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The determinant of the Laplacian

Consider a compact, closed manifold M with metric g, and Laplace-
Beltrami operator ∆g. The eigenvalues {λj}, with eigenfunctions {ϕj}j

−∆gϕj = λjϕj on M,

form a sequence of positive numbers such that

λj → +∞ as j → +∞.

Formally, the determinant of −∆g is defined as

det(−∆g) =
∏
j

λj .

•While physicists may like these formulas, mathematicians usually have
problems with infinite products of diverging numbers.
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Regularized determinant

The spectral zeta function of (Mn, g) is

(1) ζ(s) =

∞∑
j=1

λ−sj .

By Weyl’s asymptotic law,

λj ∼ j2/n, j →∞.

Consequently, (1) defines an analytic function provided Re(s) > n/2.
Differentiating in s one finds

ζ ′(s) =
d

ds

∞∑
j=1

e−s log λj = −
∞∑
j=1

log λje
−s log λj .

If ζ is regular near s = 0 one can define the regularized determinant
det′(−∆g) via the following formula

det′(−∆g) = e−ζ
′(0).
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Regularity of ζ at s = 0 (in 2D)

Let (Σ, g) be a surface. One can write

ζ(s) =
∞∑
j=1

λ−sj =
1

Γ(s)

ˆ ∞
0

 ∞∑
j=1

e−λjt

 ts
dt

t

=
1

Γ(s)

ˆ ∞
0

(
Tr(e∆t − 1)

)
ts
dt

t
.

It is known that (Taylor expand the heat kernel)
∞∑
j=1

e−λjtϕ2
j (x) = Ht(x, x) =

1

4πt
+
K(x)

12π
+O(t),

where K is the Gaussian curvature. Therefore one finds

ζ(s) =
1

Γ(s)

{
A(Σ)

4π(s− 1)
+

(
χ(Σ)

6
− 1

)
+ holom. in s

}
,

which is regular near zero. ⇒ det′(−∆g) is well defined.
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Polyakov’s formula for conformal metrics

In 2D the Laplacian is conformally covariant. If g̃(x) := e2w(x)g(x) is a
metric conformal to the original one g, then

∆g̃ = e−2w(x)∆g; −∆gw +Kg = Kg̃e
2w.

These properties allowed Polyakov in ’81 to compute the variation of
the determinant for conformal metrics with the same volume

log det′(−∆g̃)− log det′(−∆g) = − 1

12π

ˆ
Σ

(|∇w|2 + 2Kw) dA.

This formula appears in a partition function in string theory, and is
related to the Moser-Trudinger-Onofri inequality. On the sphere it is
known to be maximised only on conformal factors of Möbius maps.

Existence of extremals is easy for positive genus. On spheres it can be
achieved via a balancing condition, done in [Osgood-Phillips-Sarnak, ’88]
(see also [Aubin, ’76], [Ghoussoub-Lin, ’10], [Gui-Moradifam, ’16]).
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related to the Moser-Trudinger-Onofri inequality. On the sphere it is
known to be maximised only on conformal factors of Möbius maps.

Existence of extremals is easy for positive genus. On spheres it can be
achieved via a balancing condition, done in [Osgood-Phillips-Sarnak, ’88]
(see also [Aubin, ’76], [Ghoussoub-Lin, ’10], [Gui-Moradifam, ’16]).
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Isospectral metrics ([Osgood-Phillips-Sarnak, ’88])

Isospectral metrics on a closed surface are compact in any Ck sense.

Case of the sphere. On S2 all metrics are conformally equivalent (up to
diffeomorphisms). Since the determinant is bounded, one gets a uniform
bound on the H1 norm of the conformal factor.

Expanding the heat kernel (via parametrix) one can prove that

∞∑
j=1

e−λjt =: Tr(e∆t) =
1

t

l∑
j=0

tj
ˆ

Σ
Uj(x)dV +O(tl),

where Uj is a universal polynomial in Kg and ∆g of degree 2j.

It was proved in [McKean-Singer, ’67], [Gilkey, ’79] that

Uj '
ˆ

Σ
Kg∆

j−2KgdV ' ‖u‖Hj(Σ),

therefore one gets bounds even in higher Sobolev norms.
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Isospectral metrics: positive genus

In higher genus the conformal classes are described by Teichmüller’s
space. Even if, after a conformal change g 7→ ĝ, the Gaussian curvature
is identically −1, one could lose compactness by formation of necks

It was however shown in [Wolpert, ’87] that

det′(ĝ) ≤ 1

l
e−

c1
l ; c1 = c1(χ(Σ)),

where l is the length of the shortest geodesic, so l 6→ 0.

