The quantum Carnot engine and its quantum signature Ronnie Kosloff

Institute of Chemistry, Hebrew University Jerusalem, Israel The Fritz Haber Center for Molecular Dynamics

August 20, 2019

Quantum Thermodynamics

Robert Alicki

Amikam Levy

Erik Torrontegui

Quantum Thermodynamics Consistency

Emergence of Thermodynamics from quantum mechanics

Learning from example

Thermodynamic ideals

Can a Thermodynamical viwpoint be relavant to a single device at the **quantum limit** ?

What is the limit of minaturization of a quantum heat engine ?

single molecular refrigerator

What is quantum in a quantum heat engine?

Is there quantum supremacy ?

Is a small quantum engine usefull?

Inserting Dynamics into Thermodynamics

Power or efficiency?

$$\mathcal{N}_{ca} = 1 - \sqrt{\frac{T_c}{T_a}}$$

Efficiency at maximum power

Maximum efficiency $\bigwedge S^{\circ} = \bigcap$

 $\mathcal{N} = 1 - \frac{1}{2}$

Reciprocating heat engines

Learning from example

How small can an engine be? What is the role of coherence? Coherent contol by interference of pahthways?

Carnot cycle

- Hot to cold adiabatic stroke Λ_{hc}
- 2 Cold isotherm Λ_c
- 3 Cold to hot adiabatic stroke Λ_{ch}
- Hot isotherm Λ_h

Carnot cycle: $\Lambda_{cyc} = \Lambda_h \Lambda_{ch} \Lambda_c \Lambda_{hc}$ S Λ_{hc} Λ_c Λ_h Λ_{ch} Th Tc

Operating conditions fixed point of CPTP map

$$\Lambda_{cyc} {oldsymbol{\hat{
ho}}}_S = 1 {oldsymbol{\hat{
ho}}}_S$$

Carnot cycle: The isotherms **The Problem:**

Derive a dynamical description for a driven system coupled to a bath beyond the adiabatic limit:

$$\hat{H} = \hat{H}_{S}(t) + \hat{H}_{B} + \hat{H}_{SB}$$

An open system quantum control problem: State to state control:

$$\hat{
ho}_i \rightarrow \hat{
ho}_f$$

where we have control only on the system Hamiltonian $\hat{H}_{S}(t)$:

$$\hat{H} = \hat{H}_{S}(t) + \hat{H}_{B} + \hat{H}_{SB}$$

The system dynamics is governed by:

$$\frac{d}{dt}\hat{\rho}_{S} = \mathscr{L}_{S}\hat{\rho}_{S}$$

where $\mathscr{L}_{S}(t)$ depends on the bath implicitly and $\hat{H}_{S}(t)$.

The theory of open quantum systems

The quantum Markovian Master Equation .

A completely positive map:

$$\Lambda \hat{
ho} = \sum_{j} \hat{W}_{j}^{\dagger} \hat{
ho} \, \hat{W}_{j},$$


```
G. Lindblad
```

where $\sum_{j} \hat{W}_{j}^{\dagger} \hat{W}_{j} = \hat{I}$ The Gorini-Kossakowski-Lindblad-Sudarshan (GKLS) quantum Master equation 1975

$$\frac{d}{dt}\hat{\rho} = -\frac{i}{\hbar}[\hat{H},\hat{\rho}] + \frac{1}{2}\sum_{j}([\hat{V}_{j}\hat{\rho},\hat{V}_{j}^{\dagger}] + [\hat{V}_{j},\hat{\rho}\,\hat{V}_{j}^{\dagger}]) \equiv -\frac{i}{\hbar}[\hat{H},\hat{\rho}] + \mathscr{L}\hat{\rho}.$$

System and bath are in tensor product form in all times Lindblad 1996

Kraus 1971

Davies construction: The weak coupling limit:

