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Entire solutions for Liouville systems

We look for solutions of the following Liouville system
([ —Aup = 2e" + pe®  in R?
—Aupy = pe't +2e” in R?

/ e’ < 400 ; (LS)

2
/& e < 400
R2

with g > —2.
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Entire solutions for Liouville systems

It is a generalization of the very well-known Liouville equation

—Au=e¢e" in R?
[rceme £
R2
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Entire solutions for Liouville systems

It is a generalization of the very well-known Liouville equation

—Au=e¢e" in R?
[rceme £
R2

Solutions of (LE) has been completely classified (Chen-Li '91):

64
85 + [x — y|2)*

u(x) = Us,y(x) := log (
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Entire solutions for Liouville systems

If we look for scalar solutions of (LS), namely such that
u1(x) = up(x), they solve

—Auj = (2+ p)e” inR?

/ e < +o0. '
]RZ
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Entire solutions for Liouville systems

If we look for scalar solutions of (LS), namely such that
u1(x) = up(x), they solve

—Auj = (2+ p)e” inR?
/ e < +oo. ;
R2

therefore we must have
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Entire solutions for Liouville systems

We look for non-scalar solutions, namely such that ui(x) # ua(x).
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Entire solutions for Liouville systems

We look for non-scalar solutions, namely such that ui(x) # ua(x).

In the trivial case ;. = 0 the system is decoupled:

—Au; =2e" inR?
—Aup, =2 inR?
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Entire solutions for Liouville systems

We look for non-scalar solutions, namely such that ui(x) # ua(x).

In the trivial case ;. = 0 the system is decoupled:
—Au; =2e" inR?
—Aup =2e" in R?

Therefore, each component solves (LE) and we have a
6-parameter family of solutions:

3294
n(x) = U x) :=lo
1(x) 51,}/1( ) g(851+’X—y1’2)2
3265
w(x) = U x) :=lo .
() = Usnnl) = og o
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Entire solutions for Liouville systems

When p # 0, non-scalar solutions are not explicitely known in
general.
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Entire solutions for Liouville systems

When p # 0, non-scalar solutions are not explicitely known in
general.

The only exception being the case y = —1, corresponding to the
Toda system:

—Aup = 2e"t —e'2 in R?
—Aup = —e" +2e* in R?
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Entire solutions for Liouville systems

When p # 0, non-scalar solutions are not explicitely known in
general.

The only exception being the case y = —1, corresponding to the
Toda system:

—Aup = 2e"t —e'2 in R?
—Aup = —e" +2e* in R?

Solutions have been completely classified (Jost-Wang '02).
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Entire solutions for Liouville systems

The space of solutions is an 8-parameter family:

6467 + 162 [x — y1|* + [x* — 2xy2 + (y1y2 — y3)[*
(6402 + 1667|x — ya|? + [x2 — 2xy2 + (y1y2 + y3)[*)?

u1(x) = log (6467

/
\

§ 6482 +1667|x — yo|? 2_9 4
up(x) = log | 64— +1607|x — yo| " + [x° = 2xy2 + (y1y2 + y3)

v (6452 + 16%|x —y1l2 4+ [x2 = 2xy2 + (y1y2 — )/3)\4)

2
y

s,v7eR; y1,y2,y3 € C.
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Entire solutions for Liouville systems

The space of solutions is an 8-parameter family:

6467 + 162 [x — y1|* + [x* — 2xy2 + (y1y2 — y3)[*
(6402 + 1667|x — ya|? + [x2 — 2xy2 + (y1y2 + y3)[*)?

u1(x) = log (6467

/
\

§ 6482 +1667|x — yo|? 2_9 4
up(x) = log | 64— +1607|x — yo| " + [x° = 2xy2 + (y1y2 + y3)

v (6452 + 16%|x —y1l2 4+ [x2 = 2xy2 + (y1y2 — )/3)\4)

2
s,v7eR; y1,y2,y3 € C.

y=1Ly1=y,y3=0 = ur = uo.
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Entire solutions for Liouville systems

Poliakovsky-Tarantello ('14," 16) gave sufficient conditions for
existence of solutions of (LS) on the masses

1,
/3,.—271_/1\{26 .
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Entire solutions for Liouville systems

Poliakovsky-Tarantello ('14," 16) gave sufficient conditions for
existence of solutions of (LS) on the masses

1,
/3,.—27r/R2e .

