W-constraints in enumerative geometry

Nitin K. Chidambaram

University of Alberta

May 12, 2019

arXiv:1812.08738 joint work with G. Borot, V. Bouchard, T. Creutzig and D. Noschenko

Main question

Virasoro constraints and their cousins W-constraints appear in various enumerative contexts.

Can we find a general framework to understand and generate such constraints?

Virasoro constraints

Virasoro algebra : L_i , $i \in \mathbb{Z}$, $c \in \mathbb{C}$

$$[L_i, L_j] = (i - j)L_{i+j} + \frac{c}{12}(i^3 - i)\delta_{i+j,0}.$$

Virasoro constraints

Virasoro algebra : L_i , $i \in \mathbb{Z}$, $c \in \mathbb{C}$

$$[L_i, L_j] = (i - j)L_{i+j} + \frac{c}{12}(i^3 - i)\delta_{i+j,0}.$$

Generating functions $Z(x_1, x_2, \cdots)$ of enumerative invariants often satisfy Virasoro constraints $L_i(x_a, \partial_{x_b})$:

$$L_i Z = 0, i \geq 0.$$

Examples of Virasoro constraints

Intersection numbers on $\overline{\mathcal{M}}_{g,n}$ (2g+n-2>0)

$$F_{g,n}(k_1,\cdots,k_n):=\int_{\overline{\mathcal{M}}_{g,n}}\psi_1^{k_1}\psi_2^{k_2}\cdots\psi_n^{k_n}$$

Examples of Virasoro constraints

Intersection numbers on $\overline{\mathcal{M}}_{g,n}$ (2g+n-2>0)

$$F_{g,n}(k_1,\cdots,k_n):=\int_{\overline{\mathcal{M}}_{g,n}}\psi_1^{k_1}\psi_2^{k_2}\cdots\psi_n^{k_n}$$

$$Z = \exp \left(\sum_{\substack{g \geq 0, n \geq 1, 2g + n - 2 > 0 \\ k_i \geq 0}} \frac{\hbar^{g-1}}{n!} F_{g,n}(k_1, \dots, k_n) x_{k_1} \dots x_{k_l} \right)$$

is the unique solution to certain Virasoro constraints $L_i(x_a, \partial_{x_b})$. Witten-Kontsevich, Dijkgraaf-Verlinde

Examples of Virasoro constraints

- (Mironov-Morozov-Semenoff) BGW tau function
- (Faber-Shadrin-Zvonkine) r-spin intersection theory
- (conj. Eguchi-Hori-Xiong) Gromov-Witten theory
- (Milanov) Eynard-Orantin topological recursion

Topological recursion

- Introduced by Eynard-Orantin ('07), generalized by Bouchard-Eynard('13)
- **Input** : spectral curve $(C, x, \omega_{0,1}, \omega_{0,2})$
- ullet C : Riemann surface , x : meromorphic function on $\mathcal C$

Topological recursion

- Introduced by Eynard-Orantin ('07), generalized by Bouchard-Eynard('13)
- **Input** : spectral curve $(C, x, \omega_{0,1}, \omega_{0,2})$
- ullet C : Riemann surface , x : meromorphic function on ${\mathcal C}$
- **Output** : Recursively constructs $\omega_{g,n}$ meromorphic differentials on $C^{\times n}$

Topological recursion

- Introduced by Eynard-Orantin ('07), generalized by Bouchard-Eynard('13)
- **Input** : spectral curve $(C, x, \omega_{0,1}, \omega_{0,2})$
- ullet C : Riemann surface , x : meromorphic function on $\mathcal C$
- **Output** : Recursively constructs $\omega_{g,n}$ meromorphic differentials on $C^{\times n}$
- $\omega_{g,n}$ counts r-spin intersection numbers, Hurwitz numbers, Gromov-Witten invariants of toric threefolds etc. (all related to $\overline{\mathcal{M}}_{g,n}$)

Bouchard-Eynard topological recursion

Example (*r*-Airy curve)

$$\mathcal{C} = \mathbb{C}_z$$
, $x = \frac{1}{r}z^r$, $W_{0,1} = z^r dz$ $W_{0,2}(z_1, z_2) = \frac{dz_1 \otimes dz_2}{(z_1 - z_2)^2}$

The $\omega_{g,n}$ constructed by the topological recursion counts r-spin intersection numbers on $\overline{\mathcal{M}}_{g,n}^{(r)}$.