$\hat{H} = \hat{H}_S + \hat{H}_B + \hat{H}_{int}$

The system-bath interaction as $\hat{H}_{int} = \sum_k \hat{S}_k \otimes \hat{R}_k$ One obtains the following structure of MME which is in the GKLS form

$$\frac{d}{dt}\hat{\rho} = -i[\hat{H},\hat{\rho}] + \mathscr{L}\hat{\rho}, \quad \mathscr{L}\hat{\rho} = \sum_{k,l} \sum_{\{\omega\}} \mathscr{L}_{lk}^{\omega}\hat{\rho}$$

where

$$\mathscr{L}^{\boldsymbol{\omega}}_{lk}\hat{\boldsymbol{\rho}} = \frac{1}{2\hbar^2}\tilde{R}_{kl}(\boldsymbol{\omega})\left\{ [\hat{S}_l(\boldsymbol{\omega})\hat{\boldsymbol{\rho}}, \hat{S}^{\dagger}_k(\boldsymbol{\omega})] + [\hat{S}_l(\boldsymbol{\omega}), \hat{\boldsymbol{\rho}}\,\hat{S}^{\dagger}_k(\boldsymbol{\omega})] \right\}.$$

Here, the operators $\hat{S}_k(\omega)$ originate from the Fourier decomposition

 ω - denotes the set of Bohr frequencies of \hat{H} .

$$e^{i/\hbar\hat{H}t}\hat{S}_k e^{-i/\hbar\hat{H}t} = \sum_{\{\omega\}} e^{-i\omega t}\hat{S}_k(\omega),$$

 $\tilde{R}_{kl}(\omega)$ is the Fourier transform of the bath correlation function $\langle \hat{R}_k(t) \hat{R}_l \rangle_{bath}$ computed in the thermodynamic limit

$$\tilde{R}_{kl}(\omega) = \int_{-\infty}^{+\infty} e^{i\omega t} \langle \hat{R}_k(t) \hat{R}_l \rangle_{bath} dt.$$

The derivation of Davis makes sense for a generic stationary state of the bath and implies two properties:

1) the Hamiltonian part $[\hat{H}, \cdot]$ commutes with the dissipative part \mathscr{L} ,

2) the diagonal (in \hat{H} -basis) matrix elements of $\hat{\rho}$ evolve independently of the off-diagonal ones according to the Pauli Master Equation with transition rates given by the Fermi Golden Rule.

No mixing of energy and coherence

If additionaly the bath is a heat bath, i.e. an infinite system in a KMS state the additional relation implies that:

- 3) Gibbs state $\hat{\rho}_{\beta} = Z^{-1} \exp{-\beta \hat{H}}$ is a stationary solution.
- 4) Under the condition that only scalar operators commute with all $\{\hat{S}_{k}(\omega), \hat{S}_{k}^{\dagger}(\omega)\}$.

Any initial state relaxes asymptotically to the Gibbs state: *The 0-Law of Thermodynamics*.

The bath is able to "measure" the energy level structure of the system and transfer heat according to the detailed balance conditions Quantum conditions of isothermal partition

system

Т

The derivation can be extended to slowly varying time-dependent Hamiltonian within the range of validity of the **adiabatic theorem**

and an open system coupled to several heat baths at the inverse temperatures $\{\beta_k = 1/k_B T_k\}$.

The MME in Heisenberg form:

$$egin{aligned} &rac{d}{dt}\hat{Y}(t)=-i[\hat{H}(t),\hat{Y}(t)]+\mathscr{L}^*(t)\hat{Y}(t)+rac{\partial}{\partial t}\hat{Y}\ , & \mathscr{L}^*(t)=\sum_k \mathscr{L}^*_k(t). \end{aligned}$$

Each $\mathscr{L}_k(t)$ is derived using a temporal Hamiltonian $\hat{H}(t)$, $\mathscr{L}_k(t)\hat{\rho}_j(t) = 0$ with a temporary Gibbs state $\hat{\rho}_j(t) = Z_j^{-1}(t)\exp\{-\beta_j\hat{H}(t)\}$.

