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Isoperimetric inequalities
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Equality holds if and only if Q is a disk.

Similar inequalities hold for high dimensions.

09" < SplQ|"

where S, = |S"1|"/|B1|""! = n"w,, S"~! and Bj are the unit
sphere and ball in R" respectively.



Levy's Isoperimetric inequalities on spheres (1919)
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. On the standard unit sphere with the metric induced from the
Moradifam flat metric of R3,

L2(09) > A(Q) (47 — A(Q))

If the sphere has radius R, then

L2(0Q) > A(Q)(47R? — A(Q))/R?



Alexandrov-Bol’s inequality (1941)
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e stereographic projection, and equip it with a metric conformal
to the flat metric of R?, i.e., ds? = e2/(dx? + dx3).

Assume v satisfies

Av + K(x)e* >0, R?

with the Gaussian curvature k < 1. Then

(/89 e'ds)? > (/Q e2") (47 — /Q e2")



Slightly different equation
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Au+e" >0, R2

(/896“/2)22;(/Qe”)(87r—/ﬂeu)

We may think that this is the Levy's isoperimetric inequality on
the sphere with radius v/2 and the gaussian curvature 1/2 in
R3.

Then



Sobolev inequalities (1938)
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[ullr) < ClIVull2(q)

2
for0 <p< =5,

Question: Is H(} C L*°? NO!

Moser-Trudinger inequality concerns the borderline case n = 2.



Moser-Trudinger inequality (1971)
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Jo(u) = j/y |Vul?dw + /52 udw — log /52 e'dw > C > —oo,

if and only if > 1, where the volume form dw is normalized
so that [g, dw = 1.



Aubin’s Result (1979) and Onofri Inequality (1982)
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1
27
Ja(u) > C> -0

for
ueM:={ueHY(S?: / e'x; =0, i=1,23},
52
Onofri showed for o« > 1

Ja(u) > 0;



Chang and Yang conjecture (1987)

T sl Chang and Yang showed that for « close to 1 the best constant

covering k . ] }
WEEEREE  again is equal to zero. They proposed the following conjecture.
its
applications Conjecture A. For a > 3,
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inf J, =0.
ulen./\/l (U)



Chang and Yang conjecture (1987)

The sphere Chang and Yang showed that for o close to 1 the best constant
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inequality and. INETCTIE equal to zero. They proposed the following conjecture.
)

applications Conjecture A. For o > 1
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inf J, =0.
ulen./\/l a(u)
Indeed, they showed that the minimizer u exists and satisfies
u

« e
“Au+ ——1=0 s? 1
> u+f52e“dw on (1)

by showing
pi=0, =123

in the Euler-Lagrange equations

gA W—I—Zu,x,uon 52
S2



Mean field Equationc on 52
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I\/Io?an(;:;:nm Au + p(f52 eudw

—1)=0 on §? (2)

Many Results by

Brezis, Merle, Caglioti, Lions Marchioro, Pulvirenti, Y.Y. Li,
Shafir, Chanillo, Kiessling, Chang, Chen, Lin, Lucia, Cabre,
Bartolucci, Tarantello, De Marchis, Malchiodi, ......

One Important Result ( Brezis, Merle, Y.Y. Li): Blow up of
solutions happens only when p — 8mm. The solution sets are
compact in C? for a compact set of p in

> 1 (87m, 8m(m+1)).



Other applications

The sphere H _ J2u H
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Navier-Stokes equations
Au+ (u-V)u=Vp div(u)=0 on R3

scale under u — Au(Ax). What are the solutions that are

invariant under scaling? Explicit examples are the Landau
solutions. Anything else?

Sverak (2009): NO!. Proof: For x € $? decompose

u = T(x)+ xN(x), where T is tangent to S2. After some
work, one can show that T = V¢ and

Ap+2e¥ =2 on S2



Earlier results on conjecture A
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Gui and Wei, and independently Lin (2000)

[ay

o>

Non-axially symmetric functions:
Ghoussoub and Lin (2010)

>2
a> - —€
-3




Strategies of Proof
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For axially symmetric functions, to show (1) has only solution
u=C.

For general functions, to show solutions to (1) are axially
symmetric.



Equations on R?

