The sphere covering inequality and its applications

Amir Moradifam

(UC Riverside)

Banff, April 2018

Isoperimetric inequalities

The sphere
covering inequality and its
applications

Amir

Moradifam

Suppose $\Omega \subset \mathbb{R}^{2}$, then

$$
L^{2}(\partial \Omega) \geq 4 \pi A(\Omega)
$$

Equality holds if and only if Ω is a disk.

Similar inequalities hold for high dimensions.

$$
|\partial \Omega|^{n} \leq S_{n}|\Omega|^{n-1}
$$

where $S_{n}=\left|S^{n-1}\right|^{n} /\left|B_{1}\right|^{n-1}=n^{n} \omega_{n}, S^{n-1}$ and B_{1} are the unit sphere and ball in R^{n} respectively.

Levy's Isoperimetric inequalities on spheres (1919)

The sphere
covering inequality and its
applications
Amir
Moradifam

On the standard unit sphere with the metric induced from the flat metric of \mathbb{R}^{3},

$$
L^{2}(\partial \Omega) \geq A(\Omega)(4 \pi-A(\Omega))
$$

If the sphere has radius R, then

$$
L^{2}(\partial \Omega) \geq A(\Omega)\left(4 \pi R^{2}-A(\Omega)\right) / R^{2}
$$

Alexandrov-Bol's inequality (1941)

Amir

Moradifam

In general, we can identify a sphere with \mathbb{R}^{2} by the stereographic projection, and equip it with a metric conformal to the flat metric of \mathbb{R}^{2}, i.e., $d s^{2}=e^{2 v}\left(d x_{1}^{2}+d x_{2}^{2}\right)$.
Assume v satisfies

$$
\Delta v+K(x) e^{2 v} \geq 0, \quad \mathbb{R}^{2}
$$

with the Gaussian curvature $k \leq 1$. Then

$$
\left(\int_{\partial \Omega} e^{v} d s\right)^{2} \geq\left(\int_{\Omega} e^{2 v}\right)\left(4 \pi-\int_{\Omega} e^{2 v}\right)
$$

Slightly different equation

The sphere
covering inequality and its
applications
Amir
Moradifam

Set $u=2 v+\ln 2$

$$
\Delta u+e^{u} \geq 0, \quad \mathbb{R}^{2}
$$

Then

$$
\left(\int_{\partial \Omega} e^{u / 2}\right)^{2} \geq \frac{1}{2}\left(\int_{\Omega} e^{u}\right)\left(8 \pi-\int_{\Omega} e^{u}\right)
$$

We may think that this is the Levy's isoperimetric inequality on the sphere with radius $\sqrt{2}$ and the gaussian curvature $1 / 2$ in \mathbb{R}^{3}.

Sobolev inequalities (1938)

The sphere
covering inequality and its
applications
Amir
Moradifam

Given $u \in H_{0}^{1}(\Omega) \subset \mathbb{R}^{n}$. We have

$$
\|u\|_{L^{P}(\Omega)} \leq C\|\nabla u\|_{L^{2}(\Omega)}
$$

for $0 \leq p \leq \frac{2 n}{n-2}$.
Question: Is $H_{0}^{1} \subset L^{\infty}$? NO!
Moser-Trudinger inequality concerns the borderline case $n=2$.

Moser-Trudinger inequality (1971)

The sphere
covering inequality and its
applications

Amir

Moradifam

Let S^{2} be the unit sphere and for $u \in H^{1}\left(S^{2}\right)$.
$J_{\alpha}(u)=\frac{\alpha}{4} \int_{S^{2}}|\nabla u|^{2} d \omega+\int_{S^{2}} u d \omega-\log \int_{S^{2}} e^{u} d \omega \geq C>-\infty$,
if and only if $\alpha \geq 1$, where the volume form $d \omega$ is normalized so that $\int_{S^{2}} d \omega=1$.

