Adams' inequality with the exact growth

Federica Sani
Università degli Studi di Milano

Physical, Geometrical and Analytical Aspects
of Mean Field Systems of Liouville Type Banff, 1/6 April 2018

Theorem [Nader Masmoudi, F.S. 2017]

Let m be a positive integer with $2<m<N$. Then
$\int_{\mathbb{R}^{N}} \frac{\exp _{\left[\frac{N}{m}-2\right\rceil}\left\{\beta_{N, m}|u|^{N^{N-m}}\right\}}{(1+|u|)^{N} \frac{N}{-m}} d x \leqslant C_{N, m}\|u\|_{\frac{N}{m}}^{\frac{N}{m}} \quad \forall u \in W^{m, \frac{N}{m}}\left(\mathbb{R}^{N}\right),\left\|\nabla^{m} u\right\|_{\frac{N}{m}} \leqslant 1$.
The above inequality fails if the power $\frac{\mathrm{N}}{\mathrm{N}-\mathrm{m}}$ in the denominator is replaced with any $p<\frac{N}{N-m}$.

Here

- $\exp _{k}(t):=e^{t}-\sum_{j=0}^{k} \frac{t^{j}}{j!}, \quad k \in \mathbb{N} ;$
- $\lceil x\rceil$ denotes the smallest integer grater than or equal to $x \in \mathbb{R}$;
- $\beta_{\mathrm{N}, \mathrm{m}}$ is the sharp exponent of Adams' inequality on bounded domains;
- $\nabla^{m} u:=(-\Delta)^{\frac{m}{2}} u \quad$ if m is even, and $\quad \nabla^{m} u:=\nabla(-\Delta)^{\frac{m-1}{2}} u \quad$ if m is odd.

Idea: It is possible to reach a limiting sharp higher order inequality exploiting refined limiting and non-limiting second order inequalities.

Let us consider first order Sobolev spaces in the limiting case of Sobolev embeddings

$$
\left(\mathrm{W}_{0}^{1, \mathrm{~N}}(\Omega),\|\nabla \cdot\|_{\mathrm{N}}\right)
$$

where $\Omega \subset \mathbb{R}^{N}, N \geqslant 2$, is a bounded domain. In this framework,

$$
\operatorname{TM}(\alpha):=\sup _{u \in W_{0}^{1, N}(\Omega),\|\nabla \mathfrak{u}\|_{N} \leqslant 1} \int_{\Omega} e^{\alpha|\mathfrak{u}|^{N-1}} d x, \quad \alpha>0
$$

- Sobolev embeddings:
- $W_{0}^{1, \mathrm{~N}}(\Omega) \subset \mathrm{L}^{\mathrm{q}}(\Omega) \quad \forall \mathrm{q} \geqslant 1$
- but $W_{0}^{1, N}(\Omega) \nsubseteq L^{\infty}(\Omega)$

In particular, for any $\mathrm{q} \geqslant 1$,

$$
\sup _{u \in W_{0}^{1, N}} \int_{(\Omega),\|\nabla u\|_{N} \leqslant 1}|u|^{q} d x<+\infty
$$

- S. I. Pohozaev (1965) and N. S. Trudinger (1967):
- If $\gamma>\frac{\mathrm{N}}{\mathrm{N}-1}$ then there exists $u \in \mathrm{~W}_{0}^{1, \mathrm{~N}}(\Omega)$ with $\|\nabla u\|_{\mathrm{N}} \leqslant 1$ such that

$$
\int_{\Omega} e^{\alpha|\mathfrak{u}|^{\gamma}} \mathrm{d} x=+\infty, \quad \alpha>0
$$

- there exists $\alpha=\alpha(N)>0$ small such that $\operatorname{TM}(\alpha)<+\infty$
- J. Moser (1970): $\alpha_{N}:=N \omega_{N-1}^{1 /(N-1)}, \omega_{N-1}$ surface measure of $S^{N-1} \subset \mathbb{R}^{N}$

Trudinger-Moser inequality

J. Moser found the sharp exponent and proved the following result

Theorem [Moser 1970]

Let $\Omega \subset \mathbb{R}^{N}, N \geqslant 2$, be a bounded domain. There exists a constant $C_{N}>0$ such that

$$
\sup _{u \in \mathcal{W}_{0}^{1, N}(\Omega),\|\nabla u\|_{N} \leqslant 1} \int_{\Omega} e^{\alpha|u|^{N}-1} d x \begin{cases}\leqslant C_{N}|\Omega| & \forall \alpha \leqslant \alpha_{N} \\ =+\infty & \forall \alpha>\alpha_{N}\end{cases}
$$

where $\alpha_{N}:=N \omega_{N-1}^{1 /(N-1)}$ and ω_{N-1} is the surface measure of $S^{N-1} \subset \mathbb{R}^{N}$.
Key ideas of the proof of the critical inequality

(1) Reduction of the problem to the radial case
a Mosar's change of wariable

Moser's one-dimensional Lemma

Trudinger-Moser inequality

J. Moser found the sharp exponent and proved the following result

Theorem [Moser 1970]

Let $\Omega \subset \mathbb{R}^{N}, N \geqslant 2$, be a bounded domain. There exists a constant $C_{N}>0$ such that

$$
\sup _{u \in W_{0}^{1, N}(\Omega),\|\nabla u\|_{N} \leqslant 1} \int_{\Omega} e^{\alpha|u|^{N}-1} d x \begin{cases}\leqslant C_{N}|\Omega| & \forall \alpha \leqslant \alpha_{N} \\ =+\infty & \forall \alpha>\alpha_{N}\end{cases}
$$

where $\alpha_{N}:=N \omega_{N-1}^{1 /(N-1)}$ and ω_{N-1} is the surface measure of $S^{N-1} \subset \mathbb{R}^{N}$.
Key ideas of the proof of the critical inequality

$$
\sup _{u \in W_{0}^{1, N}} \int_{(\Omega),\|\nabla u\|_{N} \leqslant 1} e_{\Omega} e^{\left.\alpha_{N}|u|\right|^{N-1}} d x \leqslant C_{N}|\Omega|
$$

(1) Reduction of the problem to the radial case
(2) Moser's change of variable

Moser's one-dimensional Lemma

Reduction of the problem to the radial case

Key ingredient: Schwarz symmetrization

$u: \Omega \rightarrow \mathbb{R} \rightsquigarrow u^{*}:(0,|\Omega|] \rightarrow[0,+\infty)$

$$
\rightsquigarrow u^{\sharp}: \Omega^{\sharp} \rightarrow[0,+\infty), u^{\sharp}(x):=u^{*}\left(\frac{\omega_{N-1}}{N}|x|^{N}\right)
$$

If $u \in W_{0}^{1, N}(\Omega)$ then $u^{\sharp} \in W_{0}^{1, N}\left(\Omega^{\sharp}\right)$ and

- $\int_{\Omega} e^{\alpha_{N}|u| N^{N-1}} d x=\int_{\Omega^{\sharp}} e^{\alpha_{N}\left[u^{\sharp}\right] N^{N-1}} d x$
- (Pólya-Szegö inequality) $\left\|\nabla u^{\sharp}\right\|_{N} \leqslant\|\nabla u\|_{N}$

Moser's change of variable and one-dimensional Lemma

Let $\Omega \subset \mathbb{R}^{N}$ and let $R>0$ be such that $\left|B_{R}\right|=|\Omega|$, i.e. $\Omega^{\sharp}:=B_{R}$.
(1) Given any $u \in W_{0}^{1, N}(\Omega)$ with $\|\nabla u\|_{N} \leqslant 1$, we have

$$
\int_{\Omega} e^{\alpha_{N}|\mathfrak{u}| N^{N-1}} \mathrm{~d} x=\int_{\mathrm{B}_{\mathrm{R}}} e^{\alpha_{N}\left[u^{\sharp}\right]^{N-1}} \mathrm{~d} x \quad \text { and } \quad\left\|\nabla u^{\sharp}\right\|_{\mathrm{N}} \leqslant 1
$$

(2) Performing the change of variable $r=|x|=R e^{-\frac{t}{N}}$ and setting

$$
\begin{aligned}
& w(t):=\alpha_{N}^{\frac{N-1}{N}} u^{\sharp}(r), \\
& \quad \int_{B_{R}} e^{\left.\alpha_{N}\left[u^{\sharp}\right]\right]^{N-1}} d x=\left|B_{R}\right| \int_{0}^{+\infty} e^{w N^{N-1}-t} d t \quad \text { and } \quad\left\|\nabla u^{\sharp}\right\|_{N}^{N}=\int_{0}^{+\infty}\left[w^{\prime}\right]^{N} d t
\end{aligned}
$$

One-dimensional Lemma [Moser 1970]

There exists $\mathrm{c}_{\mathrm{N}}>0$ such that for any non-negative measurable function $\phi:[0,+\infty) \rightarrow[0,+\infty)$ satisfying

$$
\int_{0}^{+\infty} \phi^{N}(t) d t \leqslant 1
$$

the following inequality holds

$$
\int_{0}^{+\infty} \exp \left\{\left(\int_{0}^{\mathrm{t}} \phi(\mathrm{~s}) \mathrm{ds}\right)^{{ }^{N-1}}-\mathrm{t}\right\} \mathrm{dt} \leqslant \mathrm{c}_{\mathrm{N}}
$$

Trudinger-Moser inequality

Theorem [Moser 1970]

Let $\Omega \subset \mathbb{R}^{N}, N \geqslant 2$, be a bounded domain. There exists a constant $C_{N}>0$ such that

$$
\sup _{u \in W_{0}^{1, N}(\Omega),\|\nabla u\|_{N} \leqslant 1} \int_{\Omega} e^{\alpha|u| N^{N}-1} d x \begin{cases}\leqslant C_{N}|\Omega| & \forall \alpha \leqslant \alpha_{N} \\ =+\infty & \forall \alpha>\alpha_{N}\end{cases}
$$

where $\alpha_{N}:=N \omega_{N-1}^{1 /(N-1)}$ and ω_{N-1} is the surface measure of $S^{N-1} \subset \mathbb{R}^{N}$.