Inserting Dynamics into Thermodynamics Dynamical I-law of thermodynamics The Heisenberg equations of motion:

 $\frac{d}{dt}\hat{\mathbf{X}} = \frac{i}{\hbar}[\hat{\mathbf{H}}, \hat{\mathbf{X}}] + \mathscr{L}_{D}(\hat{\mathbf{X}}) + \frac{\partial}{\partial t}\hat{\mathbf{X}}$

$$\mathscr{L}_{D}(\mathbf{\hat{X}}) = \sum_{n} \mathbf{\hat{V}}_{n} \mathbf{\hat{X}} \mathbf{\hat{V}}_{n}^{*} - \frac{1}{2} \{ \mathbf{\hat{V}}_{n} \mathbf{\hat{V}}_{n}^{*}, \mathbf{\hat{X}} \}$$

If we choose $\mathbf{\hat{X}} = \mathbf{\hat{H}}$ then:

0
$$\frac{d}{dt}\mathbf{E} = \langle \frac{\partial}{\partial t}\hat{\mathbf{H}} \rangle + \langle \mathscr{L}_{D}(\hat{\mathbf{H}}) \rangle$$
$$\frac{d}{dt}\mathbf{E} = \mathscr{P} + \dot{Q}$$
Power +Heat current

R. Alicki , J.phys. A Math. Gen. 12 L103 (1979)

 $[\mathcal{L}_{H}, \mathcal{L}_{D}] =$

Adiabatic limit

Spohn, Herbert, and Joel L. Lebowitz. Adv. Chem. Phys 38 (1978): 109-142

Carnot cycle: The isotherms

$$\left[\hat{H}_{S}\left(t\right),\hat{H}_{S}\left(t'\right)\right]\neq0$$

The task: Isothermal Dynamics

Starting from a thermal initial state $\hat{\rho}_i = e^{-\beta \hat{H}_i}$ Transform as fast and accurate to the state: $\hat{\rho}_f = e^{-\beta \hat{H}_f}$

while the system is in contact with a bath of temperature T=1/keta

The protocol: $\hat{H}_{S}(t)$ with $\hat{H}_{S}(0) = \hat{H}_{i}$ and $\hat{H}_{S}(t_{f}) = \hat{H}_{f}$

The Problem

We can control directly $\hat{H}_{S}(t)$ but only indirectly the relaxation rate. We need the dissipative equation of motion with a time dependent $\hat{H}_{S}(t)$ with a time dependent protocol.

How can we obtain the Master equation?

Analytic tools:

$$\hat{H} = \hat{H}_{S}(t) + \hat{H}_{B} + \hat{H}_{SB}$$

Non-Adiabatic Master Equation (NAME)

Inertial theorem

Non-adiabatic open system dynamics

Time-dependent Markovian Master Eq., R. Dann, A. Levy, and R. Kosloff, *Phys. Rev. A* 98, 052129 (2018). The Inertial Theorem, R. Dann and R. Kosloff, *arXiv*:1810.12094 (2018).

NAME - The driven Non-Adiabatic Master Equation

$$\frac{d}{dt}\hat{\rho}_{S}(t) = \mathscr{L}_{s}\hat{\rho}_{S}$$

.

We change $\hat{\mathbf{H}}_{\mathbf{S}}(t)$ from $\hat{\mathbf{H}}_{\mathbf{S}}(0)$ to $\hat{\mathbf{H}}_{\mathbf{S}}(t_f)$ while coupled to the bath.

Then we expect:

$$\frac{d}{dt}\hat{\rho}_{S}(t) = -i[\hat{\mathbf{H}}_{S}(t) + \hat{\mathbf{H}}_{LS}(t), \hat{\rho}_{S}]$$

$$+ \sum_{k} c_{k}(t) \left(\hat{L}_{k}(t)\hat{\rho}_{S}\hat{L}_{k}^{\dagger}(t) - \frac{1}{2}\{\hat{L}_{k}^{\dagger}(t)\hat{L}_{k}(t), \rho_{S}\}\right)$$

$$\hat{L}_{k} \text{ are the Lindblad jump operators.}$$

Here $\hat{H}_{LS}(t)$ is the time dependent Lamb shift Hamiltonian, $\hat{H}_{LS}(t) = \sum_k S_{kk'}(\alpha(t)\hat{F}_j^{\dagger}(t)\hat{F}_j(t))$.

