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Isoperimetric inequalities

Suppose Ω ⊂ R2, then

L2(∂Ω) ≥ 4πA(Ω)

Equality holds if and only if Ω is a disk.

Similar inequalities hold for high dimensions.

|∂Ω|n ≤ Sn|Ω|n−1

where Sn = |Sn−1|n/|B1|n−1 = nnωn, Sn−1 and B1 are the unit
sphere and ball in Rn respectively.
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Levy’s Isoperimetric inequalities on spheres (1919)

On the standard unit sphere with the metric induced from the
flat metric of R3,

L2(∂Ω) ≥ A(Ω)
(
4π − A(Ω)

)

If the sphere has radius R, then

L2(∂Ω) ≥ A(Ω)
(
4πR2 − A(Ω)

)
/R2
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Alexandrov-Bol’s inequality (1941)

In general, we can identify a sphere with R2 by the
stereographic projection, and equip it with a metric conformal
to the flat metric of R2, i.e., ds2 = e2v (dx2

1 + dx2
2 ).

Assume v satisfies

∆v + K (x)e2v ≥ 0, R2,

with the Gaussian curvature k ≤ 1. Then

(

∫
∂Ω

evds)2 ≥
(∫

Ω
e2v
)(

4π −
∫

Ω
e2v
)
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Slightly different equation

Set u = 2v + ln 2

∆u + eu ≥ 0, R2

Then

(

∫
∂Ω

eu/2)2 ≥ 1

2

(∫
Ω
eu
)(

8π −
∫

Ω
eu
)

We may think that this is the Levy’s isoperimetric inequality on
the sphere with radius

√
2 and the gaussian curvature 1/2 in

R3.
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Sobolev inequalities (1938)

Given u ∈ H1
0 (Ω) ⊂ Rn. We have

||u||Lp(Ω) ≤ C ||∇u||L2(Ω)

for 0 ≤ p ≤ 2n
n−2 .

Question: Is H1
0 ⊂ L∞? NO!

Moser-Trudinger inequality concerns the borderline case n = 2.
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Moser-Trudinger inequality (1971)

Let S2 be the unit sphere and for u ∈ H1(S2).

Jα(u) =
α

4

∫
S2

|∇u|2dω +

∫
S2

udω − log

∫
S2

eudω ≥ C > −∞,

if and only if α ≥ 1, where the volume form dω is normalized
so that

∫
S2 dω = 1.
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Aubin’s Result (1979) and Onofri Inequality (1982)

Aubin observed that for α ≥ 1
2 ,

Jα(u) ≥ C > −∞

for

u ∈M := {u ∈ H1(S2) :

∫
S2

euxi = 0, i = 1, 2, 3},

Onofri showed for α ≥ 1

Jα(u) ≥ 0;
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Chang and Yang conjecture (1987)

Chang and Yang showed that for α close to 1 the best constant
again is equal to zero. They proposed the following conjecture.
Conjecture A. For α ≥ 1

2 ,

inf
u∈M

Jα(u) = 0.

Indeed, they showed that the minimizer u exists and satisfies

α

2
∆u +

eu∫
S2 eudω

− 1 = 0 on S2 (1)

by showing
µi = 0, i = 1, 2, 3.

in the Euler-Lagrange equations

α

2
∆u +

eu∫
S2 eudω

− 1 =
i=3∑
i=1

µixie
u on S2
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Mean field Equationc on S2

Let α = 8π
ρ

∆u + ρ
( eu∫

S2 eudω
− 1
)

= 0 on S2 (2)

Many Results by
Brezis, Merle, Caglioti, Lions Marchioro, Pulvirenti, Y.Y. Li,
Shafir, Chanillo, Kiessling, Chang, Chen, Lin, Lucia, Cabre,
Bartolucci, Tarantello, De Marchis, Malchiodi, ......

One Important Result ( Brezis, Merle, Y.Y. Li): Blow up of
solutions happens only when ρ→ 8πm. The solution sets are
compact in C 2 for a compact set of ρ in
∪∞m=1

(
8πm, 8π(m + 1)

)
.
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Other applications

If the metric g = e2ug0 has Gaussian curvature K (x), then

∆u + K (x)e2u = 1 on S2.