Solutions exists if we assume

BF + B5 + ubrf2 — 281 — 282 =0
frabh>1 Bt lhi>1

(B1—2)(B2—2)=>0
(Br + p1B2)(B2 + puf1) >0
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Entire solutions for Liouville systems

Luca Battaglia
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Entire solutions for Liouville systems

M#Oail :UJ:0771

4 C .
Since scalar solutions verify 81 = 82 = ——, they find in
2+ p

particular non-scalar solutions.
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Bifurcation theory

We look for solutions using bifurcation theory, namely we look
for a branch of new solutions for some p # 0, —1 generating from
the well-known family of solutions.
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Bifurcation theory

We look for solutions using bifurcation theory, namely we look
for a branch of new solutions for some p # 0, —1 generating from
the well-known family of solutions.

£
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Bifurcation theory

We look for solutions using bifurcation theory, namely we look
for a branch of new solutions for some p # 0, —1 generating from
the well-known family of solutions.

£

i
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Bifurcation theory

We seek perturbations of the solution (U, U,) = (Uu,1,0, Up1,0)-

Luca Battaglia Universita degli Studi Roma Tre

Entire solutions for Liouville systems



Bifurcation theory

We seek perturbations of the solution (U,, U,) =

(Up1,0, Up10)-

O] (O] b -9
By writing (u1, up) = (Uu + 1;— 2, U, + ! > 2>, (®1,®2)
must solve
(D = (24 p)els (752 475 2) in R>
—Ay = (2- el (757 —eTF) iR
/ U D1+,
efe 2 < +00
2
b1 —b
/R elre 2 < +00
]R2
(LS-9)

Luca Battaglia
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Bifurcation theory

We want to apply to (®1, P2) the following classical theorem:

Crandall-Rabinowitz, ‘71

If T € C?((—2,2) x X, Y) satisfies:
@ T(u,0)=0 for all u;
o ker(de T(0,0)) = span(wp) and R(9e T(0,0))* are both
1-dimensional;
(] a%q; T(0,0)Wo Q R(8¢ T(0,0));
Then, there exists a non-trivial branch
((e), @) : (—e0,20) = (—2,2) x X such that T(u(e),®*) =0
and ((0),9°%) = (0,0).

Universita degli Studi Roma Tre
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Bifurcation theory

Two main issues in applying Crandall-Rabinowitz theorem:
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Bifurcation theory

Two main issues in applying Crandall-Rabinowitz theorem:

e Choosing suitable X, Y, T such that T(u,®) = 0 implies
solves (LS-9);
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Bifurcation theory

Two main issues in applying Crandall-Rabinowitz theorem:

e Choosing suitable X, Y, T such that T(u,®) = 0 implies
solves (LS-9);

@ Showing that ker(9¢ T(0,0)) is 1-dimensional.
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Bifurcation theory

Two main issues in applying Crandall-Rabinowitz theorem:

e Choosing suitable X, Y, T such that T(u,®) = 0 implies
solves (LS-9);

@ Showing that ker(9¢ T(0,0)) is 1-dimensional.

To solve the first issue we may “move” the problem on the sphere
using a stereographic projection.
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The problem on the sphere

Consider the stereographic projection M : S\ {0,0, -1} — R

N (xy.2) = (@ x \fsli:z).