Related results can be found in several papers:
Adachi, Adams, Adimurthi, Bahouri, Carleson, Chang, Cianchi, de Figueiredo, do Ó, Dolbeault, Druet, Esteban, Flucher, Fontana, Ibrahim, Ishiwata, Kozono, Lam, Li, Lin, Lu, Majdoub, Malchiodi, Martinazzi, Masmoudi, Morpurgo, Nakanishi, Ogawa, Ozawa, Ruf, Strichartz, Struwe, Tanaka, Tarantello, Tintarev, Yang, ...

Remark:

Trudinger-Moser inequality

Theorem [Moser 1970]

Let $\Omega \subset \mathbb{R}^{N}, N \geqslant 2$, be a bounded domain. There exists a constant $C_{N}>0$ such that

$$
\sup _{u \in W_{0}^{1, N}(\Omega),\|\nabla u\|_{N} \leqslant 1} \int_{\Omega} e^{\alpha|u| N^{N}-1} d x \begin{cases}\leqslant C_{N}|\Omega| & \forall \alpha \leqslant \alpha_{N} \\ =+\infty & \forall \alpha>\alpha_{N}\end{cases}
$$

where $\alpha_{N}:=N \omega_{N-1}^{1 /(N-1)}$ and ω_{N-1} is the surface measure of $S^{N-1} \subset \mathbb{R}^{N}$.

Related results can be found in several papers:
Adachi, Adams, Adimurthi, Bahouri, Carleson, Chang, Cianchi, de Figueiredo, do Ó, Dolbeault, Druet, Esteban, Flucher, Fontana, Ibrahim, Ishiwata, Kozono, Lam, Li, Lin, Lu, Majdoub, Malchiodi, Martinazzi, Masmoudi, Morpurgo, Nakanishi, Ogawa, Ozawa, Ruf, Strichartz, Struwe, Tanaka, Tarantello, Tintarev, Yang, ...

Remark:

- $\quad \mathrm{J}_{\mathrm{N}, \alpha}(\mathrm{u}):=\int_{\mathbb{R}^{N}} \exp _{\mathrm{N}}\left(\alpha|u|^{N^{N}-1}\right) \mathrm{d} \chi$
- $\quad \exp _{N}(t):=e^{t}-\sum_{k=0}^{N-2} \frac{t^{j}}{j!}$

The problem on the whole space \mathbb{R}^{N} with $\mathrm{N} \geqslant 2$

Let $\quad \exp _{N}(\mathrm{t}):=e^{\mathrm{t}}-\sum_{\mathrm{k}=0}^{\mathrm{N}-2} \frac{t^{j}}{j!} \quad$ and $\quad \mathrm{J}_{\mathrm{N}, \alpha}(\mathfrak{u}):=\int_{\mathbb{R}^{N}} \exp _{\mathrm{N}}\left(\alpha|\mathfrak{u}|^{N-1}\right) \mathrm{d} x$.

- S. Adachi - K. Tanaka (2000): For any $\alpha \in\left(0, \alpha_{N}\right)$ there exists $\mathrm{C}_{\alpha, \mathrm{N}}>0$ such that

$$
\begin{equation*}
\mathrm{J}_{\mathrm{N}, \alpha}(\mathfrak{u}) \leqslant \mathrm{C}_{\alpha, \mathrm{N}}\|\mathfrak{u}\|_{\mathrm{N}}^{\mathbb{N}} \quad \forall \mathfrak{u} \in \mathrm{W}_{0}^{1, \mathrm{~N}}\left(\mathbb{R}^{\mathrm{N}}\right) \text { with }\|\nabla \mathfrak{u}\|_{\mathrm{N}} \leqslant 1 . \tag{AT}
\end{equation*}
$$

The sharp exponent $\alpha_{N}:=N \omega_{N-1}^{1 /(N-1)}$ is excluded in (AT): $\alpha<\alpha_{N}$

- B. Ruf (2005) and Y. Li - B. Ruf (2008):

S. Ibrahim - N. Masmoudi - K. Nakanishi (2015) and N. Masmoudi - F. S. (2015): There exists $\mathrm{C}_{\mathrm{N}}>0$ such that

The problem on the whole space \mathbb{R}^{N} with $\mathrm{N} \geqslant 2$

Let $\quad \exp _{N}(t):=e^{t}-\sum_{k=0}^{N-2} \frac{t^{j}}{j!} \quad$ and $\quad J_{N, \alpha}(u):=\int_{\mathbb{R}^{N}} \exp _{N}\left(\left.\alpha|u|\right|^{N}-1\right) d x$.

- S. Adachi - K. Tanaka (2000): For any $\alpha \in\left(0, \alpha_{N}\right)$ there exists $C_{\alpha, N}>0$ such that

$$
\begin{equation*}
\mathrm{J}_{\mathrm{N}, \alpha}(\mathrm{u}) \leqslant \mathrm{C}_{\alpha, \mathrm{N}}\|\mathrm{u}\|_{\mathrm{N}}^{\mathrm{N}} \quad \forall \mathrm{u} \in \mathrm{~W}_{0}^{1, \mathrm{~N}_{1}}\left(\mathbb{R}^{\mathrm{N}}\right) \text { with }\|\nabla \mathrm{u}\|_{\mathrm{N}} \leqslant 1 \tag{AT}
\end{equation*}
$$

The sharp exponent $\alpha_{N}:=N \omega_{N-1}^{1 /(N-1)}$ is excluded in (AT): $\alpha<\alpha_{N}$

- B. Ruf (2005) and Y. Li - B. Ruf (2008): $\|u\|_{W^{1, N}}^{N}:=\|\nabla u\|_{N}^{N}+\|u\|_{N}^{N}$

$$
\sup _{u \in W^{1, N}\left(\mathbb{R}^{N}\right),\|u\|_{W^{1, N}} \leqslant 1} J_{N, \alpha}(u) \begin{cases}<+\infty & \forall 0<\alpha \leqslant \alpha_{N}, \\ =+\infty & \forall \alpha>\alpha_{N} .\end{cases}
$$

The problem on the whole space \mathbb{R}^{N} with $\mathrm{N} \geqslant 2$

Let $\quad \exp _{N}(t):=e^{t}-\sum_{k=0}^{N-2} \frac{t^{j}}{j!} \quad$ and $\quad J_{N, \alpha}(u):=\int_{\mathbb{R}^{N}} \exp _{N}\left(\alpha|u|^{N-1}\right) d x$.

- S. Adachi - K. Tanaka (2000): For any $\alpha \in\left(0, \alpha_{N}\right)$ there exists $C_{\alpha, N}>0$ such that

$$
\begin{equation*}
\mathrm{J}_{\mathrm{N}, \alpha}(\mathrm{u}) \leqslant \mathrm{C}_{\alpha, \mathrm{N}}\|\mathrm{u}\|_{\mathrm{N}}^{\mathrm{N}} \quad \forall u \in \mathrm{~W}_{0}^{1, \mathrm{~N}}\left(\mathbb{R}^{\mathrm{N}}\right) \text { with }\|\nabla \mathrm{u}\|_{\mathrm{N}} \leqslant 1 \tag{AT}
\end{equation*}
$$

The sharp exponent $\alpha_{N}:=N \omega_{N-1}^{1 /(N-1)}$ is excluded in (AT): $\alpha<\alpha_{N}$

- B. Ruf (2005) and Y. Li - B. Ruf (2008): $\|u\|_{W^{1, N}}^{N}:=\|\nabla u\|_{N}^{N}+\|u\|_{N}^{N}$

$$
\sup _{u \in W^{1, N}\left(\mathbb{R}^{N}\right),\|u\|_{W^{1, N}} \leqslant 1} J_{N, \alpha}(u) \begin{cases}<+\infty & \forall 0<\alpha \leqslant \alpha_{N}, \\ =+\infty & \forall \alpha>\alpha_{N} .\end{cases}
$$

- S. Ibrahim - N. Masmoudi - K. Nakanishi (2015) and
N. Masmoudi - F. S. (2015): There exists $C_{N}>0$ such that

$$
\int_{\mathbb{R}^{N}} \frac{\exp _{N}\left(\alpha_{N}|u|^{N^{N}-1}\right)}{(1+|u|)^{N}-1} d x \leqslant C_{N}\|u\|_{N}^{N} \quad \forall u \in W^{1, N}\left(\mathbb{R}^{N}\right),\|\nabla u\|_{N} \leqslant 1
$$

The problem on the whole space \mathbb{R}^{N} with $\mathrm{N} \geqslant 2$

Let $\quad \exp _{N}(t):=e^{t}-\sum_{k=0}^{N-2} \frac{t^{j}}{j!} \quad$ and $\quad J_{N, \alpha}(u):=\int_{\mathbb{R}^{N}} \exp _{N}\left(\alpha|u|^{N-1}\right) d x$.

