,

(34)

β̃1(θ) :=
1

2π

∫
R2

|x |2N1ev
(θ)
1 dx , β̃2(θ) :=

1

2π

∫
R2

|x |2N2ev
(θ)
2 dx .

Furthermore, let T
(1)
τ be the open interval with endpoints

limθ→±∞ β̃1(θ) and T
(2)
τ be the open interval with endpoints

limθ→±∞ β̃2(θ). Then

T (1)
τ =

(
β
1
(τ), β1(τ)

)
and T (2)

τ =
(
β
2
(τ), β2(τ)

)
.
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Lemma

Let (τ1, τ2) 6= (1/2, 1/2) be such that (τ1 − 1/2)(τ2 − 1/2) ≥ 0 be
a radial solution of


−∆u1 = |x |2N1eu1 − τ1|x |2N2eu2 in R2

−∆u2 = |x |2N2eu2 − τ2|x |2N1eu1 in R2

1
2π

∫
R2 |x |2N1eu1dx = β1,

1
2π

∫
R2 |x |2N2eu2dx = β2,

(35)

Then

β1 6= 4(N1 + 1) + 8τ1(N2 + 1) and β2 6= 4(N2 + 1) + 8τ2(N1 + 1).
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Thank You!
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