142’
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The problem on the sphere

Consider the stereographic projection M : S\ {0,0, -1} — R

=)

I'I:(x,y,z)—><

If (¢1,p2) solves the (simpler) problem

—Ag 1 —2( ¢1+¢2 +e¢1 —2) ) )
on S°, (LS-S
Aty = 22 u( bitdp ¢1 ¢2) ( )
2+ p

then (¢1 0 MY, ¢p oM7) solves (LS-).
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The problem on the sphere

Solutions of (LS-S?) are zeroes of the following smooth map
T : W2 (S?) x W2 (S?) — L* (S?) x L (S?):

$1+¢ $1—9¢
AS2¢1+2<e 1J2r2—i—e e —2)

T (u, ¢1, — h _
(M ¢1 ¢2) ASQ(;52 +22 o) (e¢142r¢2 B e¢12¢2>
24 p
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The problem on the sphere

Solutions of (LS-S?) are zeroes of the following smooth map
T : W2 (S?) x W2 (S?) — L* (S?) x L (S?):

AS2(Z)1+2(e 2 4e 2

2—pu $1+¢2 $1-¢2
gy + 251 (777 = 77%)
S2¢2 + 2—{—,[1, € e

P1+¢2 P1—9P2
_ 2)

T: (Mv ¢17 ¢2) -

Solutions of (LS-S?) are globally bounded, hence also solutions of
(LS-®) are.
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The problem on the sphere

Solutions of (LS-S?) are zeroes of the following smooth map
T : W2 (S?) x W2 (S?) — L* (S?) x L (S?):

AS2(Z)1+2(e 2 4e 2

2—pu $1+¢2 $1-¢2
gy + 251 (777 = 77%)
S2¢2 + 2—{—,[1, € e

P1+¢2 P1—9P2
_ 2)

T: (Mv ¢17 ¢2) -

Solutions of (LS-S?) are globally bounded, hence also solutions of
(LS-®) are.

Therefore, since we have an L*°-perturbation, the mass does not
change:
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The linearized operator

Anyway, we still have to fix the issue concerning ker(947 (0, 0)).
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The linearized operator

Anyway, we still have to fix the issue concerning ker(947 (0, 0)).

The linearized operator in 0 has the form
Agz wy + 2wy

w1
’ . 27 .
9T (1,0,0) : < W > AS2W2+272 MWQ '
+

therefore, the kernel is easy to compute, but it is too large.
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The linearized operator

2
2
If po # pin = —2%, then the kernel is 3-dimensional:
wi (0, z) — <pan z V11— z2cosf V1—22%sinf
wa(0,z) ) P 0/’ 0 ’ 0
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The linearized operator

2
-2
If w# pn = —2%, then the kernel is 3-dimensional:
wi (0, z) — <pan z V11— z2cosf V1—22%sinf
wa(0,z) ) P 0/’ 0 ’ 0

Anyway, these elements correspond to directions of scalar
solutions, hence they do not satisfy the transversality condition and
bifurcation always fails.

Universita degli Studi Roma Tre
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The linearized operator

If & = pn, then the kernel is 2n + 4-dimensional:

( Wl(z,z) ) _Span{< : ) ( V1= 22 cosh ) ( V1-22sin0 )

0 0

( PSO(Z) >< Py (2) S<>S(m@) )( P?(Z)gin(mH) >}m:1,...,.

P are the associated Legendre polynomials:

pr(zy = U 2y 20

o (22 — 1)”.

dzn+m
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The linearized operator

If & = pn, then the kernel is 2n + 4-dimensional:

( Wl(z,z) ) _Span{< : ) ( V1= 22 cosh ) ( V1-22sin0 )

0 0

( PSCEZ) >< Py (2) S<>S(m@) )( P?(Z)gin(mH) >}m:1,...,.

