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Introduction

We consider first the following singular Liouville equation on a
smooth bounded domain Ω ⊂ R2:

∆u+ ρ
eu´

Ω e
u dx

= 4π
N∑
j=1

αjδpj in Ω,

u = 0 on ∂Ω,

ρ ∈ R is a real parameter
{p1, . . . , pN} ⊂ Ω and αj > −1 for j = 1, . . . , N .

Motivations:
Mean field equation in statistical mechanics: turbulent Euler flows,
self-gravitating systems.
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There are by now many results concerning existence and multiplicity,
blow-up phenomena and uniqueness of solutions.

We deduce here new uniqueness results (both on bounded domains
and on spheres) as well as new self-contained proofs of previously
known results.
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The problem has an equivalent formulation: consider

−∆Gp(x) = δp in Ω, Gp(x) = 0 on ∂Ω,

and the following substitution

u(x) 7→ u(x) + 4π
∑
j=1

αjGpj (x).

Then, we have
∆u+ ρ

h(x)eu´
Ω h(x)eu dx

= 0 in Ω,

where
h(x) = e

−4π
∑

j
αjGpj (x)

,

h > 0 on Ω \ {p1, . . . , pN}, h(x) ' |x− pj |2αj near pj .
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The latter problem has a variational structure and the solutions
correspond to critical points of the functional

Jρ(u) = 1
2

ˆ
Ω
|∇u|2 dx− ρ log

ˆ
Ω
heu dx, u ∈ H1

0 (Ω).

The starting point in treating this kind of functionals is the following:
Regular case N = 0.

Moser-Trudinger inequality

8π log
ˆ

Ω
eu dx ≤ 1

2

ˆ
Ω
|∇u|2 dx+ C, u ∈ H1

0 (Ω).
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Introduction

The latter problem has a variational structure and the solutions
correspond to critical points of the functional

Jρ(u) = 1
2

ˆ
Ω
|∇u|2 dx− ρ log

ˆ
Ω
heu dx, u ∈ H1

0 (Ω).

The starting point in treating this kind of functionals is the following:
Singular case N > 0.

Troyanov inequality

8π(1 + α−) log
ˆ

Ω
heu dx ≤ 1

2

ˆ
Ω
|∇u|2 dx+ C, u ∈ H1

0 (Ω).

α− = min
j
{0, αj}.
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It follows that for:

ρ < 8π(1 + α−) the functional Jρ is bounded from below and
coercive and solutions can be found as global minima

ρ > 8π(1 + α−) the functional Jρ is unbounded from below
and one has to attack it for example by using either min-max or
degree theory
[D. Bartolucci, C.C. Chen, C.S. Lin, A. Malchiodi, G. Tarantello...]

ρ = 8π(1 + α−) the problem is subtler since the functional Jρ is
bounded from below but not coercive
[D. Bartolucci, S.Y.A. Chang, C.C. Chen, C.S. Lin...]
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Roughly speaking, the bigger is ρ and the richer is the topology of Ω,
the higher is the number of solutions (by Morse theory).
[F. De Marchis]

On the other hand, for ρ small and Ω simply-connected one expects to
have uniqueness of solutions.
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Previous results for bounded domain case
Indeed, uniqueness holds for:

Regular case N = 0.
ρ < 8π, Ω simply-conn. [T. Suzuki]

ρ ≤ 8π, Ω simply-conn. [S.Y.A. Chang - C.C. Chen - C.S. Lin]

ρ ≤ 8π, Ω multiply-conn. [D. Bartolucci - C.S. Lin]

Singular case N > 0.
αj > 0 ∀j: ρ ≤ 8π, Ω simply-conn. [D. Bartolucci - C.S. Lin]

α1 ∈ (−1, 0), αj > 0 ∀j > 1: ρ ≤ 8π(1 + α1), Ω simply-conn.
[J. Wei - L. Zhang]

multiple negative sources: missing.

The argument is based on a non-trivial eigenvalue analysis for
Liouville-type linearized problems showing uniqueness of the branch
of solutions.
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First main result
Take αj > −1, j = 1, . . . , N (positive or negative) and let

α =
∑
j∈N

αj , N =
{
j ∈ {1, . . . , N} : αj ∈ (−1, 0)

}
.

Theorem [Bartolucci-Gui-J.-Moradifam]

Let Ω ⊂ R2 be bounded, smooth and ρ ≤ 8π(1 + α). Then, there
exists at most one solution.