- S. Adachi - K. Tanaka (2000): For any $\alpha \in\left(0, \alpha_{N}\right)$ there exists $C_{\alpha, N}>0$ such that

$$
\begin{equation*}
\mathrm{J}_{\mathrm{N}, \alpha}(\mathrm{u}) \leqslant \mathrm{C}_{\alpha, \mathrm{N}}\|\mathrm{u}\|_{\mathrm{N}}^{\mathrm{N}} \quad \forall u \in \mathrm{~W}_{0}^{1, \mathrm{~N}}\left(\mathbb{R}^{\mathrm{N}}\right) \text { with }\|\nabla \mathrm{u}\|_{\mathrm{N}} \leqslant 1 \tag{AT}
\end{equation*}
$$

The sharp exponent $\alpha_{N}:=N \omega_{N-1}^{1 /(N-1)}$ is excluded in (AT): $\alpha<\alpha_{N}$

- B. Ruf (2005) and Y. Li - B. Ruf (2008): $\|u\|_{W^{1, N}}^{N}:=\|\nabla u\|_{N}^{N}+\|u\|_{N}^{N}$

$$
\sup _{u \in W^{1, N}\left(\mathbb{R}^{N}\right),\|u\|_{W^{1, N}} \leqslant 1} J_{N, \alpha}(u) \begin{cases}<+\infty & \forall 0<\alpha \leqslant \alpha_{N}, \\ =+\infty & \forall \alpha>\alpha_{N} .\end{cases}
$$

- S. Ibrahim - N. Masmoudi - K. Nakanishi (2015) and
N. Masmoudi - F. S. (2015): There exists $C_{N}>0$ such that

$$
\int_{\mathbb{R}^{N}} \frac{\exp _{N}\left(\alpha_{N}|u|^{N^{N}-1}\right)}{(1+|u|)^{N}-1} d x \leqslant C_{N}\|u\|_{N}^{N} \quad \forall u \in W^{1, N}\left(\mathbb{R}^{N}\right),\|\nabla u\|_{N} \leqslant 1
$$

Trudinger-Moser inequality on \mathbb{R}^{N} with the exact growth condition, $\mathrm{N} \geqslant 3$

Let $F: \mathbb{R} \rightarrow[0,+\infty)$ be continuous and let us consider $u \mapsto J(u):=\int_{\mathbb{R}^{N}} F(u) d x$.

Boundedness [lbrahim-Masmoudi-Nakanishi $\mathrm{N}=2$ and Masmoudi-S. $\mathrm{N} \geqslant 3$]

The following conditions are equivalent:
(1) $\lim _{|s| \rightarrow+\infty} \frac{|s|^{\mathrm{N} /(\mathrm{N}-1)} \mathrm{F}(\mathrm{s})}{\mathrm{e}^{\alpha} \mathrm{N}|\mathrm{s}|^{\mathrm{N} /(\mathrm{N}-1)}}<+\infty$ and $\quad \lim _{s \rightarrow 0} \frac{\mathrm{~F}(\mathrm{~s})}{|s|^{N}}<+\infty$
(2) There exists $\mathrm{C}_{\mathrm{F}, \mathrm{N}}>0$ such that

$$
\mathrm{J}(\mathfrak{u}) \leqslant \mathrm{C}_{\mathrm{F}, \mathrm{~N}}\|\mathfrak{u}\|_{\mathrm{N}}^{\mathrm{N}} \quad \forall \mathfrak{u} \in \mathrm{~W}^{1, \mathrm{~N}}\left(\mathbb{R}^{\mathrm{N}}\right) \text { with }\|\nabla \mathfrak{u}\|_{\mathrm{N}} \leqslant 1
$$

Moreover

Compactness [Ibrahim-Masmoudi-Nakanishi $\mathrm{N}=2$ and Masmoudi-S. $\mathrm{N} \geqslant 3$]
The following conditions are equivalent:
(1) $\lim _{|s| \rightarrow+\infty} \frac{|s|^{N /(N-1)} \mathrm{F}(s)}{e^{\alpha_{N}}|s|^{N /(N-1)}}=0$ and $\lim _{s \rightarrow 0} \frac{F(s)}{|s|^{N}}=0$
(2) For any sequence $\left\{u_{k}\right\}_{k} \subset W^{1, N}\left(\mathbb{R}^{N}\right)$ of radial functions satisfying $\left\|\nabla u_{k}\right\|_{N} \leqslant 1$ and weakly converging to some u in $W^{1, N}\left(\mathbb{R}^{N}\right)$, we have $J\left(u_{k}\right) \rightarrow J(u)$ as $k \rightarrow+\infty$.

Trudinger-Moser inequality on \mathbb{R}^{N} with the exact growth condition, $\mathrm{N} \geqslant 3$

Let $F: \mathbb{R} \rightarrow[0,+\infty)$ be continuous and let us consider $u \mapsto J(u):=\int_{\mathbb{R}^{N}} F(u) d x$.

Boundedness [lbrahim-Masmoudi-Nakanishi $\mathrm{N}=2$ and Masmoudi-S. $\mathrm{N} \geqslant 3$]

The following conditions are equivalent:
(1) $\lim _{|s| \rightarrow+\infty} \frac{|s|^{N /(N-1)} F(s)}{e^{\alpha_{N}|s|^{N /(N-1)}}}<+\infty \quad$ and $\quad \lim _{s \rightarrow 0} \frac{F(s)}{|s|^{N}}<+\infty$
(2) There exists $C_{F, N}>0$ such that

$$
J(u) \leqslant C_{F, N}\|u\|_{N}^{N} \quad \forall u \in W^{1, N}\left(\mathbb{R}^{N}\right) \text { with }\|\nabla u\|_{N} \leqslant 1
$$

Moreover

Compactness [Ibrahim-Masmoudi-Nakanishi $\mathrm{N}=2$ and Masmoudi-S. $\mathrm{N} \geqslant 3$]
The following conditions are equivalent:
(1) $\lim _{|s| \rightarrow+\infty} \frac{|s|^{N /(N-1)} \mathrm{F}(s)}{e^{\alpha_{N}}|s|^{N /(N-1)}}=0$ and $\lim _{s \rightarrow 0} \frac{F(s)}{|s|^{N}}=0$
(2) For any sequence $\left\{\mathfrak{u}_{k}\right\}_{k} \subset W^{1, N}\left(\mathbb{R}^{N}\right)$ of radial functions satisfying $\left\|\nabla \mathfrak{u}_{k}\right\|_{N} \leqslant 1$ and weakly converging to some u in $W^{1, N}\left(\mathbb{R}^{N}\right)$, we have $J\left(u_{k}\right) \rightarrow J(u)$ as $k \rightarrow+\infty$.

Trudinger-Moser inequality on \mathbb{R}^{N} with the exact growth condition, $\mathrm{N} \geqslant 3$

Let $F: \mathbb{R} \rightarrow[0,+\infty)$ be continuous and let us consider $u \mapsto J(u):=\int_{\mathbb{R}^{N}} F(u) d x$.

Boundedness [lbrahim-Masmoudi-Nakanishi $\mathrm{N}=2$ and Masmoudi-S. $\mathrm{N} \geqslant 3$]

The following conditions are equivalent:
(1) $\lim _{|s| \rightarrow+\infty} \frac{|s|^{N /(N-1)} F(s)}{e^{\alpha_{N}|s|^{N /(N-1)}}}<+\infty \quad$ and $\quad \lim _{s \rightarrow 0} \frac{F(s)}{|s|^{N}}<+\infty$
(2) There exists $C_{F, N}>0$ such that

$$
J(u) \leqslant C_{F, N}\|u\|_{N}^{N} \quad \forall u \in W^{1, N}\left(\mathbb{R}^{N}\right) \text { with }\|\nabla u\|_{N} \leqslant 1
$$

Moreover

Compactness [Ibrahim-Masmoudi-Nakanishi $\mathrm{N}=2$ and Masmoudi-S. $\mathrm{N} \geqslant 3$]
The following conditions are equivalent:
(1) $\lim _{|s| \rightarrow+\infty} \frac{|s|^{N /(N-1)} F(s)}{e^{\alpha_{N}|s|^{N /(N-1)}}}=0$ and $\lim _{s \rightarrow 0} \frac{F(s)}{|s|^{N}}=0$
(2) For any sequence $\left\{u_{k}\right\}_{k} \subset W^{1, N}\left(\mathbb{R}^{N}\right)$ of radial functions satisfying $\left\|\nabla u_{k}\right\|_{N} \leqslant 1$ and weakly converging to some u in $W^{1, N}\left(\mathbb{R}^{N}\right)$, we have $J\left(u_{k}\right) \rightarrow J(u)$ as $k \rightarrow+\infty$.

Trudinger-Moser and Adams inequality

Theorem [Moser 1970]

Let $\Omega \subset \mathbb{R}^{N}, N \geqslant 2$, be a bounded domain. There exists a constant $C_{N}>0$ such that

$$
\sup _{u \in W_{0}^{1, N}(\Omega),\|\nabla u\|_{N} \leqslant 1} \int_{\Omega} e^{\alpha|u| N^{N}-1} d x \begin{cases}\leqslant C_{N}|\Omega| & \forall \alpha \leqslant \alpha_{N} \\ =+\infty & \forall \alpha>\alpha_{N}\end{cases}
$$

where $\alpha_{N}:=N \omega_{N-1}^{1 /(N-1)}$ and ω_{N-1} is the surface measure of $S^{N-1} \subset \mathbb{R}^{N}$.

Theorem [Adams 1988]

Trudinger-Moser and Adams inequality

Theorem [Moser 1970]

Let $\Omega \subset \mathbb{R}^{N}, N \geqslant 2$, be a bounded domain. There exists a constant $C_{N}>0$ such that

$$
\sup _{u \in W_{0}^{1, N}(\Omega),\|\nabla u\|_{N} \leqslant 1} \int_{\Omega} e^{\alpha|u|^{N}-1} d x \begin{cases}\leqslant C_{N}|\Omega| & \forall \alpha \leqslant \alpha_{N} \\ =+\infty & \forall \alpha>\alpha_{N}\end{cases}
$$

where $\alpha_{N}:=N \omega_{N-1}^{1 /(N-1)}$ and ω_{N-1} is the surface measure of $S^{N-1} \subset \mathbb{R}^{N}$.

Theorem [Adams 1988]

Let m be an integer and let $\Omega \subset \mathbb{R}^{N}$ with $m<N$. There exists a constant $C_{m, N}>0$ such that

$$
\sup _{u \in W_{0}^{m} \cdot \frac{N}{m}(\Omega),\left\|\nabla^{m} u\right\|_{\frac{N}{m}} \leqslant 1} \int_{\Omega} e^{\beta|u| \frac{N}{-m}} d x \begin{cases}\leqslant C_{m}, N|\Omega| & \forall \beta \leqslant \bar{\beta}, \\ =+\infty & \forall \beta>\bar{\beta},\end{cases}
$$

where $\bar{\beta}=\beta_{\mathrm{N}, \mathrm{m}}$ is explicitly known.