The Non-Adiabatic Master Equation (NAME)

$$\hat{\mathbf{H}}(t) = \hat{\mathbf{H}}_{\mathcal{S}}(t) + \hat{\mathbf{H}}_{B} + \hat{\mathbf{H}}_{SB}$$
 . $\hat{\mathbf{H}}_{SB} = \sum_{k} g_{k} \hat{\mathbf{A}}_{k} \otimes \hat{\mathbf{B}}_{k}$.

Following Davies's derivation, **Consistancy with thermodynamics** 1) Transformation to the <u>interaction picture</u>:

$$\hat{\mathbf{U}}_B^{\dagger}(t,0)\hat{\mathbf{U}}_S^{\dagger}\hat{\mathbf{H}}(t)(t,0)\hat{\mathbf{U}}_S(t,0)\hat{\mathbf{U}}_B(t,0)=\hat{\hat{\mathbf{H}}}_{SB}(t)$$
 ,

Where the system evolution operator $i \frac{d}{dt} \hat{\mathbf{U}}_{S}(t) = \hat{\mathbf{H}}_{S}(t) \hat{\mathbf{U}}_{S}(t) , \quad \hat{\mathbf{U}}_{S}(0) = \hat{\mathbf{I}}$.

2) Second order perturbation theory lead to the Markovian quantum master equation

$$\frac{d}{dt}\tilde{\rho}_{S}(t) = -\int_{0}^{\infty} ds \, \mathrm{tr}_{B}\{\tilde{\mathsf{H}}_{SB}(t), [\tilde{\mathsf{H}}_{SB}(t-s), [\tilde{\rho}_{S}(t)\otimes\tilde{\rho}_{B}]]\}$$

The Lindblad Jump operators: For free evolution of a static Hamiltonian: The propagator in Heisenberg form is:

 $\mathscr{U}(t) = e^{\frac{it}{\hbar}[\hat{\mathbf{H}}_{\mathbf{S}}, \bullet]}$

The eigenoperators of $\mathscr{U}(t)$ are:

$$\mathscr{U}(t)|m
angle\langle n|=e^{i\omega_{nm}t}|m
angle\langle n|^{2}$$

Excitations

where $\hat{H}_{S}|n\rangle = \varepsilon_{n}|n\rangle$ and $\omega_{nm} = \frac{1}{\hbar}(\varepsilon_{n} - \varepsilon_{m})$ is the Bohr frequency.

The $\hat{\mathbf{H}}_{SB}$ can be expanded: with $\hat{\mathbf{F}}_k = |\mathbf{m}\rangle \langle \mathbf{n}|$

$$\tilde{\mathsf{H}}_{\mathsf{SB}} = \sum_{k} g_{k} e^{i\omega_{k}t} \hat{\mathsf{F}}_{k} \otimes \tilde{\mathsf{B}}_{\mathsf{k}}$$

leading to $\hat{\mathbf{F}}_k \equiv \hat{\mathbf{L}}_k$ the Lindblad jump operators.

The Lindblad Jump operators: For a driven evolution: $\hat{H}_{S}(t)$

We choose a time dependent operator base: $\{\hat{\mathbf{X}}_{j}(t)\}$ The propagator in Heisenberg form is:

$$\mathscr{U}(t) = \mathscr{T}e^{rac{i}{\hbar}\int_0^t ([\mathsf{H}_{\mathsf{S}}(\mathsf{t}'), \bullet] + rac{\partial}{\partial t'})dt'}$$

We find <u>eigenoperators</u> of $\mathscr{U}(t)$:

$$\mathscr{U}(t)\hat{\mathsf{F}}_{k}=e^{i heta_{k}(t)}\hat{\mathsf{F}}_{k}$$
 , $\hat{\mathsf{U}}^{\dagger}(t)\hat{\mathsf{F}}_{k}\hat{\mathsf{U}}(t)=e^{i heta_{k}(t)}\hat{\mathsf{F}}_{k}$

where $\hat{\mathbf{F}}_k$ are time independent.