Aubin's Result (1979) and Onofri Inequality (1982)

The sphere
covering inequality and its
applications

Amir

Moradifam

Aubin observed that for $\alpha \geq \frac{1}{2}$,

$$
J_{\alpha}(u) \geq C>-\infty
$$

for

$$
u \in \mathcal{M}:=\left\{u \in H^{1}\left(S^{2}\right): \quad \int_{S^{2}} e^{u} x_{i}=0, \quad i=1,2,3\right\}
$$

Onofri showed for $\alpha \geq 1$

$$
J_{\alpha}(u) \geq 0
$$

Chang and Yang conjecture (1987)

The sphere
covering inequality and its
applications
Amir
Moradifam

Chang and Yang showed that for α close to 1 the best constant again is equal to zero. They proposed the following conjecture. Conjecture A. For $\alpha \geq \frac{1}{2}$,

$$
\inf _{u \in \mathcal{M}} J_{\alpha}(u)=0
$$

Chang and Yang conjecture (1987)

The sphere

covering inequality and its
applications
Amir
Moradifam

Chang and Yang showed that for α close to 1 the best constant again is equal to zero. They proposed the following conjecture. Conjecture A. For $\alpha \geq \frac{1}{2}$,

$$
\inf _{u \in \mathcal{M}} J_{\alpha}(u)=0
$$

Indeed, they showed that the minimizer u exists and satisfies

$$
\begin{equation*}
\frac{\alpha}{2} \Delta u+\frac{e^{u}}{\int_{S^{2}} e^{u} d \omega}-1=0 \text { on } S^{2} \tag{1}
\end{equation*}
$$

by showing

$$
\mu_{i}=0, \quad i=1,2,3
$$

in the Euler-Lagrange equations

$$
\frac{\alpha}{2} \Delta u+\frac{e^{u}}{\int_{S^{2}} e^{u} d \omega}-1=\sum_{i=1}^{i=3} \mu_{i} x_{i} e^{u} \text { on } S^{2}
$$

Mean field Equationc on S^{2}

The sphere

covering inequality and its
applications
Amir
Moradifam

Let $\alpha=\frac{8 \pi}{\rho}$

$$
\begin{equation*}
\Delta u+\rho\left(\frac{e^{u}}{\int_{S^{2}} e^{u} d \omega}-1\right)=0 \text { on } S^{2} \tag{2}
\end{equation*}
$$

Many Results by
Brezis, Merle, Caglioti, Lions Marchioro, Pulvirenti, Y.Y. Li, Shafir, Chanillo, Kiessling, Chang, Chen, Lin, Lucia, Cabre, Bartolucci, Tarantello, De Marchis, Malchiodi,

One Important Result (Brezis, Merle, Y.Y. Li): Blow up of solutions happens only when $\rho \rightarrow 8 \pi m$. The solution sets are compact in C^{2} for a compact set of ρ in $\cup_{m=1}^{\infty}(8 \pi m, 8 \pi(m+1))$.

Other applications

The sphere

covering inequality and its
applications

Amir

Moradifam

If the metric $g=e^{2 u} g_{0}$ has Gaussian curvature $K(x)$, then

$$
\Delta u+K(x) e^{2 u}=1 \text { on } S^{2}
$$

Navier-Stokes equations

$$
\Delta u+(u \cdot \nabla) u=\nabla p \operatorname{div}(u)=0 \text { on } R^{3}
$$

scale under $u \rightarrow \lambda u(\lambda x)$. What are the solutions that are invariant under scaling? Explicit examples are the Landau solutions. Anything else?
Sverak (2009): NO!. Proof: For $x \in S^{2}$ decompose $u=T(x)+x N(x)$, where T is tangent to S^{2}. After some work, one can show that $T=\nabla \varphi$ and

$$
\Delta \varphi+2 e^{\varphi}=2 \text { on } S^{2}
$$

Earlier results on conjecture A

The sphere
covering inequality and its
applications

Amir

Moradifam

Axially symmetric functions:
Feldman, Froese, Ghoussoub and Gui (1998)

$$
\alpha>\frac{16}{25}-\epsilon
$$

Gui and Wei, and independently Lin (2000)

$$
\alpha \geq \frac{1}{2}
$$

Non-axially symmetric functions:
Ghoussoub and Lin (2010)

$$
\alpha \geq \frac{2}{3}-\epsilon
$$

Strategies of Proof

The sphere
covering inequality and its
applications

Amir

Moradifam

For axially symmetric functions, to show (1) has only solution $u \equiv C$.

