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Some Distribution Theorems for the Riemann Zeta
Function



Bohr-Jessen Theorem

Theorem (1932)

Let E be a fixed rectangle in the complex plane whose sides are
parallel to the real and imaginary axes, and let σ > 1

2 be a fixed
real number. Then the limit

lim
T→∞

1

2T
meas ({−T ≤ t ≤ T ; log ζ(σ + it) ∈ E})

exists.



Selberg Theorem

Theorem (1949, unpublished)

For E ⊂ C, we have

lim
T→∞

1

2T
meas

−T ≤ t ≤ T ;
log ζ(1/2 + it)√

1
2 log log T

∈ E


 =

1

2π

∫∫
E
e−

1
2

(x2+y2)dxdy.



Distribution Theorems for Dirichlet and Hecke
L-functions



The Case of the Fundamental Discriminant

If d is a fundamental discriminant, we set

Ld(s) = L(s, (d/.)) =

∞∑
n=1

( dn)

ns
,

where ( dn) is the Kronecker symbol.



Chowla-Erdos Theorem

Theorem (1951)

If σ > 3/4, we have

lim
x→∞

#{0 < d ≤ x; d ≡ 0, 1 (mod 4) and Ld(σ) ≤ z}
x/2

= G(z)

exists. Furthermore G(0) = 0, G(∞) = 1, and G(z), the
distribution function, is a continuous and strictly increasing
function of z.



Elliott Theorem

Theorem (1970)

There is a distribution function F (z) such that

#{0 < −d ≤ x; d ≡ 0, 1 (mod 4) and Ld(1) < ez}
x/2

= F (z) + O

(√
log log x

log x

)

holds uniformly for all real z, and real x ≥ 9. F (z) has a probability
density, may be differentiated any number of times, and has the
characteristic function

φF (y) =
∏
p

(
1

p
+

1

2

(
1−

1

p

)(
1−

1

p

)−iy
+

1

2

(
1−

1

p

)(
1 +

1

p

)−iy)

which belongs to the Lebesgue class L(−∞,∞).



Granville-Soundararajan Theorem

In 2003, Granville and Soundararajan investigated the distribution
of values of Ld(1) as d varies over all fundamental discriminants
with |d| ≤ x. They followed the approach of probabilistic random
models.

A weaker version of their results implies that the proportion of
fundamental discriminants d with |d| ≤ x such that Ld(1) ≥ eγτ
decays doubly exponentially in τ = log log x (i.e. is between
exp(−B eτ

τ ) and exp(−A eτ

τ ) for some absolute constants
0 < A < B) and similarly for the low extreme values (i.e.

Ld(1) ≤ ζ(2)
eγτ ).
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Random Euler products

The idea of Elliott and then Granville-Soundararajan is to compare
the distribution of the values Ld(1) with the distribution of

L(1, X) =
∏
p

(
1−X(p)p−1

)−1
where the X(p)’s are

independent random variables given by:

X(p) =


0 with probability 1/(p+ 1);

1 with probability p/2(p+ 1);

−1 with probability p/2(p+ 1).

Then
E [(L(1, X;x)z] =

∏
p≤x

E
[(

1−X(p)p−1
)−z]

=
∏
p≤x

(
1

p+ 1
+

1

2

(
1− 1

p+ 1

)(
1− 1

p

)−z
+

1

2

(
1− 1

p+ 1

)(
1 +

1

p

)−z)
.



Ihara-Matsumoto’s Work

Let k be Q or an imaginary quadratic field, and let f ⊂ Ok be an
ideal.
Consider characters χ of Hf = If/Pf.

Consider L(s, χ) where L is either L′

L (s, χ) or logL(s, χ).

