Uniqueness of solutions to singular Liouville equations

Aleks Jevnikar

University of Pisa

Joint project with D. Bartolucci, C. Gui and A. Moradifam.

Physical, Geometrical and Analytical Aspects of Mean Field Systems of Liouville Type

BIRS, April 1-6, 2018

Introduction

We consider first the following singular Liouville equation on a smooth bounded domain $\Omega \subset \mathbb{R}^2$:

$$\begin{cases} \Delta u + \rho \frac{e^u}{\int_{\Omega} e^u \, dx} = 4\pi \sum_{j=1}^N \alpha_j \delta_{p_j} & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

- $\rho \in \mathbb{R}$ is a real parameter
- $\{p_1, \ldots, p_N\} \subset \Omega$ and $\alpha_j > -1$ for $j = 1, \ldots, N$.

Introduction

We consider first the following singular Liouville equation on a smooth bounded domain $\Omega \subset \mathbb{R}^2$:

$$\begin{cases} \Delta u + \rho \frac{e^u}{\int_{\Omega} e^u \, dx} = 4\pi \sum_{j=1}^N \alpha_j \delta_{p_j} & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

• $\rho \in \mathbb{R}$ is a real parameter

• $\{p_1, \ldots, p_N\} \subset \Omega$ and $\alpha_j > -1$ for $j = 1, \ldots, N$.

Motivations:

Mean field equation in statistical mechanics: turbulent Euler flows, self-gravitating systems.

Introduction

There are by now many results concerning existence and multiplicity, blow-up phenomena and **uniqueness of solutions**.

We deduce here new uniqueness results (both on bounded domains and on spheres) as well as new self-contained proofs of previously known results.

(B)

Introduction

The problem has an **equivalent formulation**: consider

$$-\Delta G_p(x) = \delta_p \text{ in } \Omega, \qquad G_p(x) = 0 \text{ on } \partial\Omega,$$

and the following substitution

$$u(x) \mapsto u(x) + 4\pi \sum_{j=1} \alpha_j G_{p_j}(x).$$

Then, we have

$$\Delta u + \rho \frac{h(x)e^u}{\int_{\Omega} h(x)e^u \, dx} = 0 \quad \text{in } \Omega,$$

where

$$h(x) = e^{-4\pi \sum_{j} \alpha_j G_{p_j}(x)},$$

$$h > 0 \text{ on } \Omega \setminus \{p_1, \dots, p_N\}, \qquad h(x) \simeq |x - p_j|^{2\alpha_j} \text{ near } p_j.$$

Introduction

The latter problem has a **variational structure** and the solutions correspond to critical points of the functional

$$J_{\rho}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx - \rho \log \int_{\Omega} h e^u \, dx, \qquad u \in H^1_0(\Omega).$$

The starting point in treating this kind of functionals is the following:

• Regular case N = 0.

Moser-Trudinger inequality

$$8\pi \log \int_{\Omega} e^u \, dx \le \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx + C, \qquad u \in H^1_0(\Omega).$$

Image: A matrix

< 3 > < 3 >

Introduction

The latter problem has a **variational structure** and the solutions correspond to critical points of the functional

$$J_{\rho}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx - \rho \log \int_{\Omega} h e^u \, dx, \qquad u \in H_0^1(\Omega).$$

The starting point in treating this kind of functionals is the following:

• Singular case N > 0.

Troyanov inequality

$$8\pi(1+\alpha_{-})\log\int_{\Omega}he^{u}\,dx \leq \frac{1}{2}\int_{\Omega}|\nabla u|^{2}\,dx + C, \qquad u \in H_{0}^{1}(\Omega).$$
$$\alpha_{-} = \min_{j}\{0,\alpha_{j}\}.$$

・ロト ・四ト ・ヨト ・ヨト

æ

Introduction

It follows that for:

- ρ < 8π(1 + α_) the functional J_ρ is bounded from below and coercive and solutions can be found as global minima
- $\rho > 8\pi(1 + \alpha_{-})$ the functional J_{ρ} is **unbounded from below** and one has to attack it for example by using either min-max or degree theory

[D. Bartolucci, C.C. Chen, C.S. Lin, A. Malchiodi, G. Tarantello...]