For general functions, to show solutions to (1) are axially symmetric.

Equations on \mathbb{R}^{2}

The sphere
covering inequality and its
applications

Amir

Moradifam

Let Π be the stereographic projection $S^{2} \rightarrow \mathbb{R}^{2}$ with respect to the north pole $N=(1,0,0)$:

$$
\Pi:=\left(\frac{x_{1}}{1-x_{3}}, \frac{x_{2}}{1-x_{3}}\right) .
$$

Suppose u is a solution of (1) and let

$$
\begin{equation*}
v=u\left(\Pi^{-1}(y)\right)-\frac{2}{\alpha} \ln \left(1+|y|^{2}\right)+\ln \left(\frac{8}{\alpha}\right) \tag{3}
\end{equation*}
$$

then v satisfies

$$
\begin{equation*}
\Delta v+\left(1+|y|^{2}\right)^{2\left(\frac{1}{\alpha}-1\right)} e^{v}=0 \text { in } \mathbb{R}^{2}, \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{R^{2}}\left(1+|y|^{2}\right)^{2\left(\frac{1}{\alpha}-1\right)} e^{v} d y=\frac{8 \pi}{\alpha} \tag{5}
\end{equation*}
$$

General Equations

The sphere
covering inequality and its applications

Amir

Moradifam

Consider in general the equation

$$
\begin{equation*}
\Delta v+\left(1+|y|^{2}\right)^{\prime} e^{v}=0 \text { in } \mathbb{R}^{2} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{R^{2}}\left(1+|y|^{2}\right)^{\prime} e^{v} d y=2 \pi(2 l+4) \tag{7}
\end{equation*}
$$

Are solutions to (6) and (7) radially symmetric?
For $I=0$: Chen and Li (1991)
For $-2<I<0$: Chanillo and Kiessling (1994)
Conjecture B. For $0<I \leq 2$, solutions to (6) and (7) must be radially symmetric.
$0<I \leq 1$: Ghoussoub and Lin (2010)

Existence of non-radial solutions

Lin (2000): For $2<I \neq(k-1)(k+2)$, where $k \geq 2$ there is a non radial solution.

Example of Chanillo-Kiessling (1994)
Consider

$$
\Delta u+8 k^{2} r^{2(k-1)} e^{u}=0, \quad \mathbb{R}^{2}
$$

with

$$
\int_{\mathbb{R}^{2}} 8 k^{2} r^{2(k-1)} e^{u}=8 \pi k
$$

There exists a non-radial solution (with explicit formula) for any integer $k \geq 2$.

Theorem (Gui and M., 2015)

The sphere
covering inequality and its applications

Amir

Moradifam

Both Conejcture A and B hold true.

Conjecture A.
For $\alpha \geq \frac{1}{2}$,

$$
\inf _{u \in \mathcal{M}} J_{\alpha}(u)=0
$$

Conjecture B.
For $0<I \leq 2$, solutions to (6) and (7) must be radially symmetric.
Note

$$
I=2\left(\frac{1}{\alpha}-1\right)
$$

4π lower bound

The sphere
covering inequality and its applications

Amir

Moradifam

Theorem (Lin and Lucia, 2007)

Let $\Omega \subset \mathbb{R}^{2}$ be a simply-connected domain and $w \in C^{2}(\bar{\Omega})$ satisfying

$$
\Delta w+e^{w}>0
$$

in $\bar{\Omega}$ and $\int_{\Omega} e^{w} \leq 8 \pi$.
Consider an open set $\omega \subset \Omega$ such that $\lambda_{1, w}(\omega) \leq 0$, where the first eigenvalue of the linearized operator $\Delta+e^{w}$

$$
\lambda_{1, w}(\omega):=\inf _{\phi \in H_{0}^{1}(\omega)}\left(\int_{\omega}|\nabla \phi|^{2}-\int_{\omega} \phi^{2} e^{w}\right) \leq 0 .
$$

Then $\int_{\omega} e^{\omega}>4 \pi$.