Here $\quad \nabla^{m} \mathfrak{u}:=(-\Delta)^{\frac{m}{2}} u \quad$ if m is even, and $\quad \nabla^{m} u:=\nabla(-\Delta)^{\frac{m-1}{2}} u \quad$ if m is odd.

Adams' inequality: the particular case of $W_{0}^{2,2}(\Omega)$

Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain. For Sobolev spaces of the form $W_{0}^{2,2}(\Omega)$, the Sobolev embedding theorem says that if $N>4$ then

$$
W_{0}^{2,2}(\Omega) \subset L^{\frac{2 N}{N-4}}(\Omega)
$$

and hence the limiting case is $\mathrm{N}=4$.

Theorem [Adams 1988]

Let $\Omega \subset \mathbb{R}^{4}$ be bounded. There exists a constant $C>0$

$$
\sup _{u \in W_{0}^{2,2}(\Omega),\|\Delta u\|_{2} \leqslant 1} \int_{\Omega} e^{\alpha u^{2}} d x \begin{cases}\leqslant C|\Omega| & \forall \alpha \leqslant 32 \pi^{2}, \\ =+\infty & \forall \alpha>32 \pi^{2} .\end{cases}
$$

Main difficulty of the proof: how to reduce the problem to the radial case?
Problem: given $u \in W_{0}^{2,2}(\Omega)$, we do not know whether or not $u^{\sharp} \in W_{0}^{2,2}\left(\Omega^{\sharp}\right)$; even in the case $u^{\sharp} \in W_{0}^{2,2}\left(\Omega^{\sharp}\right)$, we would have to establish inequalities between $\|\Delta u\|_{2}$ and $\left\|\Delta u^{\sharp}\right\|_{2}$ and such estimates are unknown in general.

Adams' idea: $u \in \mathcal{C}_{0}^{\infty}(\Omega), f:=-\Delta u \Rightarrow u(x)=\mathrm{cI}_{2} * f(x)=c \int_{\mathbb{R}^{4}} \frac{f(y)}{|x-y|^{2}} d y$
$\Rightarrow u^{*}(\mathrm{t}) \leqslant \mathrm{u}^{* *}(\mathrm{t}):=\frac{1}{\mathrm{t}} \int_{0}^{\mathrm{t}} \mathrm{u}^{*}(\mathrm{~s}) \mathrm{d} s \leqslant \mathrm{tI}_{2}^{* *} \mathrm{f}^{* *}+\int_{\mathrm{t}}^{+\infty} \mathrm{I}_{2}^{*} \mathrm{f}^{*} \mathrm{ds}$

Adams inequality

Let $\quad \nabla^{m} u:=(-\Delta)^{\frac{m}{2}} u \quad$ if m is even, and $\quad \nabla^{m} u:=\nabla(-\Delta)^{\frac{m-1}{2}} u \quad$ if m is odd.

Theorem [Adams 1988]

Let m be an integer and let $\Omega \subset \mathbb{R}^{N}$ with $m<N$. There exists a constant $C_{m, N}>0$ such that

$$
\sup _{u \in W_{0}^{m, \cdot \frac{N}{m}}(\Omega),\left\|\nabla^{m} u\right\|_{\frac{N}{m}} \leqslant 1} \int_{\Omega} e^{\beta|u| N^{N}-m} d x \begin{cases}\leqslant C_{m, N}|\Omega| & \forall \beta \leqslant \beta_{N, m}, \\ =+\infty & \forall \beta>\beta_{N, m} .\end{cases}
$$

Theorem [Fontana, Morpurgo 2018]

Adams inequality

Let $\quad \nabla^{m} u:=(-\Delta)^{\frac{m}{2}} u \quad$ if m is even, and $\quad \nabla^{m} u:=\nabla(-\Delta)^{\frac{m-1}{2}} u \quad$ if m is odd.

Theorem [Adams 1988]

Let m be an integer and let $\Omega \subset \mathbb{R}^{N}$ with $m<N$. There exists a constant $C_{m, N}>0$ such that

$$
\sup _{u \in W_{0}^{m}, \frac{N}{m}}^{(\Omega),\left\|\nabla^{m} u\right\|_{\frac{N}{m}} \leqslant 1} \int_{\Omega} e^{\beta|u| \frac{N}{N-m}} d x \begin{cases}\leqslant C_{m, N}|\Omega| & \forall \beta \leqslant \beta_{N, m}, \\ =+\infty & \forall \beta>\beta_{N, m}\end{cases}
$$

Theorem [Fontana, Morpurgo 2018]

Let m be a positive integer with $2 \leqslant m<n$. There exists a constant $C_{N, m}>0$ such that

$$
\sup _{u \in W^{m}, \frac{N}{m}\left(\mathbb{R}^{N}\right),} \int_{\mathbb{R}^{N}} \exp _{\left\lceil\frac{N}{m}-2\right\rceil}\left\{\beta|u| \frac{N}{N-m}\right\} d x \begin{cases}\leqslant C_{N, m} & \text { if } \beta \leqslant \beta_{N, m}, \\ =+\infty & \text { if } \beta>\beta_{N, m}, \\ \left\|\nabla^{m} u\right\| \frac{N}{m} \frac{N}{m} \\ m u \|_{\frac{N}{m}}^{\frac{N}{m}} \leqslant 1\end{cases}
$$

(See Lam-Lu for the case $m=2$!)

The particular case of $W^{2,2}\left(\mathbb{R}^{4}\right)$

- $\|u\|_{W^{2,2}}^{2}:=\|(-\Delta+\mathrm{I}) \mathfrak{u}\|_{2}^{2}:=\|\Delta u\|_{2}^{2}+2\|\nabla \mathfrak{u}\|_{2}^{2}+\|u\|_{2}^{2}$
* D. R. Adams (1988): What happens on bounded domains $\Omega \subset \mathbb{R}^{4}$ if we consider functions belonging to $W^{2,2}\left(\mathbb{R}^{4}\right)$?

$$
\sup _{u \in W^{2,2}\left(\mathbb{R}^{4}\right),\|u\|_{W^{2,2}} \leqslant 1} \int_{\Omega}\left(e^{\alpha u^{2}}-1\right) d x \begin{cases}<C|\Omega| & \forall 0<\alpha \leqslant 32 \pi^{2} \\ =+\infty & \forall \alpha>32 \pi^{2}\end{cases}
$$

(Bessel potential representation formula)

* B. Ruf and F. S. (2013):

$$
\sup _{u \in W^{2,2}\left(\mathbb{R}^{4}\right),\|u\|_{W^{2,2}} \leqslant 1} \int_{\mathbb{R}^{4}}\left(e^{\alpha u^{2}}-1\right) d x \begin{cases}<+\infty & \forall 0<\alpha \leqslant 32 \pi^{2} \\ =+\infty & \forall \alpha>32 \pi^{2}\end{cases}
$$

(Comparison principle)

- N. Lam and G. Lu (2013): $\|u\|^{2}:=\|\Delta u\|_{2}^{2}+\|u\|_{2}^{2}$

$$
\sup _{u \in W^{2,2}\left(\mathbb{R}^{4}\right),\|u\| \leqslant 1} \int_{\mathbb{R}^{4}}\left(e^{\alpha u^{2}}-1\right) d x \begin{cases}<+\infty & \forall 0<\alpha \leqslant 32 \pi^{2}, \\ =+\infty & \forall \alpha>32 \pi^{2} .\end{cases}
$$

The particular case of $W^{2,2}\left(\mathbb{R}^{4}\right)$

- $\|u\|_{W^{2,2}}^{2}:=\|(-\Delta+\mathrm{I}) \mathfrak{u}\|_{2}^{2}:=\|\Delta u\|_{2}^{2}+2\|\nabla \mathfrak{u}\|_{2}^{2}+\|u\|_{2}^{2}$
* D. R. Adams (1988): What happens on bounded domains $\Omega \subset \mathbb{R}^{4}$ if we consider functions belonging to $W^{2,2}\left(\mathbb{R}^{4}\right)$?

$$
\sup _{u \in W^{2,2}\left(\mathbb{R}^{4}\right),\|u\|_{W^{2,2}} \leqslant 1} \int_{\Omega}\left(e^{\alpha u^{2}}-1\right) d x \begin{cases}<C|\Omega| & \forall 0<\alpha \leqslant 32 \pi^{2} \\ =+\infty & \forall \alpha>32 \pi^{2}\end{cases}
$$

(Bessel potential representation formula)

* B. Ruf and F. S. (2013):

$$
\sup _{u \in W^{2,2}\left(\mathbb{R}^{4}\right),\|u\|_{W^{2,2}} \leqslant 1} \int_{\mathbb{R}^{4}}\left(e^{\alpha u^{2}}-1\right) d x \begin{cases}<+\infty & \forall 0<\alpha \leqslant 32 \pi^{2} \\ =+\infty & \forall \alpha>32 \pi^{2}\end{cases}
$$

(Comparison principle)

- N. Lam and G. Lu (2013): $\|u\|^{2}:=\|\Delta u\|_{2}^{2}+\|u\|_{2}^{2}$

$$
\sup _{u \in W^{2,2}\left(\mathbb{R}^{4}\right),\|u\| \leqslant 1} \int_{\mathbb{R}^{4}}\left(e^{\alpha u^{2}}-1\right) d x \begin{cases}<+\infty & \forall 0<\alpha \leqslant 32 \pi^{2}, \\ =+\infty & \forall \alpha>32 \pi^{2} .\end{cases}
$$

- Adachi-Tanaka type inequality in $W^{2,2}\left(\mathbb{R}^{4}\right)$?