Theorem (2011)

Let σ := <(s) ≥ 1/2 + ε be fixed, and let |dw| = (dxdy)/2π.
Assume the GRH. Then there exists a density function Mσ(w)
such that

lim
N(f)→∞
f prime

1

|Ĥ ′f |
#{χ ∈ Ĥ ′f : L(s, χf) ∈ S} =

∫
S
Mσ(w) |dw|,

if S ⊂ C is either compact or complement of a compact set.
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Ihara-Matsumoto M-Function

The density function Mσ(w) and the function M̃σ(z) are Fourier
duals:

M̃σ(z) =
∑
a⊂Ok

λz(a)λz(a)N(a)−2σ.
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Mourtada-Murty Theorem

Theorem (2015)

Let σ ≥ 1/2 + ε, and assume GRH. Let F(Y ) denote the set of the
fundamental discriminants in the interval [−Y, Y ] and let
N(Y ) = #F(Y ). Then, there exists a probability density function
Mσ, such that

lim
Y→∞

1

N(Y )
#{d ∈ F(Y );

(
L′d/Ld

)
(σ) ≤ z} =

∫ z

−∞
Mσ(t)dt.

Moreover, the characteristic function ϕFσ(y) of the asymptotic
distribution function Fσ(z) =

∫ z
−∞Mσ(t)dt is given by

ϕFσ (y) =
∏
p

(
1

p + 1
+

p

2(p + 1)
exp

(
−
iy log p

pσ − 1

)
+

p

2(p + 1)
exp

(
iy log p

pσ + 1

))
.



A Value-Distribution Result for Cubic Hecke
L-functions



The Setup

Let k = Q(ζ3) and Ok = Z[ζ3] be its ring of integers.

k has class number 1, and any ideal a in Ok with
(a, 3Ok) = 1 has a unique generator a, with a ≡ 1 (mod 3).

The 〈c〉-ray class group of k is denoted by
H(〈c〉) = I(〈c〉)/P (〈c〉).

For χc ∈ Ĥ〈c〉 and <(s) > 1, let

L(s, χc) =
∑
a

χc(a)

N(a)s
,

be the Hecke L-function associated with the Hecke character
χc. For a non-trivial χc, this L-function has an analytic
continuation to the whole complex plane.
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The family C

Consider the set

C := {c ∈ Ok; c 6= 1 is square free and c ≡ 1 (mod 〈9〉)}.

Useful Estimate:

N∗(Y ) =
∑
c∈C

exp

(
−N(c)

Y

)
∼ 3ress=1ζk(s)

4|H〈9〉|ζk(2)
Y.

One can show that, for c ∈ C, the cubic residue symbol
χc(.) = ( .c)3 is an ideal class (Hecke) character.
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The Setup

For c ∈ C and χc(·) = ( c· ), let

Lc(s) = L(s, χc)L(s, χ̄c).

For <(s) > 1, we have

Lc(s) =
32s

(3s − 1)2

∑
a,b

a≡1 (mod 〈3〉)
b≡1 (mod 〈3〉)

(
c
a

)
3

¯( c
b

)
3

N(ab)s
.

We set

Lc(s) =

{
logLc(s) (Case 1),

(L′c/Lc)(s) (Case 2).
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The function Lc(s)

Another look at Lc(s):
The function Lc(s) is the quotient of the Dedekind zeta functions
associated with the extension k(c1/3)/k. In other words,

Lc(s) =
ζk(c1/3)(s)

ζk(s)
.

The classical Ld(s):
The quotient of the Dedekind zeta functions associated with the
extension Q(

√
d)/Q is

Ld(s) =
ζQ(
√
d)(s)

ζ(s)
.
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The Problem

Let z be a real number, and let σ > 1
2 be fixed. Does Lc(σ)

possess an asymptotic distribution function Fσ? We are interested
in studying the asymptotic behaviour as Y →∞ of

1

N (Y )
#{c ∈ C : N(c) ≤ Y and Lc(σ) ≤ z}.



The Main Result

Theorem (Akabry - H.)