Finally, a theorem in [Mumford, ’71] shows that if l is bounded below
and if Kĝ = const., then there is smooth convergence of the metrics.
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is identically −1, one could lose compactness by formation of necks

It was however shown in [Wolpert, ’87] that

det′(ĝ) ≤ 1
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and if Kĝ = const., then there is smooth convergence of the metrics.

Andrea Malchiodi (SNS, Pisa) Banff, 04-03-2018 7 / 31



Isospectral metrics: positive genus

In higher genus the conformal classes are described by Teichmüller’s
space. Even if, after a conformal change g 7→ ĝ, the Gaussian curvature
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is identically −1, one could lose compactness by formation of necks

It was however shown in [Wolpert, ’87] that

det′(ĝ) ≤ 1
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Higher dimensions

In higher dimensions very little is known. There are results in special
cases like within a conformal class in 3D [Chang-Yang, ’90] or under
bounded curvature assumptions [G.Zhou, ’97].

There are similar issues when trying to extremize (i.e., maximize) the 1-
st or k-th eigenvalue of the Laplacian. Upper bounds for λ1 were found
in [Yang-Yau, ’80], [El Soufi-Ilias, ’83-’84] in terms of the genus. Then
also for λk ([Korevaar, ’93], [Hassannezhad, ’11]).

In a given conformal class, a bubbling analysis for maximizing sequences
was performed in [Nadirashvili-Sire, ’15].

On S2 it is known that the supremum of the k-th eigenvalue is 8πk
([Karpukhin-Nadirashvili-Penskoi-Polterovich ’17 ]), with previous resul-
ts in [Hersch , ’70], [Petrides, ’14], [Nadirashvili-Sire, ’17] (k = 1, 2, 3).

With few exceptions, no explicit formulas are known in higher genus.
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Conformally covariant operators

A linear operator A = Ag is conformally covariant of bi-degree (a, b) if
g̃ = e2wg implies

Ag̃ψ = e−bwAg(e
awψ) for each smooth ψ.

Examples 0. The Laplacian ∆g for n = 2: (a, b) = (0, 2).

1. The conformal Laplacian for n ≥ 3

Lg = −4(n− 1)

(n− 2)
∆g +Rg (a, b) =

(
n− 2

2
,
n+ 2

2

)
.

2. The Paneitz operator Pg for n = 4

Pgϕ = (−∆g)
2ϕ+ div

[(
2

3
Rg − 2Ric

)
◦ ∇ϕ

]
, (a, b) = (0, 4) .

3. The Dirac operator D for n ≥ 2: (a, b) =
(
n−1

2 , n+1
2

)
.
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Determinants of conf. covariant operators in 4D

Theorem ([Branson-Oersted, ’91])

Let n = 4, and A be conformally covariant.Then ∃ γ1(A), γ2(A), γ3(A)
such that for g̃ = e2wg

FA[w] := log
detAg̃
detAg

= γ1(A)I[w] + γ2(A)II[w] + γ3(A)III[w],

where
I[w] = 4
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Some comments

The three functionals I, II, III are quite natural since

ĝ = e2wg is critical for I ⇐⇒ |Wĝ|2 = const.,

ĝ is critical for II ⇐⇒ Qĝ = const. (Uniformization type pb.),

ĝ is critical for III ⇐⇒ ∆gRĝ = const. (Yamabe problem).

Also, in 4D there is a Gauss-Bonnet formulaˆ
M

(
Qg +

1

8
|Wg|2

)
dv = 4π2χ(M).

Each term separately is not a topological invariant. However, both´
M Qgdv and

´
M |Wg|2dv are conformally invariant.

• Both Pg and Qg have a crucial role in the study of the topology of
4-manifolds (works by Chang, Gursky, Yang, Qing, . . . )
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ĝ is critical for II ⇐⇒ Qĝ = const. (Uniformization type pb.),
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ĝ = e2wg is critical for I ⇐⇒ |Wĝ|2 = const.,
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ĝ = e2wg is critical for I ⇐⇒ |Wĝ|2 = const.,
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ĝ is critical for III ⇐⇒ ∆gRĝ = const. (Yamabe problem).