Radial symmetry

The sphere
covering inequality and applications

Amir

Moradifam

Just to show

$$
\varphi(x, y)=y \frac{\partial v}{\partial x}-x \frac{\partial v}{\partial y} \equiv 0
$$

where v is defined by (3).
Now let $w:=\ln \left(\left(1+|y|^{2}\right)^{2\left(\frac{1}{\alpha}-1\right)} e^{v}\right)$.

$$
\Delta \varphi+e^{w} \varphi=0 \text { in } \mathbb{R}^{2}
$$

Given v be even, then

$$
\frac{8 \pi}{\alpha}=\int_{\mathbb{R}^{2}}\left(1+|y|^{2}\right)^{2\left(\frac{1}{\alpha}-1\right)} e^{v} d y=\sum_{i=1}^{4} \int_{\Omega_{i}} e^{w}>4 \pi=16 \pi
$$

This implies $\alpha<\frac{1}{2}$ which is a contradiction.

New 8π lower bound

The sphere
covering inequality and its applications

Amir
Moradifam

Theorem (Gui and M., 2015)
Let Ω be a simply connected subset of R^{2} and assume $w_{i} \in C^{2}(\bar{\Omega}), i=1,2$ satisfy

$$
\begin{equation*}
\Delta w_{i}+e^{w_{i}}=f_{i}(y) \tag{8}
\end{equation*}
$$

where $f_{2} \geq f_{1} \geq 0$ in Ω.
Suppose $\omega \subset \Omega$ and $w_{2}>w_{1}$ in ω and $w_{2}=w_{1}$ on $\partial \omega$, then

$$
\begin{equation*}
\int_{\omega} e^{w_{1}}+e^{w_{2}} d y \geq 8 \pi \tag{9}
\end{equation*}
$$

Furthermore if $f_{1} \not \equiv 0$ or $f_{2} \not \equiv f_{1}$ in ω, then $\int_{\omega} e^{w_{1}}+e^{w_{2}} d y>8 \pi$.

Even symmetry of solutions

The sphere
covering inequality and its
applications

Amir

Moradifam

Suppose

$$
\Delta v_{1}+\left(1+|y|^{2}\right)^{2\left(\frac{1}{\alpha}-1\right)} e^{v_{1}}=0 \text { in } \mathbb{R}^{2} .
$$

and let $v_{2}(x, y)=v_{1}(x,-y)$. Define

$$
w_{i}:=\ln \left(\left(1+|y|^{2}\right)^{2\left(\frac{1}{\alpha}-1\right)} e^{v_{i}}\right), i=1,2 .
$$

Then

$$
\Delta w_{i}+e^{w_{i}}=\frac{8\left(\frac{1}{\alpha}-1\right)}{\left(1+|y|^{2}\right)^{2}} \geq 0 \text { in } \mathbb{R}^{2}, i=1,2
$$

$$
\begin{aligned}
2 \times \frac{8 \pi}{\alpha} & =\int_{\mathbb{R}^{2}}\left(1+|y|^{2}\right)^{2\left(\frac{1}{\alpha}-1\right)} e^{v_{1}} d x+\int_{\mathbb{R}^{2}}\left(1+|y|^{2}\right)^{2\left(\frac{1}{\alpha}-1\right)} e^{v_{2}} d x \\
& \geq \sum_{i=1}^{4} \int_{\Omega_{i}} e^{w_{1}}+e^{w_{2}} d x>4 \times 8 \pi .
\end{aligned}
$$

Hence $\alpha<\frac{1}{2}$.