 ρ = 8π(1 + α_-) the problem is subtler since the functional J_ρ is

 bounded from below but not coercive

[D. Bartolucci, S.Y.A. Chang, C.C. Chen, C.S. Lin...]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Introduction

Roughly speaking, the bigger is ρ and the richer is the topology of Ω , **the higher** is the number of solutions (by Morse theory).

[F. De Marchis]

On the other hand, for ρ small and Ω simply-connected one expects to have **uniqueness of solutions**.

A B M A B M

Previous results for bounded domain case

Indeed, **uniqueness** holds for:

Regular case N = 0.

- $\rho < 8\pi$, Ω simply-conn. [T. Suzuki]
- $\rho \leq 8\pi$, Ω simply-conn. [S.Y.A. Chang C.C. Chen C.S. Lin]
- $\rho \leq 8\pi$, Ω multiply-conn. [D. Bartolucci C.S. Lin]

Singular case N > 0.

- $\alpha_j > 0 \ \forall j$: $\rho \leq 8\pi, \ \Omega$ simply-conn. [D. Bartolucci C.S. Lin]
- $\alpha_1 \in (-1,0), \ \alpha_j > 0 \ \forall j > 1$: $\rho \leq 8\pi(1+\alpha_1), \ \Omega$ simply-conn.
 - [J. Wei L. Zhang]
- multiple negative sources: missing.

Previous results Main result

First main result

Take $\alpha_j > -1, \ j = 1, \dots, N$ (positive or negative) and let

$$\alpha = \sum_{j \in \mathcal{N}} \alpha_j, \quad \mathcal{N} = \Big\{ j \in \{1, \dots, N\} : \alpha_j \in (-1, 0) \Big\}.$$

Theorem [Bartolucci-Gui-J.-Moradifam]

Let $\Omega \subset \mathbb{R}^2$ be bounded, smooth and $\rho \leq 8\pi(1+\alpha)$. Then, there exists at most one solution.

Previous results Main result

First main result

Take $\alpha_j > -1$, $j = 1, \dots, N$ (positive or negative) and let

$$\alpha = \sum_{j \in \mathcal{N}} \alpha_j, \quad \mathcal{N} = \Big\{ j \in \{1, \dots, N\} : \alpha_j \in (-1, 0) \Big\}.$$

Theorem [Bartolucci-Gui-J.-Moradifam]

Let $\Omega \subset \mathbb{R}^2$ be bounded, smooth and $\rho \leq 8\pi(1+\alpha)$. Then, there exists at most one solution.

Remarks.

- 1. In particular observe that the result holds for Ω multiply-conn.
- 2. It covers all the previously known results.
- 3. Whenever the coercivity condition $\rho < 8\pi(1 + \alpha_{-})$ is also satisfied, we have **existence** and uniqueness.

Open problem.

Does uniqueness still hold for $\rho \in (8\pi(1+\alpha), 8\pi(1+\alpha_{-}))?$

Previous results Main result

First main result

The result holds for more general problems. Recall,

$$\begin{cases} \Delta u + \rho \frac{e^u}{\int_{\Omega} e^u \, dx} = 4\pi \sum_{j=1}^N \alpha_j \delta_{p_j} \text{ in } \Omega, \\ u = 0 \qquad \text{ on } \partial\Omega. \end{cases} \qquad \rho \le 8\pi (1+\alpha), \ \alpha = \sum_{\mathcal{N}} \alpha_j.$$

We can consider

$$\begin{cases} \Delta u + \rho \frac{e^u}{\int_{\Omega} e^u \, dx} = \boxed{4\pi\mu} & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega. \end{cases} \qquad \rho \le 8\pi(1+\alpha), \quad \boxed{\alpha = -\mu_-(\Omega)}$$

(日)

Ξ.