 $\hat{\mathbf{H}}_{SB}$ can be expanded in interaction frame with $\hat{\mathbf{F}}_k$

$$\tilde{\mathsf{H}}_{\mathsf{SB}} = \sum_{k} g_{k} e^{i\theta_{k}(t)} \hat{\mathsf{F}}_{k} \otimes \tilde{\mathsf{B}}_{\mathsf{k}}$$

leading to $\hat{\mathbf{F}}_k \equiv \hat{\mathbf{L}}_k$ the Lindblad jump operators.

Non Adiabatic Master Equation (NAME)

$$\tau_S = \left(\frac{1}{\omega_i\left(t\right)}\right) \qquad \qquad \tau_B \sim \frac{1}{\Delta\nu}$$

- 1. Weak coupling
- 2. Born- Markov approximation $\tilde{\rho}(t) = \tilde{\rho}_{S}(t) \otimes \tilde{\rho}_{B}$
- 3. Fast bath dynamics relative to the external driving

1.
$$\tau_B \ll \tau_R$$
 2. $\tau_B \ll \tau_S$ **3.** $\tau_B \ll \tau_d$

 $au_R \propto \left(g^2\right)^{-1}$

 au_d

 $\hat{F}_{j} \equiv \hat{F}_{j}\left(0\right)$

$$\frac{d}{dt}\tilde{\rho}_{S}\left(t\right) = -i\left[\tilde{H}_{LS}\left(t\right),\tilde{\rho}_{S}\left(t\right)\right] + \sum_{k,j}\left(\xi_{j}^{k}\left(t\right)\right)^{2}g_{k}^{2}\gamma_{kk}\left(\alpha_{j}^{k}\left(t\right)\right)\left(\hat{F}_{j}\tilde{\rho}_{S}\left(t\right)\hat{F}_{j}^{\dagger} - \frac{1}{2}\{\hat{F}_{j}^{\dagger}\hat{F}_{j},\tilde{\rho}_{S}\left(t\right)\}\right)$$

Lamb-shift
$$\tilde{H}_{LS}(t) = \sum_{k,j} \hbar S_{kk} \left(\alpha_j^k(t) \right) \hat{F}_j^{\dagger} \hat{F}_j$$

R. Dann, A. Levy, and R. Kosloff, Phys. Rev. A 98, 052129 (2018).

Example Parametric harmonic oscillator

$$\hat{H}(t) = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2(t)\hat{q}^2$$
, (8)

The set $\hat{H}(t)$, $\hat{L}(t) = \frac{\hat{p}^2}{2m} - \frac{1}{2}\omega^2(t)\hat{q}^2$, $\hat{C}(t) = \frac{\omega(t)}{2}(\hat{q}\hat{p} + \hat{p}\hat{q})$, $\hat{K}(t) = \sqrt{\omega(t)}\hat{q}$, $\hat{J}(t) = \frac{\hat{p}}{m\sqrt{\omega(t)}}$

is a Lie algebra The free dynamics in terms of the vector $\vec{v} = \{\hat{\mathbf{H}}, \hat{\mathbf{L}}, \hat{\mathbf{C}}, \hat{\mathbf{K}}, \hat{\mathbf{J}}, \hat{\mathbf{I}}\}^T$

$$\frac{d}{d\theta}\vec{\mathbf{v}}(\theta) = -i\mathscr{B}\vec{\mathbf{v}}(\theta) \tag{9}$$

with,

$$\mathscr{B} = i \begin{bmatrix} \chi & -\chi & 0 & 0 & 0 & 0 \\ -\chi & \chi & -2 & 0 & 0 & 0 \\ 0 & 2 & \chi & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\chi}{2} & 1 & 0 \\ 0 & 0 & 0 & -1 & -\frac{\chi}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
(10)
Here, $\chi = \mu = \frac{\dot{\omega}}{\omega^2}$, where μ is the adiabatic parameter, $\theta = \int_0^t dt' \, \omega(t)'$.