Navier-Stokes equations

∆u + (u · ∇)u = ∇p div(u) = 0 on R3

scale under u → λu(λx). What are the solutions that are
invariant under scaling? Explicit examples are the Landau
solutions. Anything else?
Sverak (2009): NO!. Proof: For x ∈ S2 decompose
u = T (x) + xN(x), where T is tangent to S2. After some
work, one can show that T = ∇ϕ and

∆ϕ+ 2eϕ = 2 on S2.
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Earlier results on conjecture A

Axially symmetric functions:
Feldman, Froese, Ghoussoub and Gui (1998)

α >
16

25
− ε

Gui and Wei, and independently Lin (2000)

α ≥ 1

2

Non-axially symmetric functions:
Ghoussoub and Lin (2010)

α ≥ 2

3
− ε
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Strategies of Proof

For axially symmetric functions, to show (1) has only solution
u ≡ C .

For general functions, to show solutions to (1) are axially
symmetric.
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Equations on R2

Let Π be the stereographic projection S2 → R2 with respect to
the north pole N = (1, 0, 0):

Π :=

(
x1

1− x3
,

x2

1− x3

)
.

Suppose u is a solution of (1) and let

v = u(Π−1(y))− 2

α
ln(1 + |y |2) + ln(

8

α
), (3)

then v satisfies

∆v + (1 + |y |2)2( 1
α
−1)ev = 0 in R2, (4)

and ∫
R2

(1 + |y |2)2( 1
α
−1)evdy =

8π

α
. (5)
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General Equations

Consider in general the equation

∆v + (1 + |y |2)lev = 0 in R2, (6)

and ∫
R2

(1 + |y |2)levdy = 2π(2l + 4). (7)

Are solutions to (6) and (7) radially symmetric?

For l = 0: Chen and Li (1991)

For −2 < l < 0: Chanillo and Kiessling (1994)

Conjecture B. For 0 < l ≤ 2, solutions to (6) and (7) must be
radially symmetric.

0 < l ≤ 1: Ghoussoub and Lin (2010)
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Existence of non-radial solutions

Lin (2000): For 2 < l 6= (k − 1)(k + 2), where k ≥ 2 there is a
non radial solution.

Example of Chanillo-Kiessling (1994)
Consider

∆u + 8k2r2(k−1)eu = 0, R2

with ∫
R2

8k2r2(k−1)eu = 8πk.

There exists a non-radial solution ( with explicit formula) for
any integer k ≥ 2.
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Theorem ( Gui and M., 2015)

Both Conejcture A and B hold true.

Conjecture A.
For α ≥ 1

2 ,
inf

u∈M
Jα(u) = 0.

Conjecture B.
For 0 < l ≤ 2, solutions to (6) and (7) must be radially
symmetric.
Note

l = 2(
1

α
− 1).

.
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4π lower bound

Theorem (Lin and Lucia, 2007)

Let Ω ⊂ R2 be a simply-connected domain and w ∈ C 2(Ω)
satisfying

∆w + ew > 0

in Ω and
∫

Ω ew ≤ 8π.
Consider an open set ω ⊂ Ω such that λ1,w (ω) ≤ 0, where the
first eigenvalue of the linearized operator ∆ + ew

λ1,w (ω) := inf
φ∈H1

0 (ω)

(∫
ω
|∇φ|2 −

∫
ω
φ2ew

)
≤ 0.

Then
∫
ω e

w > 4π.
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Radial symmetry

Just to show

ϕ(x , y) = y
∂v

∂x
− x

∂v

∂y
≡ 0,

where v is defined by (3).

Now let w := ln((1 + |y |2)2( 1
α
−1)ev ).

∆ϕ+ ewϕ = 0 in R2.

Given v be even, then

8π

α
=

∫
R2

(1 + |y |2)2( 1
α
−1)evdy =

4∑
i=1

∫
Ωi

ew > 4π = 16π.

This implies α < 1
2 which is a contradiction.
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New 8π lower bound

Theorem (Gui and M., 2015)

Let Ω be a simply connected subset of R2 and assume
wi ∈ C 2(Ω), i = 1, 2 satisfy

∆wi + ewi = fi (y), (8)

where f2 ≥ f1 ≥ 0 in Ω.
Suppose ω ⊂ Ω and w2 > w1 in ω and w2 = w1 on ∂ω, then∫

ω
ew1 + ew2dy ≥ 8π. (9)

Furthermore if f1 6≡ 0 or f2 6≡ f1 in ω, then∫
ω e

w1 + ew2dy > 8π.
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Even symmetry of solutions

Suppose

∆v1 + (1 + |y |2)2( 1
α
−1)ev1 = 0 in R2.

and let v2(x , y) = v1(x ,−y). Define

wi := ln((1 + |y |2)2( 1
α
−1)evi ), i = 1, 2.