The particular case of $W^{2,2}\left(\mathbb{R}^{4}\right)$

$\|u\|_{W^{2,2}}^{2}:=\|(-\Delta+I) u\|_{2}^{2}:=\|\Delta u\|_{2}^{2}+2\|\nabla u\|_{2}^{2}+\|u\|_{2}^{2}$

* D. R. Adams (1988): What happens on bounded domains $\Omega \subset \mathbb{R}^{4}$ if we consider functions belonging to $W^{2,2}\left(\mathbb{R}^{4}\right)$?

$$
\sup _{u \in W^{2,2}\left(\mathbb{R}^{4}\right),\|u\|_{W^{2,2}} \leqslant 1} \int_{\Omega}\left(e^{\alpha u^{2}}-1\right) \mathrm{dx} \begin{cases}<\mathrm{C}|\Omega| & \forall 0<\alpha \leqslant 32 \pi^{2} \\ =+\infty & \forall \alpha>32 \pi^{2}\end{cases}
$$

(Bessel potential representation formula)

* B. Ruf and F. S. (2013):

$$
\sup _{u \in W^{2,2}\left(\mathbb{R}^{4}\right),\|u\|_{W^{2,2}} \leqslant 1} \int_{\mathbb{R}^{4}}\left(e^{\alpha u^{2}}-1\right) d x \begin{cases}<+\infty & \forall 0<\alpha \leqslant 32 \pi^{2} \\ =+\infty & \forall \alpha>32 \pi^{2}\end{cases}
$$

(Comparison principle)

- N. Lam and G. Lu (2013): $\|u\|^{2}:=\|\Delta u\|_{2}^{2}+\|u\|_{2}^{2}$

$$
\sup _{u \in W^{2,2}\left(\mathbb{R}^{4}\right),\|u\| \leqslant 1} \int_{\mathbb{R}^{4}}\left(e^{\alpha u^{2}}-1\right) d x \begin{cases}<+\infty & \forall 0<\alpha \leqslant 32 \pi^{2}, \\ =+\infty & \forall \alpha>32 \pi^{2} .\end{cases}
$$

- Adachi-Tanaka type inequality in $\mathrm{W}^{2,2}\left(\mathbb{R}^{4}\right)$?
- Ibrahim-Masmoudi-Nakanishi type inequality in $W^{2,2}\left(\mathbb{R}^{4}\right)$?

Adams' inequality with the exact growth condition on \mathbb{R}^{4}

Theorem [Masmoudi, S. 2014]

There exists a constant $C>0$ such that

$$
\int_{\mathbb{R}^{4}} \frac{e^{32 \pi^{2} u^{2}}-1}{(1+|u|)^{2}} d x \leqslant C\|u\|_{2}^{2} \quad \forall u \in W^{2,2}\left(\mathbb{R}^{4}\right) \text { with }\|\Delta u\|_{2} \leqslant 1
$$

Moreover, this fails if the power 2 in the denominator is replaced with any $\mathrm{p}<2$.

Remark:

Adams' inequality with the exact growth condition on \mathbb{R}^{4}

Theorem [Masmoudi, S. 2014]

There exists a constant $C>0$ such that

$$
\begin{equation*}
\int_{\mathbb{R}^{4}} \frac{e^{32 \pi^{2} u^{2}}-1}{(1+|u|)^{2}} d x \leqslant C\|u\|_{2}^{2} \quad \forall u \in W^{2,2}\left(\mathbb{R}^{4}\right) \text { with }\|\Delta u\|_{2} \leqslant 1 \tag{*}
\end{equation*}
$$

Moreover, this fails if the power 2 in the denominator is replaced with any $\mathrm{p}<2$.

Remark:

Adams' inequality with the exact growth condition on \mathbb{R}^{4}

Theorem [Masmoudi, S. 2014]

There exists a constant $C>0$ such that

$$
\begin{equation*}
\int_{\mathbb{R}^{4}} \frac{e^{32 \pi^{2} u^{2}}-1}{(1+|u|)^{2}} d x \leqslant C\|u\|_{2}^{2} \quad \forall u \in W^{2,2}\left(\mathbb{R}^{4}\right) \text { with }\|\Delta u\|_{2} \leqslant 1 \tag{*}
\end{equation*}
$$

Moreover, this fails if the power 2 in the denominator is replaced with any $\mathrm{p}<2$.

Remark:

- It is easy to see that inequality $(*)$ implies that for any $\alpha \in\left(0,32 \pi^{2}\right)$ there exists $\mathrm{C}_{\alpha}>0$ such that

$$
\int_{\mathbb{R}^{4}}\left(e^{\alpha u^{2}}-1\right) d x \leqslant C_{\alpha}\|u\|_{2}^{2} \quad \forall u \in W^{2,2}\left(\mathbb{R}^{4}\right) \text { with }\|\Delta u\|_{2} \leqslant 1
$$

\square

Adams' inequality with the exact growth condition on \mathbb{R}^{4}

Theorem [Masmoudi, S. 2014]

There exists a constant $C>0$ such that

$$
\begin{equation*}
\int_{\mathbb{R}^{4}} \frac{e^{32 \pi^{2} u^{2}}-1}{(1+|u|)^{2}} d x \leqslant C\|u\|_{2}^{2} \quad \forall u \in W^{2,2}\left(\mathbb{R}^{4}\right) \text { with }\|\Delta u\|_{2} \leqslant 1 \tag{*}
\end{equation*}
$$

Moreover, this fails if the power 2 in the denominator is replaced with any $\mathrm{p}<2$.

Remark:

- It is easy to see that inequality $(*)$ implies that for any $\alpha \in\left(0,32 \pi^{2}\right)$ there exists $\mathrm{C}_{\alpha}>0$ such that

$$
\int_{\mathbb{R}^{4}}\left(e^{\alpha u^{2}}-1\right) d x \leqslant C_{\alpha}\|u\|_{2}^{2} \quad \forall u \in W^{2,2}\left(\mathbb{R}^{4}\right) \text { with }\|\Delta u\|_{2} \leqslant 1
$$

- It is interesting to notice that $(*)$ implies

$$
\sup _{u \in W^{2,2}\left(\mathbb{R}^{4}\right),\|u\| \leqslant 1} \int_{\mathbb{R}^{4}}\left(e^{\alpha u^{2}}-1\right) d x \begin{cases}<+\infty & \forall 0<\alpha \leqslant 32 \pi^{2}, \\ =+\infty & \forall \alpha>32 \pi^{2} .\end{cases}
$$

with $\|\mathfrak{u}\|^{2}:=\|\Delta u\|_{2}^{2}+\|u\|_{2}^{2}$ (see also N. Lam and G. Lu (2013))

Main difficulty: how to reduce the problem to the radial case?

- Schwarz symmetrization

Problem: given $u \in W^{2,2}\left(\mathbb{R}^{4}\right)$, we do not know whether or not $u^{\sharp} \in W^{2,2}\left(\mathbb{R}^{4}\right)$; even in the case $u^{\sharp} \in W^{2,2}\left(\mathbb{R}^{4}\right)$, we would have to establish inequalities between $\|\Delta u\|_{2}$ and $\left\|\Delta u^{\sharp}\right\|_{2}$ and such estimates are unknown in general

Main difficulty: how to reduce the problem to the radial case?

- Schwarz symmetrization

Problem: given $u \in W^{2,2}\left(\mathbb{R}^{4}\right)$, we do not know whether or not $u^{\sharp} \in W^{2,2}\left(\mathbb{R}^{4}\right)$; even in the case $u^{\sharp} \in W^{2,2}\left(\mathbb{R}^{4}\right)$, we would have to establish inequalities between $\|\Delta u\|_{2}$ and $\left\|\Delta u^{\sharp}\right\|_{2}$ and such estimates are unknown in general

- Comparison principle

Theorem [Talenti 1976]

Let $B_{R} \subset \mathbb{R}^{4}$ be the ball of radius $R>0$ centered at the origin. Let u, v be weak solutions of

$$
\text { (P) }\left\{\begin{array} { l }
{ - \Delta u = f } \\
{ u \in W _ { 0 } ^ { 1 , 2 } (B _ { R }) }
\end{array} \quad \text { in } B _ { R } \quad \text { (P } \left\{\begin{array}{l}
-\Delta v=f^{\sharp} \\
v \in W_{0}^{1,2}\left(B_{R}\right)
\end{array} \quad \text { in } B_{R}\right.\right.
$$

then $u^{\sharp} \leqslant \nu$.
This comparison principle is a suitable tool if one works with the Dirichlet norm, in fact $\|\Delta u\|_{2}=\|\Delta v\|_{2}$.

Main difficulty: how to reduce the problem to the radial case?

- Schwarz symmetrization

Problem: given $u \in W^{2,2}\left(\mathbb{R}^{4}\right)$, we do not know whether or not $u^{\sharp} \in W^{2,2}\left(\mathbb{R}^{4}\right)$; even in the case $u^{\sharp} \in W^{2,2}\left(\mathbb{R}^{4}\right)$, we would have to establish inequalities between $\|\Delta u\|_{2}$ and $\left\|\Delta u^{\sharp}\right\|_{2}$ and such estimates are unknown in general

- Comparison principle

Theorem [Talenti 1976]

Let $B_{R} \subset \mathbb{R}^{4}$ be the ball of radius $R>0$ centered at the origin. Let u, v be weak solutions of

$$
\text { (P) }\left\{\begin{array} { l }
{ - \Delta u = f } \\
{ u \in W _ { 0 } ^ { 1 , 2 } (B _ { R }) }
\end{array} \quad \text { in } B _ { R } \quad \text { (P } \left\{\begin{array}{l}
-\Delta v=f^{\sharp} \\
v \in W_{0}^{1,2}\left(B_{R}\right)
\end{array} \quad \text { in } B_{R}\right.\right.
$$

then $u^{\sharp} \leqslant \nu$.
This comparison principle is a suitable tool if one works with the Dirichlet norm, in fact $\|\Delta u\|_{2}=\|\Delta v\|_{2}$.

Problem: $\|\mathfrak{u}\|_{2} \leqslant\|v\|_{2}$!