P are the associated Legendre polynomials:

(_1)m % dn+m

P (z) = (2% - 1)”.

onpl ( _22) dzn+m

These new elements satisfy the transversality condition, but the
kernel is too large!
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The linearized operator

To get a 1-dimensional kernel we must restrict 7 to some suitable
sub-spaces X C W22 (S%) x W??(S?), ¥ C L* (S?) x L* (S?).
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The linearized operator

To get a 1-dimensional kernel we must restrict 7 to some suitable
sub-spaces X C W22 (S%) x W??(S?), ¥ C L* (S?) x L* (S?).

We can restrict to the sub-spaces X,.q, Vraq Of radial solutions.
In this case,

ker(95T (1, 0,0)) = span { ( P,?%Z) ) }

and we get a branch of radial solutions (Gladiali-Grossi-Wei '15).
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The linearized operator

To get a 1-dimensional kernel we must restrict 7 to some suitable
sub-spaces X C W22 (S%) x W??(S?), ¥ C L* (S?) x L* (S?).

We can restrict to the sub-spaces X,.q, Vraq Of radial solutions.
In this case,

ker(95T (1, 0,0)) = span { ( P,?%Z) ) }

and we get a branch of radial solutions (Gladiali-Grossi-Wei '15).

If we look for non-radial solutions we must exploit the symmetry
properties of T .
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The role of symmetries

—Agp is invariant under isometries, and in particular under the
following:

0:z— —2z, Pa 0 — 0+, Ta:0 — —0+q

therefore, also 7 will be.
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The role of symmetries

—Agp is invariant under isometries, and in particular under the
following:

0:z— —2z, Pa 0 — 0+, Ta:0 — —0+q
therefore, also T will be.

The corresponding transformations of the plane (via the
stereographic projection 1) are the following:

- 8 ~ ~
U:r%;, Pa 0 — 0+, To 0 — —0+ .

Universita degli Studi Roma Tre
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The role of symmetries

—Agp is invariant under isometries, and in particular under the
following:

0:z— —2z, Pa 0 — 0+, Ta:0 — —0+q
therefore, also T will be.

The corresponding transformations of the plane (via the
stereographic projection 1) are the following:

- 8 ~ ~
U:r%;, Pa 0 — 0+, To 0 — —0+ .

T is also odd with respect to the second component:

< Ti(p, 01, —¢2) ) _ ( Ti(p, ¢1, $2) )
7-2(/'&7 ¢17_¢2) _75(”7 ¢17¢2) .

Universita degli Studi Roma Tre
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The role of symmetries

Expoiting these symmetries, we want to find invariant subspaces
for T such that

070,00 =00 (o) ooy )
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The role of symmetries

Expoiting these symmetries, we want to find invariant subspaces
for T such that

070,00 =00 (o) ooy )

Let us consider the following spaces:

Xn:={(01,02): dr00 =01, dr1opz=¢1, 107z =g,
$p200 =¢2, ¢p0pz =—¢2, ¢20Tz = —¢2}

Yo =A{(W1,¥2) 1 Y100 =11, Yropz =v1, Y107z =1y,
Ypo00 =12, Ypopx =—tp, YpoTz =—Yo}.
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The role of symmetries

By the symmetry properties, 7 : X, — Y, and

ker(0yT (14n, 0,0)) N Xy, = span { < Pl (z) SOS(H9) > } '
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The role of symmetries

By the symmetry properties, 7 : X, — Y, and

ker(0yT (14n, 0,0)) N Xy, = span { < Pl (z) SOS(H9) > } '

A similar argument works for most generators of the kernel.
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The role of symmetries

By the symmetry properties, 7 : X, — Y, and

ker(0yT (14n, 0,0)) N Xy, = span { < Pl (z) SOS(H9) > } '

A similar argument works for most generators of the kernel.
n .