W-algebras

 W-algebras are "non-linear" extensions of Virasoro algebras (examples of vertex algebras)

W-algebras

- W-algebras are "non-linear" extensions of Virasoro algebras (examples of vertex algebras)
- **Example**: $W_3 = W(\mathfrak{sl}_3)$ is generated by L_i and W_j , $i, j \in \mathbb{Z}$

$$[L_{i}, L_{j}] = (i - j)L_{i+j} + \frac{c}{12}(i^{3} - i)\delta_{i+j,0}$$

$$[L_{i}, W_{j}] = (i - 2j)W_{i+j}$$

$$[W_{i}, W_{j}] = a\delta_{i+j,0} + bL_{i+j} + d\sum_{m+n=j+j} L_{m}L_{n}$$

W-algebras

- W-algebras are "non-linear" extensions of Virasoro algebras (examples of vertex algebras)
- **Example**: $W_3 = W(\mathfrak{sl}_3)$ is generated by L_i and W_j , $i, j \in \mathbb{Z}$

$$[L_{i}, L_{j}] = (i - j)L_{i+j} + \frac{c}{12}(i^{3} - i)\delta_{i+j,0}$$

$$[L_{i}, W_{j}] = (i - 2j)W_{i+j}$$

$$[W_{i}, W_{j}] = a\delta_{i+j,0} + bL_{i+j} + d\sum_{m+n=i+j} L_{m}L_{n}$$

Z for r-spin intersection numbers satisfy W-constraints.

Higher Airy Structures

Consider
$$\mathcal{D} = \mathbb{C}[\![\hbar, \hbar \partial_{x_i}, x_i]\!]_{i \in I}$$
 with Lie bracket $[\![\hbar \partial_{x_i}, x_j]\!] = \hbar \delta_{i,j}$

grading:
$$\deg \hbar = 2$$
, $\deg \hbar \partial_{x_i} = 1 = \deg x_i$

Higher Airy Structures

Consider
$$\mathcal{D} = \mathbb{C}[\![\hbar, \hbar \partial_{x_i}, x_i]\!]_{i \in I}$$
 with Lie bracket $[\![\hbar \partial_{x_i}, x_j]\!] = \hbar \delta_{i,j}$

grading :
$$\deg \hbar = 2$$
, $\deg \hbar \partial_{x_i} = 1 = \deg x_i$

Definition (Higher Airy Structures)

A higher Airy structure is a family of $\{H_i\}_{i\in I}\in\mathcal{D}$ such that

- $H_i = \hbar \partial_{x_i} P_i$ where deg $P_i \geq 2$,
- $\bigoplus_i \mathcal{D}.H_i$ is a Lie subalgebra of \mathcal{D} , i.e., $[H_i, H_j] = \sum_k g_{i,j}^k H_k$ where $g_i^k{}_i \in \mathcal{D}$.

Higher Airy Structures

Theorem (Kontsevich-Soibelman)

There exists a unique solution Z to the set of equations

$$H_iZ = 0, \forall i \in I,$$

of the form

$$Z = \exp\left(\sum_{\substack{g \geq 0, n \geq 1 \\ 2g+n-2>0 \\ k_i > 0}} \frac{\hbar^{g-1}}{n!} F_{g,n}(k_1, \cdots, k_n) x_{k_1} \cdots x_{k_l}\right)$$

called the partition function.

 $F_{g,n}$ is constructed recursively on (2g+n-2)

Theorem (BBCCN)

The partition function of the Bouchard-Eynard topological recursion coincides with the partition function of a higher Airy structure based on modes of $\bigoplus_i W(\mathfrak{gl}_{r_i})$.

In particular, this includes the case of r-spin intersection numbers a.k.a FJRW theory of the A_n singularity (Adler-van Moerbeke).

Theorem (BBCCN)

The partition function of the Bouchard-Eynard topological recursion coincides with the partition function of a higher Airy structure based on modes of $\bigoplus_i W(\mathfrak{gl}_{r_i})$.

In particular, this includes the case of r-spin intersection numbers a.k.a FJRW theory of the A_n singularity (Adler-van Moerbeke).

Corollary

The Bouchard-Eynard topological recursion is only well-defined (produces symmetric $\omega_{g,n}$) for admissible spectral curves.

 generating function of open intersection numbers (Alexandrov)

- generating function of open intersection numbers (Alexandrov)
- FJRW theory for simple singularities of type D and E (Bakalov-Milanov)

Remarks

We recover many of the existing W-constraints in the literature. In addition, we also construct many new ones.

• Enumerative meaning for other higher Airy structures of type *ADE*?

Remarks

We recover many of the existing W-constraints in the literature. In addition, we also construct many new ones.

- Enumerative meaning for other higher Airy structures of type *ADE*?
- r-spin open intersection numbers?

Thank you!