Let σ ≥ 1/2 + ε. Let N (Y ) be the the number of elements c ∈ C
with norm not exceeding Y . There exists a smooth density
function Mσ such that

lim
Y→∞

1

N (Y )
# {c ∈ C : N(c) ≤ Y and Lc(σ) ≤ z} =

∫ z

−∞
Mσ(t) dt.

The asymptotic distribution function Fσ(z) =
∫ z
−∞Mσ(t) dt can

be constructed as an infinite convolution over prime ideals p of k,

Fσ(z) = *p Fσ,p(z),



The Main Result

Theorem (Continuation)

Moreover, the density function Mσ can be constructed as the
inverse Fourier transform of the characteristic function ϕFσ(y),
which in (Case 1) is given by

ϕFσ (y) = exp
(
−2iy log(1− 3

−σ
)
)

∏
p-〈3〉

 1

N(p) + 1
+

1

3

N(p)

N(p) + 1

2∑
j=0

exp

(
−2iy log

∣∣∣∣∣1− ζ
j
3

N(p)σ

∣∣∣∣∣
)

and in (Case 2) is given by

ϕFσ (y) = exp

(
−2iy

log 3

3σ − 1

)
∏

p-〈3〉

 1

N(p) + 1
+

1

3

N(p)

N(p) + 1

2∑
j=0

exp

(
−2iy<

(
ζ
j
3 log N(p)

N(p)σ − ζj3

)) .



The case σ = 1

Theorem (Brauer-Siegel)

If K ranges over a sequence of number fields Galois over Q, degree
NK and absolute value of discriminant |DK |, such that
NK/ log |DK | tends to 0, then we have

log(hKRK) ∼ log |DK |1/2,

where hK is the class number of K, and RK is the regulator of K.



The case σ = 1

By the class number formula we know that

Lc(1) =
(2π)2

√
3hcRc√
|Dc|

,

where hc, Rc, and Dc = (−3)5(N(c))2 are respectively the
class number, the regulator, and the discriminant of the cubic
extension Kc = k(c1/3).

By the Brauer-Siegel theorem

log (hcRc) ∼ log |Dc|1/2,

as N(c)→∞.



The case σ = 1

Corollary

Let E(c) = log (hcRc)− log |Dc|1/2. Then

lim
Y→∞

1

N (Y )
# {c ∈ C : N(c) ≤ Y and E(c) ≤ z} =

∫ z̄

−∞
M1(t) dt,

where z̄ = z + log(4
√

3π2) and M1(t) is the smooth function described

in the main result (Case 1) for σ = 1.



The case σ = 1

The Euler-Kronecker constant of a number field K is defined
by

γK = lim
s→1

(
ζ ′K(s)

ζK(s)
+

1

s− 1

)
.

We have
L′c(1)

Lc(1)
= γKc − γk.



The case σ = 1

Corollary

There exists a smooth function M1(t) (as described in the main
result (Case 2) for σ = 1) such that

lim
Y→∞

1

N (Y )
# {c ∈ C : N(c) ≤ Y and γKc ≤ z} =

∫ z̄

−∞
M1(t) dt,

where z̄ = z − γk.



The Key Lemma

Lemma

Let f be a real arithmetic function. Suppose that

lim
N→∞

∞∑
n=1

eiyf(n)e−n/N

∞∑
n=1

e−n/N
= M̃(y),

which is continuous at 0. Then f possesses a distribution function F . In
this case, M̃ is the characteristic function of F .

Moreover, if∣∣∣M̃(y)
∣∣∣ ≤ exp (−η |y|γ) ,

for some η, γ > 0, then F (z) =
∫ z
−∞M(t)dt for a smooth function M ,

where

M(z) = (1/2π)

∫
R

exp (−izy) M̃(y)dy.
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The Steps of The Proof

Step One: Establishing

limY→∞
1

N ∗(Y )

∑?
c∈C exp (iyLc(σ)) exp(−N(c)/Y ) = M̃σ(y),

- The method is based on the previous works of Luo and
Ihara-Matsumoto.