Then

∆wi + ewi =
8( 1
α − 1)

(1 + |y |2)2
≥ 0 in R2, i = 1, 2.

2× 8π

α
=

∫
R2

(1 + |y |2)2( 1
α
−1)ev1dx +

∫
R2

(1 + |y |2)2( 1
α
−1)ev2dx

≥
4∑

i=1

∫
Ωi

ew1 + ew2dx > 4× 8π.

Hence α < 1
2 .
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Proof of 8π lower bound: An Example

For λ > 0 define Uλ by

Uλ := −2 ln(1 +
λ2|y |2

8
) + 2 ln(λ) (10)

Proposition

Let λ2 > λ1, and Uλ1 and Uλ2 be radial solutions of the
equation

∆u + eu = 0

with Uλ2 > Uλ1 in BR and Uλ1 = Uλ2 on ∂BR , for some R > 0.
Then ∫

BR

(eUλ1 + eUλ2 )dy = 8π.
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Bol’s inequality for radial weak subsolutions

Proposition (Gui and M., 2015)

Let BR be the ball of radius R in R2 u ∈ C 1(BR) be a strictly
decreasing radial function satisfying∫
∂Br

|∇u|ds ≤
∫
Br

eudy for all r ∈ (0,R), and

∫
BR

eu ≤ 8π.

Then the following inequality holds(∫
∂BR

e
u
2

)2

≥ 1

2

(∫
BR

eu
)(

8π −
∫
BR

eu
)
. (11)

Moreover if
∫
∂Br
|∇u|ds <

∫
Br

eudy for some r ∈ (0,R), then
the inequality in (11) is strict.
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Integral comparison for subsolution

Lemma (Gui and M., 2015)

Assume that ψ ∈ C 1(BR) is an strictly decreasing radial
function and satisfies ∫

∂Br

|∇ψ| ≤
∫
Br

eψ (12)

for all r ∈ (0,R) and ψ = Uλ1 = Uλ2 for some λ2 > λ1 on
∂BR , for some R > 0. Then∫

BR

eψ ≤
∫
BR

eUλ1 or

∫
BR

eψ ≥
∫
BR

eUλ2 . (13)

Moreover if the inequality in (12) is strict for some r ∈ (0,R),
then the inequalities in (13) are also strict.
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Rearrangment arguments

Suppose that w ∈ C 2(Ω) satisfies

∆w + ew ≥ 0.

Then any function φ ∈ C 2(Ω) can be equimeasurably
rearranged with respect to the measures ewdy and eUλdy .
More precisely, for t > minx∈Ω φ define

Ωt := {φ > t} ⊂⊂ Ω,

and define Ω∗t be the ball centered at origin in R2 such that∫
Ω∗

t

eUλdy =

∫
Ωt

ewdy .
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Rearrangment arguments

Then φ∗ : Ω∗ → R defined by φ∗(x) := sup{t ∈ R : x ∈ Ω∗t }
provides an equimeasurable rearrangement of φ with respect to
the measure ewdy and eUλdy , i.e.∫

{ϕ∗>t}
eUλdy =

∫
{φ>t}

ewdy , ∀t > min
x∈Ω

φ. (14)

Moreover we have∫
{φ=t}

|∇φ|ds ≥
∫
{φ∗=t}

|∇ϕ∗|ds. (15)
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Continued: The Proof of 8π Bound

∆(w2 − w1) + ew2 − ew1 = f2 − f1 ≥ 0.∫
Ω
ew1 =

∫
B1

eUλ1 . (16)

Let ϕ be the symmetrization of w2 − w1 with respect to the
measures ew1dy and eUλ1dy . Then∫

