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Mean field equation on closed surfaces:

∆gu+ ρ

(

heu
∫

M
heu

−
1

|M |

)

= 0.

Caglioti, Lions, Marchioro, Pulvirenti (1992, 1995): Euler flows.

Chanillo, Kiessling (1994) and Kiessling (1993): planar and spherical Onsager vortex

theories.

Limiting case when ǫ → 0 of the Chern-Simons equation:

∆u+
1

ǫ2
eu(1− eu) = 4π

N
∑

i=1

δqi .

The equation is often posed on R2 or on a flat torus.

Jackiw, Weinberg (1990) and Hong et al. (1990): the relativistic abelian Chern-Simons

gauge field theory.

Kao, Lee (1994) and Dunne (1995): the non-Abelian theory.



Blow-up phenomena

Brezis and Merle (1991): If sequence of solutions to the prescribed Gauss curvature

problem blow up, then hne
un →

∑

αiδpi
.

Li and Shafrir (1994): αi = 8π.

Li (1999) proposed to compute the Leray-Schauder degree of MFE and showed that the

degree is independent of the choice of h.

The solution set of the MFE is compact unless ρ = 8πm.

Regular case: h > 0.

Chen and Lin (2002, 2003): dρ = Cm
m−χ(M) if ρ ∈ (8πm, 8π(m+ 1)).

Singular case: h = 0 on some discrete set.

∆gu+ ρ

(

Keu
∫

M
KeudH2

−
1

|M |

)

= 4π
N
∑

j=1

βj

(

δqi −
1

|M |

)

.

Chen and Lin (2015): dρ depends on χ(M) and βj ’s.



Existence of blow-up solutions

Chen and Lin (2003): blow-up occurs at a non-degenerate critical point P of fh with

l(P ) 6= 0 where

fh(p1, · · · , pm) =
m
∑

j=1

(log h(pj) + 4πR(pj , pj)) + 8π
∑

i<j

G(pi, pj)

and

l(P ) =
m
∑

j=1

[∆ log h(pj) + 8πm− 2K(pj)]h(pj)e
G∗

j (pj)

(G∗
j (pj) = 8π(

∑

l 6=j

G(pj , pl) +R(pj , pj))).

Esposito and Figueroa (2014) extended the existence result to “stable” critical point,

the singular case and the case when l(P ) = 0 but D(P ) 6= 0.



MFE on a flat torus:

∆u+ ρ

(

eu
∫

T
eu

−
1

|T |

)

= 0,

T is a flat torus with a rectangular fundamental domain. The corresponding fh is no

longer a morse function. Actually, fh is translation invariant.

Obviously, u ≡ C is a solution.

Non-trivial solutions

Struwe and Tarantello (1998): mountain pass solutions exist when ρ ∈ (8π, λ1(T )|T |).

Ricciardi and Tarantello (1998): 1d solutions exist if and only if ρ > λ1(T )|T |.



Uniqueness and symmetry

The fundamental domain of T is any parallelogram.

Lin and Lucia (2006): Trivial solutions are the only solutions if ρ ≤ min{8π, 32 l2

|T |};

Sequence of solutions must blow up if l2

|T | ≥
π
4 as ρ → 8π.

Here l denotes the length of the shortest geodesic.

Rectangular torus.

Lin and Lucia (2007): 1d symmetryness of Steiner symmetric solutions (ρ ≤ 8π).

Gui and Moradifam (2016): Sharp uniqueness result of trivial solutions if

ρ ≤ min{8π, λ1(T )|T |}; evenly symmetryness (ρ ≤ 16π when we have two critical

points: one at the origin and another on the edge of the fundamental domain).



MFE on S
2:

∆u+ ρ

(

eu
∫

S2
eu

−
1

4π

)

= 0.

fh is invariant under orthogonal transformations.

Axially symmetric solutions.

Lin (2000): the equation only admits trivial solutions if ρ < 8π;

axially symmetric solutions blow up at two antipodal points;

axially symmetric blow-up solutions are unique above 16π hence symmetric about the

great circle.

Gui and Wei (2000) and Lin (2000): the only axially symmetric solutions (mass center

at 0) are trivial solutions if ρ ≤ 16π.

Dolbeault, Esteban and Tarantello (2009): multiplicity of axially symmetric solutions.



General case.