Proof of 8π lower bound: An Example

The sphere
covering inequality and its
applications

Amir

Moradifam

For $\lambda>0$ define U_{λ} by

$$
\begin{equation*}
U_{\lambda}:=-2 \ln \left(1+\frac{\lambda^{2}|y|^{2}}{8}\right)+2 \ln (\lambda) \tag{10}
\end{equation*}
$$

Proposition

Let $\lambda_{2}>\lambda_{1}$, and $U_{\lambda_{1}}$ and $U_{\lambda_{2}}$ be radial solutions of the equation

$$
\Delta u+e^{u}=0
$$

with $U_{\lambda_{2}}>U_{\lambda_{1}}$ in B_{R} and $U_{\lambda_{1}}=U_{\lambda_{2}}$ on ∂B_{R}, for some $R>0$. Then

$$
\int_{B_{R}}\left(e^{U_{\lambda_{1}}}+e^{U_{\lambda_{2}}}\right) d y=8 \pi
$$

Bol's inequality for radial weak subsolutions

Proposition (Gui and M., 2015)

Let B_{R} be the ball of radius R in $\mathbb{R}^{2} u \in C^{1}\left(\overline{B_{R}}\right)$ be a strictly decreasing radial function satisfying
$\int_{\partial B_{r}}|\nabla u| d s \leq \int_{B_{r}} e^{u} d y$ for all $r \in(0, R)$, and $\int_{B_{R}} e^{u} \leq 8 \pi$.
Then the following inequality holds

$$
\begin{equation*}
\left(\int_{\partial B_{R}} e^{\frac{u}{2}}\right)^{2} \geq \frac{1}{2}\left(\int_{B_{R}} e^{u}\right)\left(8 \pi-\int_{B_{R}} e^{u}\right) . \tag{11}
\end{equation*}
$$

Moreover if $\int_{\partial B_{r}}|\nabla u| d s<\int_{B_{r}} e^{u} d y$ for some $r \in(0, R)$, then the inequality in (11) is strict.

Integral comparison for subsolution

The sphere

covering inequality and its
applications

Amir

Moradifam

Lemma (Gui and M., 2015)

Assume that $\psi \in C^{1}\left(\overline{B_{R}}\right)$ is an strictly decreasing radial function and satisfies

$$
\begin{equation*}
\int_{\partial B_{r}}|\nabla \psi| \leq \int_{B_{r}} e^{\psi} \tag{12}
\end{equation*}
$$

for all $r \in(0, R)$ and $\psi=U_{\lambda_{1}}=U_{\lambda_{2}}$ for some $\lambda_{2}>\lambda_{1}$ on ∂B_{R}, for some $R>0$. Then

$$
\begin{equation*}
\int_{B_{R}} e^{\psi} \leq \int_{B_{R}} e^{U_{\lambda_{1}}} \text { or } \int_{B_{R}} e^{\psi} \geq \int_{B_{R}} e^{U_{\lambda_{2}}} \tag{13}
\end{equation*}
$$

Moreover if the inequality in (12) is strict for some $r \in(0, R)$, then the inequalities in (13) are also strict.

Rearrangment arguments

The sphere
covering inequality and its
applications

Amir

Moradifam

Suppose that $w \in C^{2}(\bar{\Omega})$ satisfies

$$
\Delta w+e^{w} \geq 0
$$

Then any function $\phi \in C^{2}(\bar{\Omega})$ can be equimeasurably rearranged with respect to the measures $e^{w} d y$ and $e^{U_{\lambda}} d y$. More precisely, for $t>\min _{x \in \Omega} \phi$ define

$$
\Omega_{t}:=\{\phi>t\} \subset \subset \Omega,
$$

and define Ω_{t}^{*} be the ball centered at origin in \mathbb{R}^{2} such that

$$
\int_{\Omega_{t}^{*}} e^{U_{\lambda}} d y=\int_{\Omega_{t}} e^{w} d y
$$

Rearrangment arguments

The sphere
covering inequality and its applications

Amir

Moradifam

Then $\phi^{*}: \Omega^{*} \rightarrow \mathbb{R}$ defined by $\phi^{*}(x):=\sup \left\{t \in \mathbb{R}: x \in \Omega_{t}^{*}\right\}$ provides an equimeasurable rearrangement of ϕ with respect to the measure $e^{w} d y$ and $e^{U_{\lambda}} d y$, i.e.