Remarks.
1. In particular observe that the result holds for Ω multiply-conn.
2. It covers all the previously known results.
3. Whenever the coercivity condition ρ < 8π(1 + α−) is also

satisfied, we have existence and uniqueness.
Open problem.
Does uniqueness still hold for ρ ∈

(
8π(1 + α), 8π(1 + α−)

)
?
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First main result

The result holds for more general problems. Recall,
∆u+ ρ

eu´
Ω e

u dx
= 4π

N∑
j=1

αjδpj in Ω,

u = 0 on ∂Ω.

ρ ≤ 8π(1 + α), α =
∑
N

αj .

We can consider
∆u+ ρ

eu´
Ω e

u dx
= 4πµ in Ω,

u = 0 on ∂Ω.
ρ ≤ 8π(1 + α), α = −µ−(Ω) .
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Sphere case

Let us now consider the problem on the sphere:

∆gv+ρ
(

ev´
S2 ev dVg

− 1
4π

)
= 4π

N∑
j=1

αj

(
δpj −

1
4π

)
on S2, |S2| = 4π.

Motivations:
gauge fields
cosmic strings
prescribed Gaussian curvature problem

geometric case: ρ = 4π
(
2 +

∑
j αj

)
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Sphere case: previous results

Let us now consider the problem on the sphere:

∆gv+ρ
(

ev´
S2 ev dVg

− 1
4π

)
= 4π

N∑
j=1

αj

(
δpj −

1
4π

)
on S2, |S2| = 4π.

Uniqueness holds for:
N ≤ 2: ρ < 4π

(
2 +

∑
j αj

)
[C.S. Lin, J. Prajapat - G. Tarantello]

Project on R2 and apply moving plane argument to show that
solutions are radial. Next prove uniqueness of radial solutions.

N ≥ 3, αj ∈ (−1, 0) ∀j, geometric case: ρ = 4π
(
2 +

∑
j αj

)
[F. Luo - G. Tian]. By using algebraic geometric approach.

N > 2, not geometric case: missing.
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Second main result

Theorem [Bartolucci-Gui-J.-Moradifam]

Let αj ∈ (−1, 0), j = 1, . . . , N . Then we have:

(i) N ≥ 0, ρ < 4π
(
2 +

∑
j αj

)
: there exists at most one solution;

(ii) N ≥ 3, ρ = 4π
(
2 +

∑
j αj

)
: there exists at most one solution.

Remarks.
1. It covers (most of) the previously known results.
2. Part (ii) is somehow sharp:

- for N = 0 and N = 2 solutions are classified and uniqueness does
not hold;

- for N = 1 solutions do not exist since the ’tear drop’ does not
admit constant curvature;

- uniqueness fails if some αj > 0.
3. Whenever the coercivity condition ρ < 8π(1 + α−) is also

satisfied, we have existence and uniqueness.
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Second main result
Observe that we may have
unique. threshold 4π

(
2 +

∑
jαj
)
> 8π(1 + α−) subcrit. threshold.

Since by [C.C. Chen - C.S. Lin] the degree
dρ = 0 for ρ ∈

(
8π(1 + α−), 4π

(
2 +

∑
jαj
))
, N ≥ 3, αj ∈ (−1, 0)∀j,

if we knew that any such a solution is non degenerate, then we
would get a non existence result in this supercritical region.

Open problem.
Is it true that the problem has no solutions for

ρ ∈
(
8π(1 + α−), 4π

(
2 +

∑
jαj
))
, N ≥ 3, αj ∈ (−1, 0)∀j?

Remark.
Up to now one can treat only the (radial) case N ≤ 2 via Pohozaev
identities [D. Bartolucci - A. Malchiodi, G. Mancini, G. Tarantello] showing
non existence for

ρ ∈
(
8π(1 + α1), 8π(1 + α2)

)
.
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Sphere Covering Inequality [Gui-Moradifam]

Let Ω ⊂ R2 be simply-connected and consider two solutions

∆ui + e2ui = f ≥ 0 in Ω, i = 1, 2.

Suppose that, {
u2 6≡ u1 in Ω,

u2 = u1 on ∂Ω.

Then it holds, ˆ
Ω

(
e2u1 + e2u2

)
dx ≥ 4π = |S2|.
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The argument

Sphere Covering Inequality [Gui-Moradifam]ˆ
Ω

(
e2u1 + e2u2

)
dx ≥ 4π = |S2|.

Ω

e2u2

e2u1

≥

equality holds ⇔ ’for the sphere case’
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The argument

Sphere Covering Inequality [Gui-Moradifam]

Let Ω ⊂ R2 be simply-connected and consider two solutions

∆ui + eui = f ≥ 0 in Ω, i = 1, 2.