- A version of Polya-Vinogradov inequality and a version of large
sieve inequality both due to Heath-Brown are two main
ingredients.

- Another ingredient is a zero density estimate proved by
Blomer, Goldmakher, and Louvel.

Step Two: Finding a product formula for M̃σ(y).

Step Three: Proving that M̃σ(y) has exponential decay
following a method devised by Wintner and employed by
Mourtada and Murty.
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Step 1

Proposition

Fix σ ≥ 1/2 + ε and y ∈ R. Then

lim
Y→∞

1

N ∗(Y )

?∑
c∈C

exp (iyLc(σ)) exp(−N(c)/Y ) = M̃σ(y),

where ? means that the sum is over c such that Lc(σ) 6= 0.

The

function M̃σ(y) is given by

∑
r1,r2≥0

λy(〈1− ζ3〉r1)λy(〈1− ζ3〉r2)

3(r1+r2)σ

×
∑

gcd(abm,〈3〉)=1
gcd(a,b)=1

λy(a3m)λy(b3m)

N(a3b3m2)σ
∏

p|abm
p prime

(
1 + N(p)−1

) .
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For <(s) > 1, we have

L(s, χc) =
∏
p

(1− χc(p)N(p)−s)−1

L′

L
(s, χc) = −

∑
p

χc(p) log (N(p)) N(p)−s

1− χc(p)N(p)−s

exp

(
iy
L′

L
(s, χc)

)
=
∏
p

exp

(
− iy log (N(p))χc(p)N(p)−s

1− χc(p)N(p)−s

)
Write exp

(
xt

1−t

)
=
∑∞

r=0Gr(x)tr for (|t| < 1). Hence,

exp

(
iy
L′

L
(s, χc)

)
=
∏
p

∞∑
r=0

Gr (−iy log (N(p)))
(
χc(p)N(p)−s

)r



For <(s) > 1, we have

L(s, χc) =
∏
p

(1− χc(p)N(p)−s)−1

L′

L
(s, χc) = −

∑
p

χc(p) log (N(p)) N(p)−s

1− χc(p)N(p)−s

exp

(
iy
L′

L
(s, χc)

)
=
∏
p

exp

(
− iy log (N(p))χc(p)N(p)−s

1− χc(p)N(p)−s

)
Write exp

(
xt

1−t

)
=
∑∞

r=0Gr(x)tr for (|t| < 1). Hence,

exp

(
iy
L′

L
(s, χc)

)
=
∏
p

∞∑
r=0

Gr (−iy log (N(p)))
(
χc(p)N(p)−s

)r



For <(s) > 1, we have

L(s, χc) =
∏
p

(1− χc(p)N(p)−s)−1

L′

L
(s, χc) = −

∑
p

χc(p) log (N(p)) N(p)−s

1− χc(p)N(p)−s

exp

(
iy
L′

L
(s, χc)

)
=
∏
p

exp

(
− iy log (N(p))χc(p)N(p)−s

1− χc(p)N(p)−s

)

Write exp
(
xt

1−t

)
=
∑∞

r=0Gr(x)tr for (|t| < 1). Hence,

exp

(
iy
L′

L
(s, χc)

)
=
∏
p

∞∑
r=0

Gr (−iy log (N(p)))
(
χc(p)N(p)−s

)r



For <(s) > 1, we have
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∏
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The Arithmetic Function λy

We define λy to be an arithmetic multiplicative function on Ok:

In (Case 1),

λy(p
αp) = Hαp

(
iy

2

)
,

with H0(u) = 1 and Hr(u) =
1

r!

r∏
n=1

(u+ n− 1) .

In (Case 2),

λy(p
αp) = Gαp

(
− iy

2
log N(p)

)
,

with G0(u) = 1 and Gr(u) =
r∑

n=1

1

n!