Let us now consider the problem **on the sphere**:

$$\Delta_g v + \rho \left(\frac{e^v}{\int_{\mathbb{S}^2} e^v \, dV_g} - \frac{1}{4\pi} \right) = 4\pi \sum_{j=1}^N \alpha_j \left(\delta_{p_j} - \frac{1}{4\pi} \right) \quad \text{on } \mathbb{S}^2, \quad |\mathbb{S}^2| = 4\pi.$$

イロト イヨト イヨト イヨト

э.

Let us now consider the problem **on the sphere**:

$$\Delta_g v + \rho \left(\frac{e^v}{\int_{\mathbb{S}^2} e^v \, dV_g} - \frac{1}{4\pi} \right) = 4\pi \sum_{j=1}^N \alpha_j \left(\delta_{p_j} - \frac{1}{4\pi} \right) \quad \text{on } \mathbb{S}^2, \quad |\mathbb{S}^2| = 4\pi.$$

Motivations:

- gauge fields
- cosmic strings
- prescribed Gaussian curvature problem

イロト イヨト イヨト イヨト

-

Let us now consider the problem **on the sphere**:

$$\Delta_g v + \rho \left(\frac{e^v}{\int_{\mathbb{S}^2} e^v \, dV_g} - \frac{1}{4\pi} \right) = 4\pi \sum_{j=1}^N \alpha_j \left(\delta_{p_j} - \frac{1}{4\pi} \right) \quad \text{on } \mathbb{S}^2, \quad |\mathbb{S}^2| = 4\pi.$$

Motivations:

- gauge fields
- cosmic strings
- prescribed Gaussian curvature problem

geometric case: $\rho = 4\pi (2 + \sum_j \alpha_j)$

Sphere case: previous results

Let us now consider the problem on the sphere:

$$\Delta_g v + \rho \left(\frac{e^v}{\int_{\mathbb{S}^2} e^v \, dV_g} - \frac{1}{4\pi} \right) = 4\pi \sum_{j=1}^N \alpha_j \left(\delta_{p_j} - \frac{1}{4\pi} \right) \quad \text{on } \mathbb{S}^2, \quad |\mathbb{S}^2| = 4\pi.$$

Uniqueness holds for:

- $N \leq 2$: $\rho < 4\pi \left(2 + \sum_{j} \alpha_{j}\right)$ [C.S. Lin, J. Prajapat G. Tarantello] Project on \mathbb{R}^{2} and apply moving plane argument to show that solutions are **radial**. Next prove uniqueness of radial solutions.
- $N \ge 3, \alpha_j \in (-1,0) \ \forall j$, geometric case: $\rho = 4\pi \left(2 + \sum_j \alpha_j\right)$

[F. Luo - G. Tian]. By using algebraic geometric approach.

• N > 2, not geometric case: missing.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 三 のへで

Second main result

Theorem [Bartolucci-Gui-J.-Moradifam]

Let $\alpha_j \in (-1, 0)$, $j = 1, \ldots, N$. Then we have:

(i) $N \ge 0, \rho < 4\pi (2 + \sum_{j} \alpha_{j})$: there exists at most one solution;

(*ii*) $N \ge 3$, $\rho = 4\pi (2 + \sum_{j} \alpha_{j})$: there exists at most one solution.

Second main result

Theorem [Bartolucci-Gui-J.-Moradifam]

Let $\alpha_j \in (-1,0), \ j = 1, \dots, N$. Then we have:

(i) $N \ge 0, \rho < 4\pi \left(2 + \sum_{j} \alpha_{j}\right)$: there exists at most one solution;

(*ii*) $N \ge 3$, $\rho = 4\pi (2 + \sum_{j} \alpha_{j})$: there exists at most one solution.