The Non-Adiabatic Master Equation (NAME) for the Harmonic oscillator (in the interaction picture)

$$\frac{d}{dt} \tilde{\rho}_{S}(t) = -i \left[\tilde{H}_{LS}(t), \tilde{\rho}_{S} \right] + k \uparrow (t) \left(\tilde{b}^{\dagger} \tilde{\rho}_{S} \tilde{b} - \frac{1}{2} \left\{ \tilde{b} \tilde{b}_{\dagger}, \tilde{\rho}_{S} \right\} \right) + k \downarrow (t) \left(\tilde{b} \tilde{\rho}_{S} \hat{b}^{\dagger} - \frac{1}{2} \left\{ \tilde{b}^{\dagger} \tilde{b}, \tilde{\rho}_{S} \right\} \right) ,$$

$$ilde{b} \equiv \hat{b}(0) = \sqrt{rac{m\omega(0)}{2\hbar} rac{(\kappa + i\mu)}{\kappa}} \left(\hat{Q} + rac{\mu + i\kappa}{2m\omega(0)}\hat{P}
ight) \qquad [ilde{b}, ilde{b}^{\dagger}] = 1$$

$$\mu = \frac{\dot{\omega}}{\omega^2}$$
 , $\kappa = \sqrt{4 - \mu^2}$. $\alpha(t) = \frac{\kappa}{2}\omega(t)$ $\frac{k \uparrow (t)}{k \downarrow (t)} = e^{-\frac{\hbar\alpha(t)}{k_B T}}$

 $\gamma_{na} = k \downarrow (\alpha(t)) = \pi m \alpha(t) J(\alpha(t))(N(\alpha(t)) + 1)$

Comparing adiabatic to nonadiabatic rates

Nonadiabatic rate:

$$\gamma_{na}(\alpha(t)) = \pi m \frac{\kappa}{2} \omega(t) J(\frac{\kappa}{2} \omega(t)) (N(\frac{\kappa}{2} \omega(t)) + 1)$$
$$\kappa = \sqrt{4 - \mu^2}$$

Adiabatic rare:

$$\gamma_{ad}(\omega(t)) = \pi m \omega(t) J(\omega(t)) (N(\omega(t)) + 1)$$

for $J(\omega) \propto \omega^2$ and low temperature:

$$\gamma_{na}(\alpha(t)) = \frac{1}{8}\kappa^3 \gamma_{ad}(\omega(t))$$

Slowing down the relaxation rate

Comparing non-adiabatic to adiabatic equation

Adiabatic: Lidar 2012

Both equations have time dependent Lindblad form. This guarantee's complete positivity and consistency with thermodynamics

• Doppler like change in frequency:

$$\kappa = \sqrt{4-\mu^2}$$
, $\alpha(t) = rac{\kappa}{2}\omega(t)$

slowing down the relaxation rate and changing the instantaneous target of relaxation.

• Mixing Energy and coherence: generating squeezing.

Instantaneous attractor

How to solve the free dynamics with driving? Inertial Theorem Non-adiabatic driving $\begin{bmatrix} \hat{H}_S(t), \hat{H}_S(t') \end{bmatrix} \neq 0$ Time-ordering problem We want to solve this!

The inertial theorem approximates the evolution of a quantum system, driven by an external field. The theorem is valid for fast driving provided the <u>acceleration rate is small</u>.

Liouville space representation: Elements
$$\{\hat{X}\}$$
 with inner product $(\hat{X}_i, \hat{X}_j) \equiv \operatorname{tr}(\hat{X}_i^{\dagger} \hat{X}_j)$

Operator basis:
$$\vec{v}(t) = \{\hat{X}_1(t), ..., \hat{X}_N(t)\}$$

The Inertial Theorem, R. Dann and R. Kosloff, arXiv:1810.12094 (2018).

The Inertial theorem.

