11.2 Explore Series

LEARNING GOALS:

Define a series.Define a partial sum."That which is in locomotion must arrive at the half-way stage before it arrives at the goal."

How far have we gone after n steps of Zeno's journey from 0 to 1 ?
(a) $S_{n}=a_{1}+a_{2}+\ldots+a_{n}$
(b) $S_{n}=\frac{1}{2}+\frac{1}{4}+\ldots+\frac{1}{2^{n}}$
(c) $S_{n}=1-\frac{1}{2^{n}}$
(d) All of the above.

$$
\rightarrow a_{n}=\text { the } n^{\text {th }} \text { step }
$$

1 Recall Zeno's paradox
"That which is in locomotion must arrive at the half-way stage before it arrives at the goal."

We get from 0 to 1 on the number line by an infinite sequence of intermediate steps. How long is the $n^{\text {th }}$ step of Zeno's journey?
(a) $a_{n}=\frac{1}{2 n}$
(b) $a_{n}=\frac{1}{2^{n}}$
(c) $a_{n}=\frac{1}{n^{2}}$
(d) $a_{n}=\frac{1}{2}+\frac{1}{4}+\ldots+\frac{1}{2^{n}}$

3 Suppose Zeno had a slightly different insight, where each step is $1 / 3$ the length of the previous step.

Think about it...

Would we make it all the way to the goal using this plan?

4 Let's consider our new infinite sum:

$$
\frac{1}{3}+\frac{1}{9}+\ldots+\frac{1}{3^{n}}+\ldots
$$

While we can't compute this sum by hand, we can compute a partial sum:

$$
S_{k}=\frac{1}{3}+\frac{1}{9}+\ldots+\frac{1}{3^{k}}
$$

Use Desmos to compute the third partial sum, S_{3}.
Enter your answer as a decimal, rounding to the nearest hundredths place (e.g., $2 / 3$ would be entered as 0.67).

Desmos: partial sums

Findings.

Given an infinite sequence of numbers:

$$
a_{1}, a_{2}, a_{3}, \ldots
$$

we can define an infinite sum called a series using a limit:

$$
\lim _{k \rightarrow \infty} \sum_{n=0}^{k} a_{n}=\sum_{n=0}^{\infty} a_{n}
$$

That is, a series is the limit of the sequence of partial sums:

$$
\begin{aligned}
S_{1} & =a_{1} \\
S_{2} & =a_{1}+a_{2} \\
S_{3} & =a_{1}+a_{2}+a_{3} \\
& \vdots \\
S_{k} & =a_{1}+a_{2}+a_{3}+\ldots+a_{k}
\end{aligned}
$$

5 Think about it...
Desmos gives us a good indication that

$$
\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\ldots+\frac{1}{3^{n}}+\ldots=\frac{1}{2}
$$

Can we mathematically justify this is true?

6 What questions do you have about this exploration? Is there anything interesting or confusing that you'd like to talk about in class?