{ϕ=t}
|∇ϕ| ≤

∫
{w2−w1=t}

|∇(w2 − w1)|

≤
∫

Ωt

(
ew2 − ew1

)
=

∫
{ϕ>t}

eUλ1
+ϕ −

∫
{ϕ>t}

eUλ1

=

∫
{ϕ>t}

eUλ1
+ϕ −

∫
{ϕ=t}

|∇Uλ1 |,

for all t > 0.
Hence∫
{ϕ=t}

|∇(ϕ+ Uλ1)| ≤
∫
{ϕ>t}

e(ϕ+Uλ1
)dy , , r ∈ (0, 1) (17)

for all t > 0.
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Continued: The Proof of 8π Bound

Hence ∫
{ϕ=t}

|∇(ϕ+ Uλ1)| ≤
∫
ϕ>t

e(ϕ+Uλ1
)dy (18)

for all t > 0. ∫
∂Br

|∇(ϕ+ Uλ1)| ≤
∫
Br

e(ϕ+Uλ1
)dy . (19)

Since ψ = Uλ1 + ϕ > Uλ1 ,∫
B1

eUλ1
+ϕdx ≥

∫
B1

eUλ2 .

Hence∫
Ω
ew1+ew2dx =

∫
B1

eUλ1 +eUλ2
+ϕdx ≥

∫
B1

eUλ1 +eUλ2dx = 8π.



The sphere
covering

inequality and
its

applications

Amir
Moradifam

A Mean Field equation with singularity on S2

Consider the mean field equation

∆gu + λ

(
eu∫

S2 eudω
− 1

4π

)
= 4π(δ(P)− 1

4π
) on S2, (20)

with
λ = 4π(3 + α)

Existence: It admits a solution if and only if α ∈ (−1, 1).
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Axial symmetry

Axial Symmetry: D. Bartolucci, C.S. Lin, and G. Tarantello in
Comm. Pure Appl. Math. 64 (2011), no. 12, 1677-1730.

Main result: There exists δ > 0 such that for α ∈ (1− δ, 1) all
solutions to equation (20) is axially symmetric about the

direction
−→
OP.

Question C. Are all solutions of (20) axially symmetric about
−→
OP for every α ∈ (−1, 1)?

Theorem (Gui, M. (2015))

For every α ∈ (−1, 1) the solution to equation (20) is unique

and axially symmetric about
−→
OP.
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Mean field equations for the spherical Onsager
vortex

Consider the following equation

∆gu(x)+
exp(αu(x)− γ〈n, x〉)∫

S2 exp(αu(x)− γ〈n, x〉)dω
− 1

4π
= 0 on S2. (21)

with ∫
S2

udω = 0.

C.S. Lin (2000): If α < 8π, then for γ ≥ 0 the solution to
equation (21) is unique and axially symmetric with respect to n.

Conjecture D Let γ ≥ 0 and α ≤ 16π. Then every solution u
of (21) is axially symmetric with respect to n.
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Axial symmetry of spherical Onsager vortex

Theorem (Gui and M., 2015)

Suppose 8π < α ≤ 16π and

0 ≤ γ ≤ α

8π
− 1. (22)

Then every solution of (21) is axially symmetric with respect to
n.
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A mean field equation on flat torus

Consider the mean field equation on a flat torus with
fundamental domain

Ωε = [−1

ε
,

1

ε
]× [−1, 1]

∆v + ρ(
ev∫

Ωε
ev
− 1

|Ωε|
) = 0, (x , y) ∈ Ωε. (23)
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Earlier results on flat torus

Cabré, Lucia, and Sanchón (2005): If

ρ ≤ ρ∗ :=
16π3

π2 + 2
R2
ε

+
√

(π2 + 2
R2
ε

)2 − 8π3

|Tε|

≤ 0.879× 8π,

then every solutions are one-dimensional. Here Rε is the
maximum conformal radius of the rectangle Tε.
Lin and Lucia (2006) proved that the constant are the unique
solutions if

ρ ≤
{

8π if ε ≥ π
4

32ε if ε ≤ π
4 .

The optimal results was conjectured to be ρ ≤ min{8π, 4π2ε}.
Note: 32ε < 4π2ε ' 39.47ε.
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Sharp result on flat torus

Theorem (Gui, M. (2016))

Assume that v ∈ C 2(Ω) is a period solution of (23). Then u
must depend only on x if ρ ≤ 8π. In particular, u must be
constant if ρ ≤ min{8π, 4π2ε}.
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Thank You!