For a closed Lie algebra $[\hat{A}_i, \hat{A}_j] = \sum_k c_{ij}^k A_k$ the Heisenberg equation of motion, for the set $\{\hat{A}\} = \vec{v}$ are

$$\frac{d}{dt}\vec{v}(t) = \left(i\left[\hat{H}(t),\bullet\right] + \frac{\partial}{\partial t}\right)\vec{v}(t) \quad , \qquad (1)$$

In a vector notation (1) becomes

$$\frac{d}{dt}\vec{v}(t) = -i\mathcal{M}(t)\vec{v}(t) \quad , \tag{2}$$

where \mathcal{M} is a N by N matrix with time-dependent elements and \vec{v} is a vector of size N. If we can factor:

$$\mathcal{M}(t) = \Omega(t) \mathcal{B}(\vec{\chi}) \quad . \tag{3}$$

Here, $\Omega(t)$ is a time-dependent real function, and $\mathscr{B}(\vec{\chi})$ is a function of the constant parameters $\{\chi\}$.

For this decomposition, the dynamics becomes

$$\frac{d}{d\theta}\vec{v}(\theta) = -i\mathscr{B}(\vec{\chi})\vec{v}(\theta) \quad , \qquad (4)$$

 $\theta \equiv \theta(t) = \int_0^t dt' \Omega(t')$ is scaled time. The solution

$$ec{v}\left(heta
ight)=\sum_{k}^{N}c_{k}ec{F}_{k}\left(ec{\chi}
ight)e^{-i\lambda_{k} heta}$$
, (5)

where \vec{F}_k and λ_k are eigenvectors and eigenvalues of \mathscr{B} and c_k are constant coefficients. Each eigenvector \vec{F}_k corresponds to the eigenoperator \hat{F}_k . **Inertial Theorem**

$$\mathcal{M}(t) = \Omega(t) \mathcal{B}(\vec{\chi}) \qquad \theta(t) = \int_0^t \Omega(t') dt'$$

Inertial solution

$$\vec{v}\left(\chi,\theta\right) = \sum_{k} c_{k} e^{-i\int_{\theta_{0}}^{\theta} d\theta' \lambda_{k}} e^{i\phi_{k}} \vec{F}_{k}\left(\vec{\chi}\left(\theta\right)\right)$$
$$\phi_{k}\left(\theta\right) = i\int_{\vec{\chi}\left(\theta_{0}\right)}^{\vec{\chi}\left(\theta\right)} d\vec{\chi}\left(\vec{G}_{k}|\nabla_{\vec{\chi}}\vec{F}_{k}\right)$$

Inertial parameter

Geometric phase

$$\Upsilon = \sum_{n,m} \left| \frac{\left(\vec{G}_k | \nabla_{\vec{\chi}} \mathcal{B} | \vec{F}_n \right)}{\left(\lambda_n - \lambda_k \right)^2} \cdot \frac{d\vec{\chi}}{d\theta} \right|$$

$$\mathscr{B}(\vec{\chi})$$
 can very slowly in time Inertial condition $\Upsilon \ll 1$

R. Dann and R. Kosloff, arXiv preprint arXiv:1810.12094 (2018).

Protocol:
$$\mu(t) = \mu(0) + a \cdot t$$

$$a = -5 \cdot 10^{-3}$$

Illustration

$$\hat{H}_{S} = \frac{1}{2} \left(\omega \left(t \right) \hat{\sigma}_{z} + \epsilon \left(t \right) \hat{\sigma}_{x} \right)$$

$$\vec{\chi} = \bar{\mu} = \frac{\dot{\omega}\varepsilon - \omega\dot{\varepsilon}}{\Omega^3}$$

 $\Omega\left(0\right) = 20 \qquad \Omega\left(t_f\right) = 10$

R. Dann and R. Kosloff, arXiv preprint arXiv:1810.12094 (2018).

Experimental verification of the Inertial Theorem

The Inertial Theorem, R. Dann and R. Kosloff, *arXiv*:1810.12094 (2018). Experimental Verification of the Inertial Theorem, C.K.Hu, R.Dann, *et al.*, *arXiv*:1903.00404