T:j;‘,’i':fg'e Let I be the stereographic projection S? — R? with respect to

EEEEEE  the north pole N = (1,0,0):

its
applications
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Suppose u is a solution of (1) and let

_ 2 8
v=u() = S+ R () ()
then v satisfies

Av+ 1+ |y Ve =0 in R2 (4)

and

1.7y 8w
| @ PR Derdy = 2T, (5)



General Equations
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Consider in general the equation
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and
/ (1+ |y|?)'e“dy = 2n(2/ + 4). (7)
R2

Are solutions to (6) and (7) radially symmetric?
For I = 0: Chen and Li (1991)
For —2 </ < 0: Chanillo and Kiessling (1994)

Conjecture B. For 0 < / < 2, solutions to (6) and (7) must be
radially symmetric.

0 < / < 1: Ghoussoub and Lin (2010)



Existence of non-radial solutions

The sphere
covering
inequality and

soplieations Lin (2000): For 2 </ # (k — 1)(k +2), where k > 2 there is a
non radial solution.
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Example of Chanillo-Kiessling (1994)
Consider
Au+8k?r2 ket =0, R?
with
/ 8k2r2k—let — gk,
R2

There exists a non-radial solution ( with explicit formula) for
any integer k > 2.



Theorem ( Gui and M., 2015)
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Conjecture A.
For a > %

ulen)t/l Jo(u) = 0.

Conjecture B.

For 0 < I < 2, solutions to (6) and (7) must be radially
symmetric.

Note

I:2($ —1).



47 lower bound
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 Amin Let Q C R? be a simply-connected domain and w € C?(Q)
oradifam Satisfying

Aw+e” >0

in Q and Joe” < 8.
Consider an open set w C 2 such that A1, (w) < 0, where the
first eigenvalue of the linearized operator A + e

Mw(w) = inf /|v¢|2 /¢2eW)go
peH (w) w

Then [ e“ > 4.



Radial symmetry
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where v is defined by (3).
Now let w := In((1 + |y[2)2(a~Dev).

Ap+e“p=0 in R

Given v be even, then

4
8
T [P Vedy =3 [ e > an 16
« R2 P Q;

This implies a < % which is a contradiction.



New 87 lower bound
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ot Let Q be a simply connected subset of R?> and assume
Moradifam w; c Cz(Q), I — 1’ 2 Satlsfy

Aw; + e" = fi(y), (8)

where f, > f; > 0 in Q.
Suppose w C Q and wo > wy in w and wo = wy on Ow, then

/ e + e"dy > 8. (9)

Furthermore if f; 20 or f, £ fi in w, then
[, e" + e"dy > 8r.



Even symmetry of solutions
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U and let va(x,y) = vi(x, —y). Define

wi = In((1+[y[?)2EDe), i = 1.2
Then

8(X —1)

Aw;+e¥%=-—2_ >0 in R? ;=12

' (1+1yP)?

255 = [ ey Venan [ @y Ve
R2 R2

4
w1 wy
> g/ﬂ'e + e™dx > 4 x 8.
i=1 7/

Hence o < %



Proof of 87 lower bound: An Example
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)+ 2In(\) (10)

Proposition

Let Ao > A1, and Uy, and U,, be radial solutions of the
equation

Au+e"=0
with Uy, > Uy, in Br and Uy, = Uy, on 0Bg, for some R > 0.
Then

/ (eY + eY%)dy = 8r.
Br



Bol's inequality for radial weak subsolutions
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. Let Br be the ball of radius R in R? u € C1(BR) be a strictly
Moradifam decreasing radial function satisfying

/ |Vu|ds S/ e'dy forall re(0,R), and / e' < 8m.
0B, b Br
Then the following inequality holds

oV = (L) e [#)

Moreover if [,z |Vulds < [5 e"dy for some r € (0, R), then
the inequality in (11) is strict.



Integral comparison for subsolution
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Assume that 1) € C1(BR) is an strictly decreasing radial
Amir

Moradifam function and satisfies
/ |Vy| < / eV (12)
oB, B,

for all r € (0, R) and ¢ = Uy, = U, for some A\ > A1 on
0BgR, for some R > 0. Then

/ewg/ e or / ewz/ eV, (13)
Br Br Br Br

Moreover if the inequality in (12) is strict for some r € (0, R),
then the inequalities in (13) are also strict.