Also, in 4D there is a Gauss-Bonnet formulaˆ
M

(
Qg +

1

8
|Wg|2

)
dv = 4π2χ(M).

Each term separately is not a topological invariant.

However, both´
M Qgdv and

´
M |Wg|2dv are conformally invariant.

• Both Pg and Qg have a crucial role in the study of the topology of
4-manifolds (works by Chang, Gursky, Yang, Qing, . . . )

Andrea Malchiodi (SNS, Pisa) Banff, 04-03-2018 11 / 31



Some comments

The three functionals I, II, III are quite natural since
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Some comments

In the above examples

- If Ag = Lg, the conformal Laplacian, then

(γ1, γ2, γ3) =

(
1,−4,−2

3

)
.

- If Ag = Pg, the Paneitz operator, then

(γ1, γ2, γ3) =

(
−1

4
,−14,

8

3

)
.

- If Ag = D, the square of the Dirac operator, then

(γ1, γ2, γ3) =

(
−7,−88,−14

3

)
.
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Extremals of determinants in 4D

Theorem ([Chang-Yang, ’95]) For n = 4 assume:

(i) γ2, γ3 < 0, (ii) −γ1

´
M |Wg|2 dv − γ2

´
M Qg dv < (−γ2)8π2.

Then supw∈W 2,2 FA[w] is attained by some w ∈W 2,2.

Remarks Condition (i) means that the main differential terms in the
functional FA are negative-definite. Condition (ii) implies (anti)coercivity
of FA, via some sharp Moser-Trudinger inequalities, so one can find a
global maximum by direct methods. The assumptions are conformally
invariant and are satisfied (roughly) in positive curvature.

• Uniqueness holds for −γ1

´
M |Wg|2 dv − γ2

´
M Qg dv < 0.

• The theorem applies to Lg and D, but not to the Paneitz operator Pg
(discussed later).
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Remarks Condition (i) means that the main differential terms in the
functional FA are negative-definite. Condition (ii) implies (anti)coercivity
of FA, via some sharp Moser-Trudinger inequalities, so one can find a
global maximum by direct methods. The assumptions are conformally
invariant and are satisfied (roughly) in positive curvature.

• Uniqueness holds for −γ1
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M |Wg|2 dv − γ2
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On the functional II ( special case: (γ1, γ3) = (0, 0) )

(Conformal) extremals of II, having constant Q-curvature, solve

Pgu+ 2Qg = 2Qe4u; Q ∈ R.

The result in [Chang-Yang, ’95] applies when kQ :=
´
M Qg < 8π2. If

instead kQ > 8π2, then FA = II is unbounded from above: kQ beats the
Moser-Trudinger constant ([Adams, ’88]).

Still, in [Djadli-M., ’08] existence was found provided kQ 6∈ 8π2N. The
main tool are improved M-T inequalities, in the spirit of [Aubin’, 76]:
spreading of conformal volume leads to better functional inequalities.

A consequence of these improved inequalities is that, for example, if
kQ ∈ (8π2, 16π2) and if FA is large, then the conformal volume must
concentrate near a single point of M . One can then exploit the topology
of M to find critical point of FA of saddle type.
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Min-max methods and compactness

The topological structure of the energy (with Struwe’s monotonicity
argument) allows to produce solutions of perturbed equations

Pgu+ 2Qn = 2Qne
4u; Qn → Qg, Qn → Q.

We wish then to pass to the limit, but in general solutions might blow-up,
and one tries to reach a contradiction.

One way to proceed is to show first that all volume accumulates at
finitely-many points. In the limit one finds a singular solution to

Pgu+ 2Qg =

l∑
i=1

βiδpi ; βi > 0.

Notice that the operator on the l.h.s. is linear: via local regularity
theory and representation formulas one shows that the singular solution
is a linear combinations of (logarithmic) Green’s functions.

Finally, using an integration by parts (Pohozaev), one shows that βi =
8π2 for all i, a contradiction to kQ 6∈ 8π2N.
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Saddle points for general FA’s [Esposito-M., w.i.p.]

We aim for non-maximal solutions when (γ1, γ3) 6= (0, 0) and γ2 γ3 > 0.
Variationally, it is not so different from the previous case, but the analysis
of compactness is much harder. The principal terms in the equation are

L(u) :' ∆2u−∆4u = e4u; ∆4u = div(|∇u|2∇u).