Remarks.

- 1. It covers (most of) the previously known results.
- 2. Part (*ii*) is somehow **sharp**:
 - for N = 0 and N = 2 solutions are classified and uniqueness does not hold;
 - for N = 1 solutions do not exist since the 'tear drop' does not admit constant curvature;
 - uniqueness fails if some $\alpha_j > 0$.
- 3. Whenever the coercivity condition $\rho < 8\pi(1 + \alpha_{-})$ is also satisfied, we have **existence** and uniqueness.

Second main result

Observe that we may have

unique. threshold $4\pi (2 + \sum_{j} \alpha_{j}) > 8\pi (1 + \alpha_{-})$ subcrit. threshold.

Since by [C.C. Chen - C.S. Lin] the degree

 $d_{\rho} = 0 \quad \text{for} \quad \rho \in \left(8\pi(1+\alpha_{-}), 4\pi\left(2+\sum_{j}\alpha_{j}\right)\right), \quad N \ge 3, \, \alpha_{j} \in (-1,0) \, \forall j,$

if we knew that any such a solution is **non degenerate**, then we would get a **<u>non existence</u>** result in this supercritical region.

Second main result

Observe that we may have

unique, threshold $4\pi (2 + \sum_{j} \alpha_{j}) > 8\pi (1 + \alpha_{-})$ subcrit, threshold.

Since by [C.C. Chen - C.S. Lin] the degree

 $d_{\rho} = 0 \quad \text{for} \quad \rho \in \left(8\pi(1+\alpha_{-}), 4\pi\left(2+\sum_{j}\alpha_{j}\right)\right), \quad N \geq 3, \, \alpha_{j} \in (-1,0) \, \forall j,$

if we knew that any such a solution is **non degenerate**, then we would get a **non existence** result in this supercritical region.

Open problem.

Is it true that the problem has **no solutions** for

 $\rho \in \left(8\pi(1+\alpha_{-}), 4\pi\left(2+\sum_{j}\alpha_{j}\right)\right), \quad N \ge 3, \, \alpha_{j} \in (-1,0) \, \forall j?$

Remark.

Up to now one can treat only the (radial) case $N \leq 2$ via Pohozaev identities [D. Bartolucci - A. Malchiodi, G. Mancini, G. Tarantello] showing non existence for

 $\rho \in \left(8\pi(1+\alpha_1), 8\pi(1+\alpha_2)\right)_{-}$

Sphere Covering Inequality

The argument

Sphere Covering Inequality [Gui-Moradifam]

Let $\Omega \subset \mathbb{R}^2$ be simply-connected and consider two solutions

$$\Delta u_i + e^{2u_i} = f \ge 0 \quad \text{in } \Omega, \quad i = 1, 2.$$

Suppose that,

$$\begin{cases} u_2 \not\equiv u_1 & \text{ in } \Omega, \\ u_2 = u_1 & \text{ on } \partial\Omega. \end{cases}$$

Then it holds,

$$\int_{\Omega} \left(e^{2u_1} + e^{2u_2} \right) \, dx \ge 4\pi = |\mathbb{S}^2|.$$

(日) (四) (日) (日) (日)

Sphere Covering Inequality

The argument

Sphere Covering Inequality [Gui-Moradifam]

$$\int_{\Omega} \left(e^{2u_1} + e^{2u_2} \right) \, dx \ge 4\pi = |\mathbb{S}^2|.$$

equality holds \Leftrightarrow 'for the sphere case'

<ロト <問ト < 臣ト < 臣ト

æ

Sphere Covering Inequality

The argument

Sphere Covering Inequality [Gui-Moradifam]

Let $\Omega \subset \mathbb{R}^2$ be simply-connected and consider two solutions

$$\Delta u_i + \frac{e^{u_i}}{e^{u_i}} = f \ge 0 \quad \text{in } \Omega, \quad i = 1, 2.$$

