

4 Let's consider our new infinite sum:

$$\frac{1}{3} + \frac{1}{9} + \dots + \frac{1}{3^n} + \dots$$

While we can't compute this sum by hand, we can compute a **partial sum**:

 $S_k = \frac{1}{3} + \frac{1}{9} + ... + \frac{1}{3^k}$

Use Desmos to compute the third partial sum, S_3 .

Enter your answer as a decimal, rounding to the nearest hundredths place (e.g., 2/3 would be entered as 0.67).

Desmos: partial sums

Findings.

Given an infinite *sequence* of numbers:

 a_1, a_2, a_3, \dots

we can define an infinite sum called a series using a limit:

$$\lim_{k\to\infty}\sum_{n=0}^k a_n = \sum_{n=0}^\infty a_n$$

That is, a series is the limit of the sequence of **partial sums**:

$$S_{1} = a_{1}$$

$$S_{2} = a_{1} + a_{2}$$

$$S_{3} = a_{1} + a_{2} + a_{3}$$

$$\vdots$$

$$S_{k} = a_{1} + a_{2} + a_{3} + \dots + a_{k}$$

5 Think about it... Desmos gives us a good indication that

1	1	1	. 1	1
3	+ <u>-</u> -	+ 77 -	$+ + \frac{1}{3^n} + =$	2

Can we mathematically justify this is true?

6 What questions do you have about this exploration? Is there anything interesting or confusing that you'd like to talk about in class?