Reduction of the problem to the radial case: a key tool

Given $u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{4}\right)$, we denote by

$$
\mathrm{f}:=-\Delta \mathrm{u} \text { in } \mathbb{R}^{4} .
$$

Let

$$
\mathrm{f}^{* *}(\mathrm{~s}):=\frac{1}{\mathrm{~s}} \int_{0}^{s} \mathrm{f}^{*}(\mathrm{t}) \mathrm{dt} .
$$

Talenti's inequality

If $\mathfrak{u} \in \mathfrak{C}_{0}^{\infty}\left(\mathbb{R}^{4}\right)$ then

$$
\begin{equation*}
u^{\sharp}\left(r_{1}\right)-u^{\sharp}\left(r_{2}\right) \leqslant \frac{\sqrt{2}}{16 \pi} \int_{\left|B_{r_{1}}\right|}^{\left|B_{r_{2}}\right|} \frac{f^{* *}(\xi)}{\sqrt{\xi}} d \xi \quad \text { for } 0<r_{1} \leqslant r_{2} . \tag{T}
\end{equation*}
$$

Remark:

- coarea formula
o isoperimetric inequality

Consequently the constant $\frac{\sqrt{2}}{16 \pi}$ is sharp!

Reduction of the problem to the radial case: a key tool

Given $u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{4}\right)$, we denote by

$$
\mathrm{f}:=-\Delta \mathrm{u} \text { in } \mathbb{R}^{4} .
$$

Let

$$
\mathrm{f}^{* *}(\mathrm{~s}):=\frac{1}{s} \int_{0}^{s} \mathrm{f}^{*}(\mathrm{t}) \mathrm{dt} .
$$

Talenti's inequality
If $u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{4}\right)$ then

$$
\begin{equation*}
u^{\sharp}\left(r_{1}\right)-u^{\sharp}\left(r_{2}\right) \leqslant \frac{\sqrt{2}}{16 \pi} \int_{\left|B_{r_{1}}\right|}^{\left|B_{r_{2}}\right|} \frac{f^{* *}(\xi)}{\sqrt{\xi}} d \xi \quad \text { for } 0<r_{1} \leqslant r_{2} . \tag{T}
\end{equation*}
$$

Remark: the key ingredients in the proof of (T) are

- coarea formula
- isoperimetric inequality

Consequently the constant $\frac{\sqrt{2}}{16 \pi}$ is sharp!

Reduction of the problem to the radial case: a key tool

Given $u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{4}\right)$, we denote by

$$
\mathrm{f}:=-\Delta \mathrm{u} \text { in } \mathbb{R}^{4} .
$$

Let

$$
\mathrm{f}^{* *}(\mathrm{~s}):=\frac{1}{s} \int_{0}^{s} \mathrm{f}^{*}(\mathrm{t}) \mathrm{dt} .
$$

Talenti's inequality
If $u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{4}\right)$ then

$$
\begin{equation*}
u^{\sharp}\left(r_{1}\right)-u^{\sharp}\left(r_{2}\right) \leqslant \frac{\sqrt{2}}{16 \pi} \int_{\left|B_{r_{1}}\right|}^{\left|B_{r_{2}}\right|} \frac{f^{* *}(\xi)}{\sqrt{\xi}} d \xi \quad \text { for } 0<r_{1} \leqslant r_{2} . \tag{T}
\end{equation*}
$$

Remark: the key ingredients in the proof of (T) are

- coarea formula
- isoperimetric inequality

Consequently the constant $\frac{\sqrt{2}}{16 \pi}$ is sharp!

Optimal descending growth condition

Talenti's inequality enables us to obtain the following result

Theorem [Masmoudi, S. 2014]

Let $u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{4}\right)$ and let $R>0$. If $u^{\sharp}(R)>1$ and $f:=-\Delta u$ in \mathbb{R}^{4} satisfies

$$
\int_{\left|\mathrm{B}_{\mathrm{R}}\right|}^{+\infty}\left[\mathrm{f}^{* *}(\mathrm{~s})\right]^{2} \mathrm{~d} s \leqslant 4 \mathrm{~K}
$$

for some $K>0$, then we have

$$
\frac{\exp \left(\frac{32 \pi^{2}}{K}\left[u^{\sharp}(R)\right]^{2}\right)}{\left[u^{\sharp}(R)\right]^{2}} R^{4} \leqslant \frac{C}{K^{2}}\left\|u^{\sharp}\right\|_{L^{2}\left(\mathbb{R}^{4} \backslash B_{R}\right)}^{2},
$$

where C is a universal constant independent of u, R and K.

Here

$$
\mathrm{f}^{* *}(\mathrm{~s}):=\frac{1}{\mathrm{~s}} \int_{0}^{\mathrm{s}} \mathrm{f}^{*}(\mathrm{t}) \mathrm{dt}
$$

and

$$
\int_{0}^{+\infty}\left[f^{* *}(s)\right]^{2} d s \leqslant 4 \int_{0}^{+\infty}\left[f^{*}(s)\right]^{2} d s
$$

Optimal descending growth condition

Talenti's inequality enables us to obtain the following result

Theorem [Masmoudi, S. 2014]

Let $u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{4}\right)$ and let $R>0$. If $u^{\sharp}(R)>1$ and $f:=-\Delta u$ in \mathbb{R}^{4} satisfies

$$
\int_{\left|\mathrm{B}_{\mathrm{R}}\right|}^{+\infty}\left[\mathrm{f}^{* *}(\mathrm{~s})\right]^{2} \mathrm{~d} s \leqslant 4 \mathrm{~K}
$$

for some $K>0$, then we have

$$
\frac{\exp \left(\frac{32 \pi^{2}}{K}\left[u^{\sharp}(R)\right]^{2}\right)}{\left[u^{\sharp}(R)\right]^{2}} R^{4} \leqslant \frac{C}{K^{2}}\left\|u^{\sharp}\right\|_{L^{2}\left(\mathbb{R}^{4} \backslash B_{R}\right)}^{2}
$$

where C is a universal constant independent of u, R and K.

Here

$$
\mathrm{f}^{* *}(\mathrm{~s}):=\frac{1}{\mathrm{~s}} \int_{0}^{\mathrm{s}} \mathrm{f}^{*}(\mathrm{t}) \mathrm{dt}
$$

and

$$
\int_{0}^{+\infty}\left[f^{* *}(s)\right]^{2} d s \leqslant 4 \int_{0}^{+\infty}\left[f^{*}(s)\right]^{2} d s
$$

Adams' inequality with the exact growth condition: sketch of the proof

Key ingredients of the proof:
(1) Optimal descending growth condition
(2) Talenti's inequality + Moser's change of variable and one-dimensional Lemma

One-dimensional Lemma [Moser 1970]

Adams' inequality with the exact growth condition: sketch of the proof

Key ingredients of the proof:
(1) Optimal descending growth condition
(2) Talenti's inequality + Moser's change of variable and one-dimensional Lemma

One-dimensional Lemma [Moser 1970]

There exists $c_{0}>0$ such that for any non-negative measurable function $\phi:[0,+\infty) \rightarrow[0,+\infty)$ satisfying

$$
\int_{0}^{+\infty} \phi^{2}(t) d t \leqslant 1
$$

the following inequality holds

$$
\int_{0}^{+\infty} e^{F(t)} d t \leqslant c_{0}
$$

where

$$
\mathrm{F}(\mathrm{t}):=\left(\int_{0}^{\mathrm{t}} \phi(\mathrm{~s}) \mathrm{d} s\right)^{2}-\mathrm{t}
$$

Adams' inequality with the exact growth condition: the second order Sobolev case

Remark: The key ingredients of the proof of Adams' inequality with the exact growth condition in $W^{2,2}\left(\mathbb{R}^{4}\right)$ are closely related to the properties of the Laplacian operator but they are not confined to the 4-dimensional case!

Indeed, for any $N \geqslant 4$, using the same arguments one can prove the existence of a constant $\mathrm{C}_{\mathrm{N}}>0$ such that where

- $\lceil x\rceil$ denotes the smallest integer grater than or equal to $x \in \mathbb{R}$
- $\beta_{N, 2}$ is the sharp exponent of Adams' inequality on bounded domains
(See Lu-Tang-Zhu for the case $\mathrm{N} \geqslant 3-\ln$ particular, the case $\mathrm{N}=3$ reveals some
non-trivial technical difficulties!)

Adams' inequality with the exact growth condition: the second order Sobolev case

Remark: The key ingredients of the proof of Adams' inequality with the exact growth condition in $W^{2,2}\left(\mathbb{R}^{4}\right)$ are closely related to the properties of the Laplacian operator but they are not confined to the 4-dimensional case!

Indeed, for any $N \geqslant 4$, using the same arguments one can prove the existence of a constant $\mathrm{C}_{\mathrm{N}}>0$ such that

$$
\int_{\mathbb{R}^{N}} \frac{\exp _{\left\lceil\frac{N}{2}-2\right\rceil}\left\{\beta_{N, 2}|u|^{N^{N}-2}\right\}}{(1+|u|)^{N}-2} d x \leqslant C_{N}\|u\|_{\frac{N}{2}}^{\frac{N}{2}} \quad \forall u \in W^{2, \frac{N}{2}}\left(\mathbb{R}^{N}\right) \text { with }\|\Delta u\|_{\frac{N}{2}} \leqslant 1
$$

where

- $\exp _{k}(\mathrm{t}):=e^{t}-\sum_{j=0}^{k} \frac{t^{j}}{\mathfrak{j}!}, \quad k \in \mathbb{N}$
- $\lceil x\rceil$ denotes the smallest integer grater than or equal to $x \in \mathbb{R}$
- $\beta_{N, 2}$ is the sharp exponent of Adams' inequality on bounded domains
\qquad non-trivial technical difficulties!)

Adams' inequality with the exact growth condition: the second order Sobolev case

Remark: The key ingredients of the proof of Adams' inequality with the exact growth condition in $W^{2,2}\left(\mathbb{R}^{4}\right)$ are closely related to the properties of the Laplacian operator but they are not confined to the 4-dimensional case!