Suppose that,

$$\begin{cases} u_2 \not\equiv u_1 & \text{ in } \Omega, \\ u_2 = u_1 & \text{ on } \partial\Omega. \end{cases}$$

Then it holds,

$$\int_{\Omega} \left(e^{u_1} + e^{u_2} \right) \, dx \ge \frac{8\pi}{8\pi}.$$

э

Sphere Covering Inequality

The argument

Singular Sphere Covering Inequality [Bartolucci-Gui-J-Moradifam]

Let $\Omega \subset \mathbb{R}^2$ be simply-connected and consider two solutions

$$\Delta u_i + e^{u_i} = 4\pi \sum_{j=1}^N \alpha_j \delta_{p_j} \quad \text{in } \Omega, \quad i = 1, 2.$$

Suppose that,

$$\begin{cases} u_2 \not\equiv u_1 & \text{ in } \Omega, \\ u_2 = u_1 & \text{ on } \partial \Omega. \end{cases}$$

Then it holds,

$$\int_{\Omega} (e^{u_1} + e^{u_2}) \, dx \ge 8\pi (1 + \alpha), \quad \alpha = \sum_{j \in \mathcal{N}} \alpha_j.$$

イロト イヨト イヨト イヨト

Sphere Covering Inequality

The argument

Singular Sphere Covering Inequality [Bartolucci-Gui-J-Moradifam]

Let $\Omega \subset \mathbb{R}^2$ be simply-connected and consider two solutions

$$\Delta u_i + e^{u_i} = \boxed{4\pi\mu} \quad \text{in } \Omega, \quad i = 1, 2.$$

Suppose that,

$$\begin{cases} u_2 \not\equiv u_1 & \text{ in } \Omega, \\ u_2 = u_1 & \text{ on } \partial\Omega. \end{cases}$$

Then it holds,

$$\int_{\Omega} \left(e^{u_1} + e^{u_2} \right) \, dx \ge 8\pi (1+\alpha), \quad \boxed{\alpha = -\mu_-(\Omega)}.$$

- 4 回 ト - 4 回 ト

Sphere Covering Inequality

The argument

Singular Sphere Covering Inequality [Bartolucci-Gui-J-Moradifam]

$$\int_{\Omega} \left(e^{u_1} + e^{u_2} \right) \, dx \ge 8\pi (1+\alpha).$$

equality holds \Leftrightarrow 'for the American football case'

イロト イヨト イヨト イヨト

Sphere Covering Inequality

The argument

The equality case.

$$U_{\lambda,\alpha}(x) = \ln\left(\frac{\lambda(1+\alpha)}{1+\frac{\lambda^2}{8}|x|^{2(1+\alpha)}}\right)^2, \quad \alpha \in (-1,0], \ \lambda > 0.$$
$$\Delta U_{\lambda,\alpha} + |x|^{2\alpha} e^{U_{\lambda,\alpha}} = 0 \quad \text{a.e. in } B_R.$$

Take $\lambda_2 > \lambda_1$ such that,

$$\begin{cases} U_{\lambda_2,\alpha} > U_{\lambda_1,\alpha} & \text{in } B_R, \\ U_{\lambda_2,\alpha} = U_{\lambda_1,\alpha} & \text{on } \partial B_R. \end{cases}$$

Then it holds,

$$\int_{B_R} \left(|x|^{2\alpha} e^{U_{\lambda_1,\alpha}} + |x|^{2\alpha} e^{U_{\lambda_2,\alpha}} \right) \, dx = 8\pi (1+\alpha).$$