(
r − 1

n− 1

)
un.

Moreover, for any ε > 0 and all |y| ≤ R, we have

λy(a)�ε,R N(a)ε
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More on Step 1

For σ > 1 we have

exp (iyLc(σ)) =
∑

a,b⊂Ok

λy(a)λy(b)χc(ab
2)

N(ab)σ
.

For 1
2 < σ ≤ 1 and c ∈ Zc we have

exp (iyLc(σ)) =
∑

a,b⊂Ok

λy(a)λy(b)χc(ab
2)

N(a)σN(b)σ
exp

(
−N(ab)

X

)
− 1

2πi

∫
L

exp (iyLc(σ + u)) Γ(u)Xudu,

for an appropriate contour L.
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Figure: The rectangle RY,ε,A

An element c ∈ Zc, if L(s, χc) 6= 0 in RY,ε,A. Otherwise, c ∈ Z.



We prove that

?∑
c∈C

exp (iyLc(σ)) exp(−N(c)/Y )

=
∑
c∈Zc

exp (iyLc(σ)) exp(−N(c)/Y ) +O(Y δ)

= (I)− (II) + (III) +O(Y δ),

with

(I) =
∑
c∈C

 ∑
a,b⊂Ok

λy(a)λy(b)χc(ab
2)

N(a)σN(b)σ
exp

(
−N(ab)

X

) exp

(
−N(c)

Y

)
.



Step 2

Proposition

In (Case 1) we have

M̃σ(y) = exp
(
−2iy log(1− 3

−σ
)
)

×
∏

p-〈3〉

 1

N(p) + 1
+

1

3

(
N(p)

N(p) + 1

)
2∑
j=0

exp

(
−2iy log

∣∣∣∣∣1− ζ
j
3

N(p)σ

∣∣∣∣∣
) .

In (Case 2) we have

M̃σ(y) = exp

(
−2iy

log 3

3σ − 1

)

×
∏

p-〈3〉

 1

N(p) + 1
+

1

3

(
N(p)

N(p) + 1

)
2∑
j=0

exp

(
−2iy<

(
ζ
j
3 log N(p)

N(p)σ − ζj3

)) .



Step 3

Proposition

Let δ > 0 be given, and fix σ > 1
2 . For sufficiently large values of

y, we have ∣∣∣M̃σ(y)
∣∣∣ ≤ exp

(
−C|y|

1
σ
−δ
)
,

where C is a positive constant that depends only on σ and δ.



More on Step 3

Recall in (Case 2)

M̃σ(y) = exp

(
−2iy

log 3

3σ − 1

) ∏
p-〈3〉

M̃σ,p(y),

where

M̃σ,p(y) =
1

N(p) + 1
+

1

3

(
N(p)

N(p) + 1

) 2∑
j=0

exp

(
−2iy log N(p)<

(
ζj3

N(p)σ − ζj3

))
.

We prove that∣∣∣M̃σ,p(y)
∣∣∣ ≤ 1

N(p) + 1
+ 0.3256

(
N(p)

N(p) + 1

)
≤ 0.8256.

for all p with
2y log 2y

2.36σ
≤ N(p)σ ≤ 2y log 2y

1.8σ



The number of prime ideals satisfying this inequality is

Πσ(y)�σ y
1
σ .

It follows that∣∣∣M̃σ(y)
∣∣∣ =

∏
p

∣∣∣M̃σ,p(y)
∣∣∣ ≤ 0.8256Πσ(y) ≤ exp

(
−Cy 1

σ

)
,

where C is a positive constant depending only on σ.
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Πσ(y)�σ y
1
σ .

It follows that∣∣∣M̃σ(y)
∣∣∣ =

∏
p

∣∣∣M̃σ,p(y)
∣∣∣ ≤ 0.8256Πσ(y) ≤ exp

(
−Cy 1

σ

)
,

where C is a positive constant depending only on σ.



Thank you for listening!