$$
\begin{equation*}
\int_{\left\{\varphi^{*}>t\right\}} e^{U_{\lambda}} d y=\int_{\{\phi>t\}} e^{w} d y, \quad \forall t>\min _{x \in \Omega} \phi \tag{14}
\end{equation*}
$$

Moreover we have

$$
\begin{equation*}
\int_{\{\phi=t\}}|\nabla \phi| d s \geq \int_{\left\{\phi^{*}=t\right\}}\left|\nabla \varphi^{*}\right| d s . \tag{15}
\end{equation*}
$$

Continued: The Proof of 8π Bound

The sphere
covering inequality and its
applications

Amir
 Moradifam

$$
\begin{gather*}
\Delta\left(w_{2}-w_{1}\right)+e^{w_{2}}-e^{w_{1}}=f_{2}-f_{1} \geq 0 . \\
\int_{\Omega} e^{w_{1}}=\int_{B_{1}} e^{U_{\lambda_{1}}} \tag{16}
\end{gather*}
$$

Let φ be the symmetrization of $w_{2}-w_{1}$ with respect to the measures $e^{w_{1}} d y$ and $e^{U_{\lambda_{1}}} d y$. Then

$$
\begin{aligned}
\int_{\{\varphi=t\}}|\nabla \varphi| & \leq \int_{\left\{w_{2}-w_{1}=t\right\}}\left|\nabla\left(w_{2}-w_{1}\right)\right| \\
& \leq \int_{\Omega_{t}}\left(e^{w_{2}}-e^{w_{1}}\right) \\
& =\int_{\{\varphi>t\}} e^{U_{\lambda_{1}}+\varphi}-\int_{\{\varphi>t\}} e^{U_{\lambda_{1}}} \\
& =\int_{\{\varphi>t\}} e^{U_{\lambda_{1}}+\varphi}-\int_{\{\varphi=t\}}\left|\nabla U_{\lambda_{1}}\right|
\end{aligned}
$$

Continued: The Proof of 8π Bound

The sphere
covering inequality and its
applications
Amir
Moradifam

Hence

$$
\begin{equation*}
\int_{\{\varphi=t\}}\left|\nabla\left(\varphi+U_{\lambda_{1}}\right)\right| \leq \int_{\varphi>t} e^{\left(\varphi+U_{\lambda_{1}}\right)} d y \tag{18}
\end{equation*}
$$

for all $t>0$.

$$
\begin{equation*}
\int_{\partial B_{r}}\left|\nabla\left(\varphi+U_{\lambda_{1}}\right)\right| \leq \int_{B_{r}} e^{\left(\varphi+U_{\lambda_{1}}\right)} d y . \tag{19}
\end{equation*}
$$

Since $\psi=U_{\lambda_{1}}+\varphi>U_{\lambda_{1}}$,

$$
\int_{B_{1}} e^{U_{\lambda_{1}}+\varphi} d x \geq \int_{B_{1}} e^{U_{\lambda_{2}}}
$$

Hence
$\int_{\Omega} e^{w_{1}}+e^{w_{2}} d x=\int_{B_{1}} e^{U_{\lambda_{1}}}+e^{U_{\lambda_{2}}+\varphi} d x \geq \int_{B_{1}} e^{U_{\lambda_{1}}}+e^{U_{\lambda_{2}}} d x=8 \pi$.

A Mean Field equation with singularity on S^{2}

The sphere
covering inequality and its
applications
Amir
Moradifam

Consider the mean field equation

$$
\begin{equation*}
\Delta_{g} u+\lambda\left(\frac{e^{u}}{\int_{S^{2}} e^{u} d \omega}-\frac{1}{4 \pi}\right)=4 \pi\left(\delta(P)-\frac{1}{4 \pi}\right) \text { on } S^{2}, \tag{20}
\end{equation*}
$$

with

$$
\lambda=4 \pi(3+\alpha)
$$

Existence: It admits a solution if and only if $\alpha \in(-1,1)$.

Axial symmetry

The sphere

covering inequality and its applications

Amir
Moradifam

Axial Symmetry: D. Bartolucci, C.S. Lin, and G. Tarantello in Comm. Pure Appl. Math. 64 (2011), no. 12, 1677-1730.