・ロト ・日ト ・ヨト ・ヨト

∃ 990

Idea of the proof

By using the Alexandrov-Bol isoperimetric inequality

[A.D. Alexandrov, C. Bandle, D. Bartolucci - D. Castorina, Y.G. Reshetnyak]

one can show that a **radial subsolution**

$$\begin{cases} \int_{\partial B_r} |\nabla \psi| \, d\sigma \leq \int_{B_r} |x|^{2\alpha} e^{\psi} \, dx \quad \text{for a.e. } r \in (0, R), \\ \psi = U_{\lambda_1, \alpha} = U_{\lambda_2, \alpha} \quad \text{on } \partial B_R \end{cases}$$

satisfies either

$$\int_{B_R} |x|^{2\alpha} e^{\psi} \, dx \leq \int_{B_R} |x|^{2\alpha} e^{U_{\lambda_1,\alpha}} \, dx$$

OR

$$\int_{B_R} |x|^{2\alpha} e^{\psi} \, dx \ge \int_{B_R} |x|^{2\alpha} e^{U_{\lambda_2,\alpha}} \, dx.$$

э.

Idea of the proof

Consider

$$\Delta u_i + e^{u_i} = 4\pi \sum_{j=1}^N \alpha_j \delta_{p_j}, \quad \text{w.l.o.g. } u_2 > u_1 \text{ in } \Omega, \quad u_2 = u_1 \text{ on } \partial \Omega.$$

Take $\lambda_2 > \lambda_1$ such that $U_{\lambda_2,\alpha} = U_{\lambda_1,\alpha}$ on ∂B_R and

$$\int_{\Omega} e^{u_1} dx = \int_{B_R} |x|^{2\alpha} e^{U_{\lambda_1,\alpha}} dx.$$

Consider a

rad. rearrang. ϕ^* of $u_2 - u_1$ w.r.t. $e^{u_1} dx$ and $|x|^{2\alpha} e^{U_{\lambda_1,\alpha}} dx$ so that,

$$\int_{\Omega} (e^{u_1} + e^{u_2}) \, dx = \int_{\Omega} \left(e^{u_1} + e^{u_1 + (u_2 - u_1)} \right) \, dx = \int_{B_R} \left(|x|^{2\alpha} e^{U_{\lambda_1,\alpha}} + |x|^{2\alpha} e^{U_{\lambda_1,\alpha} + \phi^*} \right)$$

The argument

Sphere Covering Inequality

Idea of the proof

We have

$$\begin{aligned} \left(-\Delta(u_2 - u_1) = e^{u_2} - e^{u_1} & \Rightarrow \int_{\partial B_r} |\nabla U_{\lambda_1,\alpha} + \phi^*| d\sigma \le \int_{B_r} |x|^{2\alpha} e^{U_{\lambda_1,\alpha} + \phi^*} dx \\ u_2 = u_1 \text{ on } \partial\Omega & \Rightarrow U_{\lambda_1,\alpha} + \phi^* = U_{\lambda_1,\alpha} = U_{\lambda_2,\alpha} \text{ on } \partial B_R. \end{aligned}$$

 $\Rightarrow U_{\lambda_1,\alpha} + \phi^* = U_{\lambda_1,\alpha} = \frac{U_{\lambda_2,\alpha}}{\partial B_R} \text{ on } \partial B_R.$

Therefore, by the **previous alternative**,

since
$$u_2 > u_1$$
 in $\Omega \Rightarrow U_{\lambda_1,\alpha} + \phi^* > U_{\lambda_1,\alpha}$ in B_R ,
then $\int_{B_R} |x|^{2\alpha} e^{U_{\lambda_1,\alpha} + \phi^*} dx \ge \int_{B_R} |x|^{2\alpha} e^{U_{\lambda_2,\alpha}} dx$

and thus

$$\int_{\Omega} (e^{u_1} + e^{u_2}) \, dx \ge \int_{B_R} \left(|x|^{2\alpha} e^{U_{\lambda_1, \alpha}} + |x|^{2\alpha} e^{U_{\lambda_2, \alpha}} \right) \, dx = 8\pi (1 + \alpha).$$

Sphere Covering Inequality

Thank you for your attention!

・ロト ・日ト ・ヨト ・ヨト