In case of blow-up one still finds a (singular) solution to

L(u) =

l∑
i=1

βiδpi ; βi > 0,

a sort of nonlinear Green’s function. One would like to understand its
uniqueness and limiting behaviour.

Some results were available for the p-Laplacian ([Serrin, ’64], [Veron-
Kichenassamy, ’86]), but for that one has homogeneity of the operator,
plus the maximum principle.
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Nonlinear Green’s function

The natural space to work with variationally is W 2,2. However, this is
not possible for singular solutions.

To prove uniqueness, we use a renormalized energy and a Hodge decom-
position inspired by [Iwaniec, ’92], [Iwaniec-Greco-Sbordone, ’97].

For the regularity, one can use an approximate solution uapp of the form

uapp(x) '
l∑

i=1

αi log
1

d(x, pi)
; αi = αi(βi).

The pointed manifold (M \{p1, . . . , pl}, e4uapp) has conical point and/or
conical/cylindrical ends. Setting the problem here, one can pose the
problem variationally, and obtain exponentialW 2,2 decay along the ends.

This implies the desired regularity on the original closed manifold.
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The determinant of the Paneitz operator

It is mentioned in Connes’ book on non-commutative geometry as a
relevant tool for conformal theories in 4D. Analytically, it is also quite
interesting.

In flat tori, the determinant of Pg is

FP [w] =

ˆ
T4

[
18(∆w)2 + 64|∇w|2∆w + 32|∇w|4

]
.

This functional has a triple homogeneity. Moreover, by the borderline
embedding W 2,2(R4) ↪→W 1,4(R4), it is also doubly critical.

On S4 instead one has

FP [w] =

ˆ
S4

[
18(∆w)2 + 64|∇w|2∆w + 32|∇w|4 − 60|∇w|2

]
dv

+ 112π2 log
( 

S4

e4(w−w) dv
)
.
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Mountain Pass structure

Proposition 1 For both T4 and S4, FP has a local minimum at w ≡ 0
(standard metrics). Moreover, FP is unbounded above and below.

The local minimality at w = 0 was noticed in [Branson, ’96], computing
the second variation. To check unboundedness from below, insert into
FP the function

w(x) ' −1

2
log(ε2 + |x|2); ε→ 0.

- Geometrically, this conformal factor generates cylinder, not a bubble.

- Loss of coercivity may happen in different ways (e.g., at many points),
differently e.g. from the Q-curvature equation.

- It goes similarly with compact hyperbolic manifolds.
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A second solution on S4

Theorem ([Gursky-M., ’12])

Let (S4, g0) be the standard 4-sphere. Then FP admits a non-trivial
axially symmetric solution.

Remarks (a) For most geometric problems the round metric is the only
critical point. One has indeed uniqueness of the round metric for constant
mean curvature, Gaussian curvature, scalar curvature and Q-curvature.

(b) Uniqueness also holds for critical points of det Lg ([Gursky, ’97]).
From the positive second variation at w = 0, Branson speculated uni-
queness for critical points of FP as well (false).

(c) The mountain pass structure suggests to use a variational approach.
However this strategy is now out of reach: we used ODEs instead.

(d) A similar result holds in R4, much easier to prove.
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A convenient change of variables

Once the north and south poles are removed, S4 is conformally equivalent
to the cylinder S3 × R

PN

PS

S3
S4

R

Asking for axial symmetry is equivalent to having solutions independent
of the S3 component. Therefore we just solve for u = u(t), t ∈ R.

•We can also assume that u(t) is even in t.
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The ODE on the cylinder

With the above change of variables one finds the equation

(E) 9u
′′′′ − 96u′′(u′)2 + 60u′′ + 42e4u = 0.

Evenness in t implies u′(0) = u′′′(0) = 0. We also require

u′(t)→ −1, u′′(t)→ 0 as t→ +∞ (u(t) extends to S4);

ˆ t

0
e4u ds→ 2

3
, t→∞ (same volume as (S4, g0)).

• u0(t) = − log cosh(t) represents the standard spherical metric

• if u(t)→ −∞ as t→ +∞, then u(t) shadows a solution of

(E∞) 9v
′′′′ − 96v′′(v′)2 + 60v′′ = 0.

This is integrable, with a one-parameter family of periodic solutions.
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Conservation laws

Integrating by parts one finds the following result.