If m> 3 then we can find subspaces X, m, Vp.m such that

T : Xnm = Ynm and

ker(95T (tin; 0, 0)) N Xp.m = span { ( — 0 ) } .

cos(m@)
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The main result

So we get the following result:

B.-Gladiali-Grossi, 2017

. n .
For any m, n € N with = < m < n there exists a branch of

solutions (p(€), ug, u5) of (LS) bifurcating from (un, Uy, , U,,) and

satisfying:
5 m 8 — I’2 2 >¢
ui (r,0) = Uy, (r,0) + <Py Fpe cos(mf) + e“Z; (r, 6),
e m 8 — r2 e
us(r,0) = U, (r,0) —eP; (8 " r2> cos(mb) + 2Z5(r, ),
#(0) = pin: .75 € [~ (R?).

Universita degli Studi Roma Tre
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The main result

Some remarks:

@ The solutions verify

8 r* ui(r,0) if n+ mis even
e © — . 10
uy <r79> log 64+{ us(r,0) if n+misodd ’

i (r.0+ %) — u5(r,9), i (r,—0+ %) = u5(r.9).

2
In particular, u? (r,@ + W) = ui(r,0) = ui(r,—0).
m
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The main result

Some remarks:

@ The solutions verify

8 r* ui(r,0) if n+ mis even
e © — . 10
uy <r79> log 64+{ us(r,0) if n+misodd ’

s m
F(r0+2) = us(r,0), F(r-0+ ) = us(r,0).
uj (r + us(r,6) up \r, =0+ — us(r,0)
H £ 27T £ £
In particular, uf ( r,0 + — | = ui(r,0) = ui(r,—0).
m
@ Due to invariance under rotation of (LS), we can equivalently

0 ))forgaeSl.

bifurcate in the direction ( P"(z) cos(mf + ¢
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The main result

n
o We get n— LiJ (non-equivalent) branches of non-radial

solutions, plus a branch of radial solutions from
Gladiali-Grossi-Wei.
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The main result

o We get n— FJ (non-equivalent) branches of non-radial

solutions, plus a branch of radial solutions from
Gladiali-Grossi-Wei.

e If 1= p1 = 0 we have a (couple of) branch(es) of non-radial
solutions and a radial branch, recovering locally the
6-parameter family of the decoupled system.
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The main result

n
o We get n— LiJ (non-equivalent) branches of non-radial

solutions, plus a branch of radial solutions from
Gladiali-Grossi-Wei.

e If 1= p1 = 0 we have a (couple of) branch(es) of non-radial
solutions and a radial branch, recovering locally the
6-parameter family of the decoupled system.

o If 4 = pp = —1 we have two (couples of) branches of
non-radial solutions and a radial branch, recovering locally the
8-parameter family of the Toda system from Jost-Wang.
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The derivatives of (<)

How does p(e) depend on &7
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The derivatives of (<)

How does p(e) depend on &7

One easily sees that /(0) = 0 for all m, n.
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The derivatives of (<)

How does p(e) depend on &7

One easily sees that /(0) = 0 for all m, n.

As for 1i”(0), the situation is not clear:

" _ toom ! m i 71 1x M (x | X z
W' = s </0 (Prentsz 2 [ @) [7 o [aneof s
>0
A
1 1—z\m™ z 1 1 1—x\m .
+ /_1(z+2m) (1+Z) (PP(2))? /_1 0o (i) (%)2m /y (x +2m) <1+X) (Py (x))zdxdydz/
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The derivatives of (<)

How does p(e) depend on &7

One easily sees that /(0) = 0 for all m, n.

As for 1i”(0), the situation is not clear:

" = ! mZ4Z lz mzz 171 1X mXZX 1z
" (0)751,3(/0 (Prentsz 2 [ @) [7 o [aneof s
>0

1ty

o[t () eren o +2m2 (1 jﬁ) ()™ Joram (557) ereatesses

[
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The derivatives of (<)

Computations suggest that p”/(0) # 0 for any m and n # 1,2.
In particular, p(¢) is not constant.
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The derivatives of (<)

Computations suggest that p”/(0) # 0 for any m and n # 1,2.
In particular, p(¢) is not constant.

Scheme of the branches:

Universita degli Studi Roma Tre
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THANK YOU FOR YOUR ATTENTION!
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