Suppose that, {
u2 6≡ u1 in Ω,

u2 = u1 on ∂Ω.

Then it holds, ˆ
Ω

(eu1 + eu2) dx ≥ 8π.
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Singular Sphere Covering Inequality [Bartolucci-Gui-J-Moradifam]

Let Ω ⊂ R2 be simply-connected and consider two solutions

∆ui + eui = 4π
N∑
j=1

αjδpj in Ω, i = 1, 2.

Suppose that, {
u2 6≡ u1 in Ω,

u2 = u1 on ∂Ω.

Then it holds,
ˆ

Ω
(eu1 + eu2) dx ≥ 8π(1 + α), α =

∑
j∈N

αj .
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Singular Sphere Covering Inequality [Bartolucci-Gui-J-Moradifam]

Let Ω ⊂ R2 be simply-connected and consider two solutions

∆ui + eui = 4πµ in Ω, i = 1, 2.

Suppose that, {
u2 6≡ u1 in Ω,

u2 = u1 on ∂Ω.

Then it holds,
ˆ

Ω
(eu1 + eu2) dx ≥ 8π(1 + α), α = −µ−(Ω) .

Aleks Jevnikar Singular Liouville equations



Introduction
Bounded domain case

Sphere case
The argument

Sphere Covering Inequality
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Singular Sphere Covering Inequality [Bartolucci-Gui-J-Moradifam]
ˆ

Ω
(eu1 + eu2) dx ≥ 8π(1 + α).

Ω

eu2

eu1

≥

equality holds ⇔ ’for the American football case’
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The argument
The equality case.

Uλ,α(x) = ln
(

λ(1 + α)
1 + λ2

8 |x|2(1+α)

)2

, α ∈ (−1, 0], λ > 0.

∆Uλ,α + |x|2αeUλ,α = 0 a.e. in BR.

Take λ2 > λ1 such that,{
Uλ2,α > Uλ1,α in BR,

Uλ2,α = Uλ1,α on ∂BR.

Then it holds,
ˆ
BR

(
|x|2αeUλ1,α + |x|2αeUλ2,α

)
dx = 8π(1 + α).
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Idea of the proof
By using the Alexandrov-Bol isoperimetric inequality
[A.D. Alexandrov, C. Bandle, D. Bartolucci - D. Castorina, Y.G. Reshetnyak]

one can show that a radial subsolution
ˆ
∂Br

|∇ψ| dσ ≤
ˆ
Br

|x|2αeψ dx for a.e. r ∈ (0, R),

ψ = Uλ1,α = Uλ2,α on ∂BR

satisfies either ˆ
BR

|x|2αeψ dx ≤
ˆ
BR

|x|2αeUλ1,α dx

OR ˆ
BR

|x|2αeψ dx ≥
ˆ
BR

|x|2αeUλ2,α dx.
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Idea of the proof
Consider

∆ui + eui = 4π
N∑
j=1

αjδpj , w.l.o.g. u2 > u1 in Ω, u2 = u1 on ∂Ω.

Take λ2 > λ1 such that Uλ2,α = Uλ1,α on ∂BR and
ˆ

Ω
eu1 dx =

ˆ
BR

|x|2αeUλ1,α dx.

Consider a

rad. rearrang. φ∗ of u2 − u1 w.r.t. eu1 dx and |x|2αeUλ1,α dx

so that,
ˆ

Ω
(eu1 +eu2) dx =

ˆ
Ω

(
eu1 +eu1+(u2−u1)

)
dx =

ˆ
BR

(
|x|2αeUλ1,α+|x|2αeUλ1,α+φ∗

)
dx
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Idea of the proof
We have
−∆(u2 − u1) = eu2 − eu1 ⇒

ˆ
∂Br

|∇Uλ1,α+ φ∗|dσ ≤
ˆ
Br

|x|2αeUλ1,α+φ∗
dx

u2 = u1 on ∂Ω ⇒ Uλ1,α + φ∗ = Uλ1,α = Uλ2,α on ∂BR.

Therefore, by the previous alternative,

since u2 > u1 in Ω ⇒ Uλ1,α + φ∗ > Uλ1,α in BR,

then
ˆ
BR

|x|2αeUλ1,α+φ∗
dx ≥

ˆ
BR

|x|2αeUλ2,α dx

and thusˆ
Ω

(eu1 + eu2) dx ≥
ˆ
BR

(
|x|2αeUλ1,α + |x|2αeUλ2,α

)
dx = 8π(1 + α).
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Thank you for your attention!
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