Proposition 2 Admissible solutions of (E) satisfy

−9

2
[u′′(0)]2 +

21

2
e4u(0) = 6,

and also the equation

9

4
u′′′′ − 9u′u′′′ − 24u′′(u′)2 +

9

2
(u′′)2 + 15u′′ + 24(u′)4 − 30(u′)2 + 6 = 0.

• By the first formula, the initial conditions are completely determined
by u′′(0) (recall that u′(0) = u′′′(0) = 0).

• The second formula reduces (E) to a third order, autonomous equation
in u′ (the exponential term disappears).
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The autonomous system

Setting

x(t) = −u′(t); y(t) = −u′′(t); z(t) = −u′′′(t),

the system becomes

(A)


x′ = y,
y′ = z,
z′ = 8

3(x2 − 1)(4x2 − 1)− 4xz + 32
3 x

2y + 2y2 − 20
3 y.

Proposition 3 System (A) contains both solutions of (E) and (E∞).

Thanks to this (miracolous) result the asymptotics of the solutions of
(E) can be made rigorous.

Goal Look for solutions of (A) starting from the y-axis and converging
asymptotically to the point (1, 0, 0).
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An invariant set for (A)

Fact System (A) contains a one-parameter family of periodic orbits
forming a topological disk D.

! !"#$

! !"#%

! !"#&'(

! !"#&

)'(

! !"#%'(

*')

!

"

#

*')

The center is the point p0 =
(

1
2 , 0, 0

)
, while the most external orbit is a

homoclinic, with limit point p1 = (1, 0, 0).

• The transversal dynamics is attractive
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Shooting method

Recall that the spherical metric corresponds to u(t) = − log cosh t.
Changing variables, this becomes a solution

−→
X 0(t) of (A) s.t.

−→
X 0(0) = (0, 1, 0).

Let us try now to vary the initial data, hoping to find another admissible
solution.

For ε > 0, let
−→
X ε(t) be the solution of (A) with initial data

−→
X ε(0) = (0, 1− ε, 0).
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Step 1: ε small

Proposition 4 For ε > 0 small enough,
−→
X ε(t) is globally defined in

time, and shadows one of the periodic orbits in D.

!"#$%

!"#$&

!"#$'()

!"#$'

*()

!"#$&()

+(*

!

"

#

+(*

The proof uses refined asymptotic analysis, a Gronwall inequality and
the construction of two (sort of) Lyapunov functions.
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Step 2: ε large

Proposition 5 For ε > 0 large,
−→
X ε(t) blows-up in finite time.

It is natural to define

ε = sup
{
ε̃ :
−→
X ε is globally defined for ε ∈ [0, ε̃]

}
.

• Fact: the candidate solution
−→
X ε is admissible, i.e. it extends to S4.

!"#$%

!"#$&

!"#$'()

!"#$'

*()

!"#$&()

+(*

!

"

#

+(*

Technically, one needs to rule out infinitely-many oscillations.
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X ε is globally defined for ε ∈ [0, ε̃]

}
.

• Fact: the candidate solution
−→
X ε is admissible, i.e. it extends to S4.
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Comments and open problems

Our proof is very specific and does not exploit the structure of the
problem. Recall that in T4 the determinant is

FP [w] =

ˆ
T4

[
18(∆w)2 + 64|∇w|2∆w + 32|∇w|4

]
.

It is difficult to find a priori bounds on solutions or P-S sequences.

Notice that by Bochner’s identity
´
T4(∆u)2dx =

´
T4 |∇2u|2dx, so there

is a positive lower bound for the Sobolev-type quotient

inf
u6≡0

´
T4(∆u)2dx(´
T4 |∇u|4dx

) 1
2

.

It is an interesting problem to find extremals of this quotient in R4.
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The Euler equation

On R4 critical points satisfy

9∆2w + 32|∇2w|2 − 32(∆w)2 − 32∆u |∇u|2 − 32〈∇w,∇|∇w|2〉 = 0.

The main-order term is ∆2: typically, decay of solutions is logarithmic.
However solutions with finite energy have inverse-quadratic decay: some
degeneracy is present. For Q-curvature, see [Lin, ’98], [Wei-Ye, ’08],
[Martinazzi, ’08-].

A natural question is whether a critical point always exists for FP . This is
be a natural counterpart of the Uniformization problems or the Yamabe
problem. Apart from the compactness issues, new sharp Moser-Trudinger
inequalities would be expected.
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Thanks for your attention
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