Main result: There exists $\delta>0$ such that for $\alpha \in(1-\delta, 1)$ all solutions to equation (20) is axially symmetric about the direction $\overrightarrow{O P}$.

Question C. Are all solutions of (20) axially symmetric about $\overrightarrow{O P}$ for every $\alpha \in(-1,1)$?

Theorem (Gui, M. (2015))
For every $\alpha \in(-1,1)$ the solution to equation (20) is unique and axially symmetric about $\overrightarrow{O P}$.

Mean field equations for the spherical Onsager vortex

The sphere

covering inequality and its applications

Amir

Moradifam

Consider the following equation

$$
\begin{equation*}
\Delta_{g} u(x)+\frac{\exp (\alpha u(x)-\gamma\langle n, x\rangle)}{\int_{S^{2}} \exp (\alpha u(x)-\gamma\langle n, x\rangle) d \omega}-\frac{1}{4 \pi}=0 \text { on } S^{2} . \tag{21}
\end{equation*}
$$

with

$$
\int_{S^{2}} u d \omega=0
$$

C.S. Lin (2000): If $\alpha<8 \pi$, then for $\gamma \geq 0$ the solution to equation (21) is unique and axially symmetric with respect to n.

Conjecture D Let $\gamma \geq 0$ and $\alpha \leq 16 \pi$. Then every solution u of (21) is axially symmetric with respect to n.

Axial symmetry of spherical Onsager vortex

The sphere covering inequality and its applications

Moradifam

Theorem (Gui and M., 2015)

Suppose $8 \pi<\alpha \leq 16 \pi$ and

$$
\begin{equation*}
0 \leq \gamma \leq \frac{\alpha}{8 \pi}-1 \tag{22}
\end{equation*}
$$

Then every solution of (21) is axially symmetric with respect to n.

A mean field equation on flat torus

Consider the mean field equation on a flat torus with fundamental domain

$$
\begin{gather*}
\Omega_{\epsilon}=\left[-\frac{1}{\epsilon}, \frac{1}{\epsilon}\right] \times[-1,1] \\
\Delta v+\rho\left(\frac{e^{v}}{\int_{\Omega_{\epsilon}} e^{v}}-\frac{1}{\left|\Omega_{\epsilon}\right|}\right)=0, \quad(x, y) \in \Omega_{\epsilon} . \tag{23}
\end{gather*}
$$

Earlier results on flat torus

The sphere

covering inequality and its
applications
Amir
Moradifam

Cabré, Lucia, and Sanchón (2005): If

$$
\rho \leq \rho^{*}:=\frac{16 \pi^{3}}{\pi^{2}+\frac{2}{R_{\epsilon}^{2}}+\sqrt{\left(\pi^{2}+\frac{2}{R_{\epsilon}^{2}}\right)^{2}-\frac{8 \pi^{3}}{\left|T_{\epsilon}\right|}}} \leq 0.879 \times 8 \pi,
$$

then every solutions are one-dimensional. Here R_{ϵ} is the maximum conformal radius of the rectangle T_{ϵ}.
Lin and Lucia (2006) proved that the constant are the unique solutions if

$$
\rho \leq \begin{cases}8 \pi & \text { if } \epsilon \geq \frac{\pi}{4} \\ 32 \epsilon & \text { if } \epsilon \leq \frac{\pi}{4}\end{cases}
$$

The optimal results was conjectured to be $\rho \leq \min \left\{8 \pi, 4 \pi^{2} \epsilon\right\}$. Note: $32 \epsilon<4 \pi^{2} \epsilon \simeq 39.47 \epsilon$.

Sharp result on flat torus

The sphere covering inequality and its applications

Amir

Moradifam

Theorem (Gui, M. (2016))

Assume that $v \in C^{2}(\Omega)$ is a period solution of (23). Then u must depend only on x if $\rho \leq 8 \pi$. In particular, u must be constant if $\rho \leq \min \left\{8 \pi, 4 \pi^{2} \epsilon\right\}$.

The sphere
covering
inequality and its applications

Amir
Moradifam

Thank You!