Gui and Moradifam (2016) developed a new tool named “sphere covering inequality” to

extend the uniqueness result to ρ ≤ 16π.

Shi, Sun, Tian and Wei (2017): only admits trivial solution when ρ = 24π.

Let Vλ = ln
(

8λ2

(λ2+|x|2)2

)

be the family of solutions of the Liouville equation:

∆Vλ + eVλ = 0.

Chen and Li (1991): classification of solutions to the Liouville equation.

Uλ,p(y) = Vλ(x) + 2 ln (1 + |x|2)− ln 4,

∫

S2

eUλ,p = 8π.



Singular MFE.

Chen, Lin and Wang (2004): the Green’s function G(z) of a rectangular torus T is

evenly symmetric about both axes;

G(z) has only three critical points which are half-periods.

Lin and Wang (2010): the singular equation on T [τ ] with ρ = 8π and a singular source

at the origin has solutions if and only if G(z) has an extra pair of critical points other

than half-periods. (T [τ ] = C/Z+ Zτ .)

Chen, Kuo, Lin and Wang (2018) studied the region that G(z) has five critical points

and the region that G(z) has three critical points.



Regular MFE. Kazdan and Warner (1974), Chang and Yang (1987),Chang, Yang and

Gursky (1993), Ding, Jost, Li and Wang (1997, 1998), Cabre, Lucia and Sanchon (2005),

Lucia (2006, 2007), Djadli (2008), Malchiodi (2008), De Marchis (2008, 2010, 2011)...

Singular MFE. Bartolucci and Tarantello (2002, 2017), Prajapat and Tarantello

(2001), Eremenko (2004), Bartolucci, Chen, Lin and Tarantello (2004), Tarantello

(2004, 2005), Esposito (2005), Bartolucci and Montefusco (2006, 2007), Bartolucci and

Lin (2009, 2012), Zhang (2009), del Pino, Esposito and Musso (2010, 2012), Bartolucci,

De Marchis and Malchiodi (2011), Bartolucci, Lin and Tarantello (2011), Carlotto and

Malchiodi (2011, 2012), Chen and Lin (2011), Malchiodi and Ruiz (2011), Bartolucci

and Malchiodi (2013), Carlotto (2013), D’Aprile (2013), Chai, Lin and Wang (2015), De

Marchis and Lopez-Soriano (2016), Kuo and Lin (2016), Lin and Wang (2017), Chen,

Kuo and Lin (2017)...

Nonlocal equation. Da Lio, Martinazzi and Riviere (2015), Da Lio and Martinazzi

(2017).



Cosmic strings. Chen, Guo and Spirn (2012), Poliakovski and Tarantello (2012),

Bartolucci and Castorina (2016), Tarantello (2017)...

C-S equation. Spruck and Yang (1992, 1995), Caffarelli and Yang (1995), Tarantello

(1996, 2007), Ding, Jost, Li and Wang (1998, 1999, 2001), Nolasco and Taratello (1998,

1999), Chae and Imanuvilov (2000, 2002), Chan, Fu and Lin (2002), Nolasco (2003),

Choe (2005, 2007, 2009), Choe and Kim (2008), Lin and Yan (2010, 2013, 2017), Choe,

Kim and Lin (2011), del Pino, Esposito, Figueroa and Musso (2015).

Systems. Nolasco and Tarantello (2000), Jost and Wang (2001, 2002), Lucia and

Nolasco (2002), Jost, Lin and Wang (2006), Lin, Wei and Ye (2012), Lin, Wei and Zhao

(2012), Lin and Yan (2013), Han, Lin, Tarantello and Yang (2014), Battaglia, Jevnikar,

Malchiodi(2015), Lin, Wei and Zhang (2015, 2016), Battaglia and Malchiodi (2016)...



Theorem (Cheng, Gui and Hu). For simplicity, let’s take the fundamental domain of T

to be a unit square. MFE with h ≡ 1 has a sequence uλ of blow-up solutions which

blow up at ξ1 = 0 and ξ2 (any of the three half periods) as ρ → 16π with the following

properties:

(1) ρ− 16π = (C(l(ξ1, ξ2)) + o(1))λ2 ln 1
λ
,

(2) uλ(z) = uλ(−z) = uλ(z),

(3) ρ∫
T
euλ

euλ → 8π(δξ1 + δξ2).