Rearrangment arguments
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Then any function ¢ € C?(Q) can be equimeasurably
rearranged with respect to the measures e dy and eY>dy.
More precisely, for t > minycq ¢ define

Q={¢p >t} CccCQ,

and define Qf be the ball centered at origin in R? such that

/eUAdy:/ e"dy.
Qr Q



Rearrangment arguments
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/ eVdy = / edy, VYt > ming. (14)
{pr>t} {¢>1} xe

Moreover we have

/ Vo|ds > / V" |ds. (15)
{¢=t} {¢p*=t}
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Continued: The Proof of 81 Bound

/ Vel
{p=t}

A(wy —wy) + e —

er:fz—ﬂZO.

/e""1 :/ eV,
Q B

Let ¢ be the symmetrization of wy — wy with respect to the
measures e dy and e%1dy. Then

<

<

/ IV (ws — wy)|
{W27W1=t}

| (e —em)

Q;

/ eUnte _/ eUn
{e>t} {e>t}

/ eUA1+<P_/ VU, |,
{e>t} {p=t}

(16)



Continued: The Proof of 81 Bound

The sphere
covering

inequa;listy and / ‘V(Qp‘i' U)\l)’ S/
applications {@:t} >t
I\/lo?a’](::;:mn for a“ t > 0
| overuis [ ety )

Since ¢ = Uy, + ¢ > Uy,,

/eU*lJr‘pdxz/ eUr
B B

/e""1+e""2dx:/ eUAI—l—eU*zJ"pdxz/ e e dx = 8r.
Q B: By

Hence



A Mean Field equation with singularity on S?
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i ) ) )
e Consider the mean field equation

e! 1 1
A - — | =4 P) - — 2 (2
g+ A (f52 i 47r> w(0(P) 47r) on 5%, (20)

with
A=47(3+ a)

Existence: It admits a solution if and only if a € (—1,1).



Axial symmetry
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MWW Comm. Pure Appl. Math. 64 (2011), no. 12, 1677-1730.
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solutions to equation (20) is axially symmetric about the

direction OP.

Question C. Are all solutions of (20) axially symmetric about
OP for every a € (—1,1)7

Theorem (Gui, M. (2015))
For every a € (—1,1) the solution to equation (20) is unique

and axially symmetric about OP.



Mean field equations for the spherical Onsager

vortex
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.. eplau(x) —vinx) 1 )
A‘m!{ A _——= 0 S . 21
Hondiam sul)+ Jsz exp(au(x) —y{(n,x))dw 4= on (21)

/ udw = 0.
52

C.S. Lin (2000): If oo < 8, then for v > 0 the solution to
equation (21) is unique and axially symmetric with respect to n.

Conjecture D Let v > 0 and a < 167. Then every solution u
of (21) is axially symmetric with respect to n.



Axial symmetry of spherical Onsager vortex
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Theorem (Gui and M., 2015)
Suppose 81 < a < 167 and

a
0<~y< — -1 22
S E (22)
Then every solution of (21) is axially symmetric with respect to
n.



A mean field equation on flat torus
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Consider the mean field equation on a flat torus with
fundamental domain

Q=2 2] x [-11]

ev 1

Av+p(—— -
Jo. e 19

)=0, (x,y)¢€ Q.. (23)



Earlier results on flat torus

Teoveing. Cabré, Lucia, and Sanchén (2005): If

inequajlity and

applilcastions 167.[.3
Amir p S p* = < 0879 X 87T,

Moradifam 7T2 R2 + \/ 71'2 R2 )2 |T€|

then every solutions are one-dimensional. Here R, is the
maximum conformal radius of the rectangle T..

Lin and Lucia (2006) proved that the constant are the unique
solutions if

8 ife>
< >
p_{32e if e <

LR E]

The optimal results was conjectured to be p < min{8x, 47%¢}.
Note: 32¢ < 472¢ ~ 39.47¢.



Sharp result on flat torus
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Theorem (Gui, M. (2016))

Assume that v € C%(Q) is a period solution of (23). Then u
must depend only on x if p < 8. In particular, u must be
constant if p < min{8x, 4n%¢}.
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