Indeed, for any $N \geqslant 4$, using the same arguments one can prove the existence of a constant $\mathrm{C}_{\mathrm{N}}>0$ such that

$$
\int_{\mathbb{R}^{N}} \frac{\exp _{\left\lceil\frac{N}{2}-2\right\rceil}\left\{\beta_{N, 2}|u|^{N^{N}-2}\right\}}{(1+|u|)^{N}-2} d x \leqslant C_{N}\|u\|_{\frac{N}{2}}^{\frac{N}{2}} \quad \forall u \in W^{2, \frac{N}{2}}\left(\mathbb{R}^{N}\right) \text { with }\|\Delta u\|_{\frac{N}{2}} \leqslant 1
$$

where

- $\exp _{k}(\mathrm{t}):=e^{\mathrm{t}}-\sum_{j=0}^{k} \frac{\mathrm{t}^{j}}{\mathfrak{j}!}, \quad \mathrm{k} \in \mathbb{N}$
- $\lceil x\rceil$ denotes the smallest integer grater than or equal to $x \in \mathbb{R}$
- $\beta_{N, 2}$ is the sharp exponent of Adams' inequality on bounded domains
(See Lu-Tang-Zhu for the case $N \geqslant 3$ - In particular, the case $N=3$ reveals some non-trivial technical difficulties!)

Adams' inequality: the second order Lorentz-Sobolev case

Let $\Omega \subset \mathbb{R}^{N}, N \geqslant 3$, be a bounded domain.

- D. R. Adams (1988): There exists $\mathrm{C}_{\mathrm{N}}>0$ such that

$$
\sup _{u \in e_{0}^{\infty}(\Omega),\|\Delta u\|_{\frac{N}{2}} \leqslant 1} \int_{\Omega} e^{\alpha| | u \mid N^{N-2}} d x \begin{cases}\leqslant C_{N}|\Omega| & \forall \alpha \leqslant \beta_{N, 2}, \\ =+\infty & \forall \alpha>\beta_{N, 2} .\end{cases}
$$

- A. Alberico (2008):

Theorem [Masmoudi, S. 2017]

Adams' inequality: the second order Lorentz-Sobolev case

 Let $\Omega \subset \mathbb{R}^{N}, N \geqslant 3$, be a bounded domain.- D. R. Adams (1988): There exists $\mathrm{C}_{\mathrm{N}}>0$ such that

$$
\sup _{u \in C_{0}^{\infty}(\Omega),\|\Delta u\|_{\frac{N}{2}} \leqslant 1} \int_{\Omega} e^{\alpha|u|{ }^{N}-2} d x \begin{cases}\leqslant C_{N}|\Omega| & \forall \alpha \leqslant \beta_{N, 2}, \\ =+\infty & \forall \alpha>\beta_{N, 2} .\end{cases}
$$

- A. Alberico (2008): Let $1<\mathrm{q}<+\infty$. There exists $\mathrm{C}_{\mathrm{N}, \mathrm{q}}>0$ such that

$$
\sup _{u \in e_{0}^{\infty}(\Omega),\|\Delta u\| \frac{N}{2}, q} \leqslant 1 \int_{\Omega} e^{\alpha|u| \frac{q}{q-1}} d x \begin{cases}\leqslant C_{N, q}|\Omega| & \forall \alpha \leqslant \beta_{N, 2, q}, \\ =+\infty & \forall \alpha>\beta_{N, 2, q},\end{cases}
$$

where

$$
\|\Delta u\|_{\frac{\mathrm{N}}{2}, \mathrm{q}}^{\mathrm{q}}:=\int_{0}^{+\infty}\left(\mathrm{t}^{\frac{2}{N}}|\Delta \mathfrak{u}|^{*}\right)^{q} \frac{\mathrm{dt}}{\mathrm{t}}
$$

and

$$
\beta_{N, 2, q}:=\left[\beta_{N, 2}\right]^{\frac{N-2}{N}} \frac{q}{q-1}
$$

Theorem Masmoudi, S. 2017

Adams' inequality: the second order Lorentz-Sobolev case

 Let $\Omega \subset \mathbb{R}^{N}, N \geqslant 3$, be a bounded domain.- D. R. Adams (1988): There exists $C_{N}>0$ such that

$$
\sup _{u \in \in_{0}^{\infty}(\Omega),\|\Delta u\|_{\frac{N}{2}} \leqslant 1} \int_{\Omega} e^{\left.\alpha|u|\right|^{N}-2} d x \begin{cases}\leqslant C_{N}|\Omega| & \forall \alpha \leqslant \beta_{N, 2}, \\ =+\infty & \forall \alpha>\beta_{N, 2} .\end{cases}
$$

- A. Alberico (2008): Let $1<\mathrm{q}<+\infty$. There exists $\mathrm{C}_{\mathrm{N}, \mathrm{q}}>0$ such that

$$
\sup _{u \in e_{0}^{\infty}(\Omega),\|\Delta u\|_{\frac{N}{2}, q} \leqslant 1} \int_{\Omega} e^{\alpha|u|^{\frac{q}{q-1}}} \mathrm{~d} x \begin{cases}\leqslant C_{N, q}|\Omega| & \forall \alpha \leqslant \beta_{N, 2, q}, \\ =+\infty & \forall \alpha>\beta_{N, 2, q},\end{cases}
$$

where

$$
\|\Delta u\|_{\frac{\mathrm{N}}{2}, \mathrm{q}}^{\mathrm{q}}:=\int_{0}^{+\infty}\left(\mathrm{t}^{\frac{2}{N}}|\Delta \mathfrak{u}|^{*}\right)^{q} \frac{\mathrm{dt}}{\mathrm{t}}
$$

and

$$
\beta_{N, 2, q}:=\left[\beta_{N, 2}\right]^{\frac{N-2}{N}} \frac{q}{q-1}
$$

Theorem [Masmoudi, S. 2017]

Let $1<\mathrm{q}<+\infty$. There exists $\mathrm{C}_{\mathrm{N}, \mathrm{q}}>0$ such that

$$
\int_{\mathbb{R}^{N}} \frac{\exp _{\lceil q-2\rceil}\left\{\beta_{N, 2, q}|u|^{\frac{q}{q-1}}\right\}}{(1+|u|)^{\frac{q}{q-1}}} d x \leqslant C_{N, q}\|u\|_{q}^{q} \quad \forall u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{N}\right) \text { with }\|\Delta u\|_{\frac{N}{2}, q} \leqslant 1
$$

Adams' inequality with the exact growth condition: the higher order Sobolev case

Let

$$
\nabla^{m} u:= \begin{cases}(-\Delta)^{\frac{m}{2}} u & \text { if } m \text { is even } \\ \nabla(-\Delta)^{\frac{m-1}{2}} u & \text { if } m \text { is odd }\end{cases}
$$

Theorem [Masmoudi, S. 2017]

Let m be a positive integer with $2<\mathrm{m}<\mathrm{N}$. Then
$\int_{\mathbb{R}^{N}} \frac{\exp _{\left[\frac{N}{m}-2\right\rceil}\left\{\beta_{N, m}|u|^{N-m}\right\}}{(1+|u|)^{\frac{N}{N-m}}} d x \leqslant C_{N, m}\|u\|_{\frac{N}{m}}^{\frac{N}{m}} \quad \forall u \in W^{m, \frac{N}{m}}\left(\mathbb{R}^{N}\right),\left\|\nabla^{m} u\right\|_{\frac{N}{m}} \leqslant 1$.
The above inequality fails if the power $\frac{N}{N-m}$ in the denominator is replaced with any $p<\frac{N}{N-m}$.

Idea: It is possible to reach a limiting sharp higher order inequality exploiting refined limiting and non-limiting second order inequalities.

Adams' inequality with the exact growth condition: the higher order Sobolev case

Let

$$
\nabla^{m} u:= \begin{cases}(-\Delta)^{\frac{m}{2}} u & \text { if } m \text { is even } \\ \nabla(-\Delta)^{\frac{m-1}{2}} u & \text { if } m \text { is odd }\end{cases}
$$

Theorem [Masmoudi, S. 2017]

Let m be a positive integer with $2<\mathrm{m}<\mathrm{N}$. Then

$$
\int_{\mathbb{R}^{N}} \frac{\exp _{\left[\frac{N}{m}-27\right.}\left\{\beta_{N, m}|u|^{\frac{N}{-m}}\right\}}{(1+|u|)^{N} \frac{N}{m}} d x \leqslant C_{N, m}\|u\|_{\frac{N}{m}}^{\frac{N}{m}} \quad \forall u \in W^{m, \frac{N}{m}}\left(\mathbb{R}^{N}\right),\left\|\nabla^{m} u\right\|_{\frac{N}{m}} \leqslant 1
$$

The above inequality fails if the power $\frac{N}{N-m}$ in the denominator is replaced with any $p<\frac{N}{N-m}$.

Idea: It is possible to reach a limiting sharp higher order inequality exploiting refined limiting and non-limiting second order inequalities.