Remark 1. Blow-up rates at the two blow-up points are identical, i.e.

uλ(z + ωk/2) = u(z) for some k ∈ {1, 2, 3}. Thus, it also implies the existence of

blow-up solutions as ρ → 8π.

Remark 2. The result can be extended to any rectangular torus and even to any flat

torus with parallelogrammic fundamental domain. In the latter case, the solutions we

construct are evenly symmetric, i.e. u(z) = u(−z).



Theorem (Gui and Hu). MFE with h ≡ 1 on S
2 has a sequence uλ of blow-up

solutions which blow up at ξ1, ξ2, ξ3 and ξ4 as ρ → 32π. The four blow-up points form

a regular tetrahedron. uλ satisfies the following:

(1) ρ− 32π = (C(l(ξ1, · · · , ξ4)) + o(1))λ2 ln 1
λ
,

(2) uλ possesses tetrahedral symmetry,

(3) ρ∫
S2

euλ
euλ → 8π

4
∑

j=1

δξj .

Remark 1. Other families of solutions can be similarly constructed with blow-up

points at the vertices of equilateral triangles on a great circle or various inscribed

platonic solids (cubes, octahedrons, icosahedrons and dodecahedrons). All of these

solutions are non-axially symmetric.

Remark 2. Patterns minimizing
∑

j 6=k G(xj , xk): tetrahedral configuration, octahedral

configuration and regular icosahedral configuration. One may also construct solutions

with the “twistered cuboid” configuration.



The proofs rely on a Lyapunov-type reduction. Let us consider the torus case.

Approximate solution. Let −∆wλ,i = eVλ,iηR0,i −mi and
∫

T
wλ,i = 0. Define

wλ = 2 lnλ+ ln 8− 8πR− 8πG(ξ1 − ξ2). Let wλ =
2
∑

i=1

wλ,i + wλ be the approximation

solution.

The linearized operator. Expand Sρ(wλ + φ) as Sρ(wλ) + S′
ρ(wλ)(φ) +N(φ). Let

L(u) = ∆u+ ρ∫
T
ewλ

ewλu. Then S′
ρ(wλ)(u) = L

(

u−
∫
T
ewλu∫

T
ewλ

)

. Let L(u) = λ2L(u).

Blow up the torus T to Tλ, then L(u) → the linearized operator associated to the

Liouville equation.

The key step is to show the invertibility of L among the space

C∗ = {u ∈ L∞|u(z) = u(−z) = u(z), u ⊥ Z0,jχR1,j}.

Define ||u||∗ = sup
z∈Tλ

(

2
∑

j=1

(1 + |z − ξ′j |)
−3 + λ2

)−1

|u(z)|.



We adopt the same technique introduced by del Pino, Kowalczyk and Musso (2005) to

prove an a prior estimate of the problem L(φ) = h and
∫

Tλ
χR1,jZi,jφ = 0:

||φ||∞ ≤ C||h||∗.

(1) Construct a positive supersolution V .

(2) Prove the claim: ||φ||∞ ≤ C[||φ||i + ||h||∗] by suitable barrier functions.

(3) Use the claim to show that sup
|z−ξ′

j
|<R′

2

|φn| ≥ κ > 0 for some index j. Then blow up

the torus and shifted the center to ξ′j , then φn converges uniformly to a bounded

solution φ of problem ∆u+ 8
(1+|z|2)2u = 0. Contradicts the orthogonal conditions.

A priori estimate implies the invertibility of the linearized operator.



Uniqueness of bubbling solutions.

Lin and Yan proved the uniqueness of the bubbling solutions to CS equation that blow

up at a non-degenerate critical point q of a potential function for both CS-type

bubbling and MF-type bubbling while an extra condition on a quantity D(q) is required

in the MF case. They considered the normalized difference

ξn = (u
(1)
n − u

(2)
n )/||u

(1)
n − u

(2)
n ||∞. By a suitable scaling, ξn converge to a solution ξ of

the linearized problem associated to the Liouville equation in MF-type bubbling. Hence

ξ =
2
∑

j=0

bjZj . They used various kinds of Pohozaev identities to show bj = 0.

Bartolucci, Jevnikar, Lee and Yang showed the uniqueness of blow-up solutions to MFE

by assuming that at least one of l(q) and D(q) is non-zero. The critical point here is

also required to be non-degenerate.

We can show that the solutions constructed for MFE on torus are unique among the

class of evenly symmetric solutions.