Non-limiting sharp embeddings for Lorentz-Sobolev spaces

Theorem [Alvino 1977]

Assume $1 \leqslant p<N$ and $1 \leqslant q \leqslant p$. Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain,

$$
\text { if } p^{*}:=\frac{N p}{N-p} \Rightarrow\|u\|_{p^{*}, q} \leqslant \frac{p}{N-p}\left(\frac{N}{\omega_{N-1}}\right)^{\frac{1}{n}}\|\nabla u\|_{p, q} \quad \forall u \in W_{0}^{1} L^{p, q}(\Omega) .
$$

Theorem [Tarsi 2012]

Assume $\mathrm{N}>2,1<\mathrm{p}<\mathrm{N} / 2$ and $\mathrm{q}>1$. Let $\Omega \subset \mathbb{R}^{\mathrm{N}}$ be a bounded domain and let

$$
\text { if } \mathfrak{p}^{*}:=\frac{N p}{N-2 p} \quad \Rightarrow \quad\|u\|_{p^{*}, q} \leqslant l_{N, p}\|\Delta u\|_{p, q} \quad \forall u \in W^{2} L^{p, q}(\Omega) \cap W_{0}^{1} L^{p, q}(\Omega),
$$

where $l_{N, p}$ is explicitly known.
As a by-product of the argument introduced by Tarsi: if $2<m<N$, we have

$$
\|\Delta u\|_{\frac{N}{2}, \frac{N}{m}} \leqslant \alpha_{N, m}\left\|\nabla^{m} \mathfrak{u}\right\|_{\frac{N}{m}} \quad \forall u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{N}\right)
$$

where

$$
\alpha_{\mathrm{N}, \mathrm{~m}}:=\frac{\beta_{\mathrm{N}, 2}^{(\mathrm{N}-2) / \mathrm{N}}}{\beta_{\mathrm{N}, \mathrm{~m}}^{(\mathrm{N}-\mathrm{m}) / \mathrm{N}}}
$$

Non-limiting sharp embeddings for Lorentz-Sobolev spaces

Theorem [Alvino 1977]

Assume $1 \leqslant p<N$ and $1 \leqslant q \leqslant p$. Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain,

$$
\text { if } p^{*}:=\frac{N p}{N-p} \Rightarrow\|u\|_{p^{*}, q} \leqslant \frac{p}{N-p}\left(\frac{N}{\omega_{N-1}}\right)^{\frac{1}{n}}\|\nabla u\|_{p, q} \quad \forall u \in W_{0}^{1} L^{p, q}(\Omega) .
$$

Theorem [Tarsi 2012]

Assume $\mathrm{N}>2,1<\mathrm{p}<\mathrm{N} / 2$ and $\mathrm{q}>1$. Let $\Omega \subset \mathbb{R}^{\mathrm{N}}$ be a bounded domain and let

$$
\text { if } \mathfrak{p}^{*}:=\frac{N p}{N-2 p} \quad \Rightarrow \quad\|u\|_{p^{*}, q} \leqslant l_{N, p}\|\Delta u\|_{p, q} \quad \forall u \in W^{2} L^{p, q}(\Omega) \cap W_{0}^{1} L^{p, q}(\Omega),
$$

where $l_{N, p}$ is explicitly known.
As a by-product of the argument introduced by Tarsi: if $2<m<N$, we have

$$
\|\Delta u\|_{\frac{N}{2}, \frac{N}{m}} \leqslant \alpha_{N, m}\left\|\nabla^{m} \mathfrak{u}\right\|_{\frac{N}{m}} \quad \forall u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{N}\right)
$$

where

$$
\alpha_{N, m}:=\frac{\beta_{N, 2}^{(N-2) / \mathrm{N}}}{\beta_{\mathrm{N}, \mathrm{~m}}^{(\mathrm{N}-\mathrm{m}) / \mathrm{N}}}
$$

Adams inequality with the exact growth:sketch of the proof

Summarizing, if $2<\mathrm{m}<\mathrm{N}$

$$
\|\Delta u\|_{\frac{N}{2}, \frac{N}{m}} \leqslant \frac{\beta_{N, 2}^{(N-2) / N}}{\beta_{N, m}^{(N-m) / N}}\left\|\nabla^{m} u\right\|_{\frac{N}{m}} \quad \forall u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{N}\right)
$$

Adams inequality with the exact growth:sketch of the proof

Summarizing, if $2<\mathrm{m}<\mathrm{N}$

$$
\|\Delta u\|_{\frac{N}{2}, \frac{N}{m}} \leqslant \frac{\beta_{N, 2}^{(N-2) / N}}{\beta_{N, m}^{(N-m) / N}}\left\|\nabla^{m} u\right\|_{\frac{N}{m}} \quad \forall u \in \mathfrak{C}_{0}^{\infty}\left(\mathbb{R}^{N}\right)
$$

(1) Let $\mathfrak{u} \in \mathfrak{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ be such that $\left\|\nabla^{m} \mathfrak{u}\right\|_{\frac{N}{m}} \leqslant 1$ and set

$$
v:=\frac{\beta_{N, m}^{(N-m) / N}}{\beta_{N, 2}^{(N-2) / N}} u, \quad \text { so that } \quad\|\Delta v\|_{\frac{N}{2}, \frac{N}{m}} \leqslant 1
$$

Adams inequality with the exact growth:sketch of the proof

Summarizing, if $2<\mathrm{m}<\mathrm{N}$

$$
\|\Delta u\|_{\frac{N}{2}, \frac{N}{m}} \leqslant \frac{\beta_{N, 2}^{(N-2) / N}}{\beta_{N, m}^{(N-m) / N}}\left\|\nabla^{m} u\right\|_{\frac{N}{m}} \quad \forall u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{N}\right)
$$

(1) Let $u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ be such that $\left\|\nabla^{m} u\right\|_{\frac{N}{m}} \leqslant 1$ and set

$$
v:=\frac{\beta_{N, m}^{(N-m) / N}}{\beta_{N, 2}^{(N-2) / N}} u, \quad \text { so that } \quad\|\Delta v\|_{\frac{N}{2}, \frac{N}{m}} \leqslant 1
$$

(2) $\int_{\mathbb{R}^{N}} \frac{\exp _{\left\lceil\frac{N}{m}-2\right\rceil}\left\{\beta_{N, m}|u|^{N-m}\right\}}{(1+|u|)^{N-m}} d x \lesssim \int_{\mathbb{R}^{N}} \frac{\exp _{\left\lceil\frac{N}{m}-2\right\rceil}\left\{\beta_{N, 2}^{(N-2) /(N-m)}|v|^{N-m}\right\}}{(1+|v|)^{N} \frac{N-m}{N-m}} d x$

Adams inequality with the exact growth:sketch of the proof

Summarizing, if $2<\mathrm{m}<\mathrm{N}$

$$
\|\Delta u\|_{\frac{N}{2}, \frac{N}{m}} \leqslant \frac{\beta_{N, 2}^{(N-2) / N}}{\beta_{N, m}^{(N-m) / N}}\left\|\nabla^{m} u\right\|_{\frac{N}{m}} \quad \forall u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{N}\right)
$$

(1) Let $u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ be such that $\left\|\nabla^{m} u\right\|_{\frac{N}{m}} \leqslant 1$ and set

$$
v:=\frac{\beta_{N, m}^{(N-m) / N}}{\beta_{N, 2}^{(N-2) / N}} u, \quad \text { so that } \quad\|\Delta v\|_{\frac{N}{2}, \frac{N}{m}} \leqslant 1
$$

(2) $\int_{\mathbb{R}^{N}} \frac{\exp _{\left\lceil\frac{N}{m}-2\right\rceil}\left\{\beta_{N, m}|u|^{N-m}\right\}}{(1+|u|)^{N-m}} d x \lesssim \int_{\mathbb{R}^{N}} \frac{\exp _{\left\lceil\frac{N}{m}-2\right\rceil}\left\{\beta_{N, 2}^{(N-2) /(N-m)}|v|^{N-m}\right\}}{(1+|v|)^{N} \frac{N-m}{N-m}} d x$

$$
\left(\beta_{N, 2, \frac{N}{m}}=\left[\beta_{N, 2}\right]^{\frac{N-2}{N} \frac{N}{N-m}}\right)=\int_{\mathbb{R}^{N}} \frac{\exp _{\left\lceil\frac{N}{m}-2\right\rceil}\left\{\beta_{N, 2, \frac{N}{m}}|v|^{\frac{N}{N-m}}\right\}}{(1+|v|)^{N-m}} d x
$$

Adams inequality with the exact growth:sketch of the proof

Summarizing, if $2<\mathrm{m}<\mathrm{N}$

$$
\|\Delta u\|_{\frac{N}{2}, \frac{N}{m}} \leqslant \frac{\beta_{N, 2}^{(N-2) / N}}{\beta_{N, m}^{(N-m) / N}}\left\|\nabla^{m} u\right\|_{\frac{N}{m}} \quad \forall u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{N}\right)
$$

(1) Let $u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ be such that $\left\|\nabla^{m} u\right\|_{\frac{N}{m}} \leqslant 1$ and set

$$
v:=\frac{\beta_{N, m}^{(N-m) / N}}{\beta_{N, 2}^{(N-2) / N}} u, \quad \text { so that } \quad\|\Delta v\|_{\frac{N}{2}, \frac{N}{m}} \leqslant 1
$$

(2) $\int_{\mathbb{R}^{N}} \frac{\exp _{\left\lceil\frac{N}{m}-2\right\rceil}\left\{\beta_{N, m}|u|^{N-m}\right\}}{(1+|u|)^{N-m}} d x \lesssim \int_{\mathbb{R}^{N}} \frac{\exp _{\left\lceil\frac{N}{m}-2\right\rceil}\left\{\beta_{N, 2}^{(N-2) /(N-m)}|v|^{N-m}\right\}}{(1+|v|)^{N-m} N^{N-m}} d x$

$$
\left(\beta_{N, 2, \frac{N}{m}}=\left[\beta_{N, 2}\right]^{\frac{N-2}{N} \frac{N}{N-m}}\right)=\int_{\mathbb{R}^{N}} \frac{\exp _{\left\lceil\frac{N}{m}-2\right\rceil}\left\{\beta_{N, 2, \frac{N}{m}}|v|^{N-m}\right\}}{(1+|v|)^{N-m}} d x
$$

Remark:

$$
\int_{\mathbb{R}^{N}} \frac{\exp _{\lceil q-2\rceil}\left\{\beta_{N, 2, q}|u|^{\frac{q}{q-1}}\right\}}{(1+|u|)^{\frac{q}{q-1}}} d x \leqslant C_{N, q}\|u\|_{q}^{q} \quad \forall u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{N}\right) \text { with }\|\Delta u\|_{\frac{N}{2}, q} \leqslant 1
$$

Thank you!