Experimental verification of the Inertial Theorem

Experimental Verification of the Inertial Theorem, C.K.Hu, R.Dann, et al., arXiv:1903.00404

Shortcut to Equilibration (STE)

The task: Isothermal Dynamics

Starting from a thermal initial state $\hat{\rho}_i = e^{-\beta \hat{H}_i}$ Transform as fast and accurate to the state: $\hat{\rho}_f = e^{-\beta \hat{H}_f}$

while the system is in contact with a bath of temperature $\mathcal{T}=1/keta$

The protocol: $\hat{H}_{S}(t)$ with $\hat{H}_{S}(0) = \hat{H}_{i}$ and $\hat{H}_{S}(t_{f}) = \hat{H}_{f}$

Entropy change

Shortcut to Equilibration of an Open Quantum System, R. Dann, A. Tobalina, and R. Kosloff, *PRL* 122, 250402 (2019)

Solving NAME for fast isothermal strokes

Change of variable in interaction representation:

$$\frac{d}{dt}\tilde{\rho}_{S}(t) = \tilde{\gamma} \downarrow \left(\hat{b}\tilde{\rho}_{S}\hat{b}^{\dagger} - \frac{1}{2}\left\{\hat{b}^{\dagger}\hat{b},\tilde{\rho}_{S}\right\}\right)$$
$$\tilde{\gamma} \uparrow \left(\hat{b}^{\dagger}\tilde{\rho}_{S}\hat{b} - \frac{1}{2}\left\{\hat{b}\hat{b}^{\dagger},\tilde{\rho}_{S}\right\}\right)$$
(2)

we can try a solution in a generalized canonical form:

$$\tilde{\rho}_{S}(t) = \frac{1}{Z(t)} e^{\gamma(t)\hat{b}^{2}} e^{\beta(t)\hat{b}^{\dagger}\hat{b}} e^{\gamma^{*}(t)\hat{b}^{\dagger}2}$$
An aximum entropy subject to constraints: $\langle \hat{b}^{\dagger}\hat{b} \rangle$, $\langle \hat{b}^{\dagger} \rangle$, $\langle \hat{b}^{2} \rangle$

Ν

Canonical invariance: Openheim 1964, Alhassid & Levine 1978. Andersen, H. C., Oppenheim, I., Shuler, K. E., & Weiss, G. H., *Jour of Math. Phys.* (1964) Y. Alhassid and R. D. Levine, Phys. Rev. A 18, 89 (1978)

Dynamics for any squeezed thermal state.

$$\dot{\beta} = k_{\downarrow} \left(e^{\beta} - 1 \right) + k_{\uparrow} \left(e^{-\beta} - 1 + 4e^{\beta} |\gamma|^2 \right), \quad (11)$$
$$\dot{\gamma} = \left(k_{\downarrow} + k_{\uparrow} \right) \gamma - 2k_{\downarrow} \gamma e^{-\beta} \quad ,$$

We assume that the system is in a thermal state at initial time, which infers $\gamma(0) = 0$. This simplifies to

$$\tilde{\rho}_{S}\left(\beta\left(t\right),\mu\left(t\right)\right) = \frac{1}{Z}e^{\beta\hat{b}^{\dagger}\hat{b}(\mu)} \quad .$$
(12)

The system dynamics are described by

$$\dot{\beta} = k_{\downarrow}(t) \left(e^{\beta} - 1 \right) + k_{\uparrow}(t) \left(e^{-\beta} - 1 \right)$$
, (13)

with initial conditions $\beta(0) = \frac{\hbar\omega(0)}{k_BT}$ and $\mu(0) = 0$.

Engineering the shortcut to equilibration protocol
Guessing a solution in the form of Generalized Canonical form

$$\tilde{\rho}_{S}(t) = (Z(t))^{-1} e^{\gamma(t)\tilde{b}^{2}} e^{\beta(t)\tilde{b}^{\dagger}\tilde{b}} e^{\gamma^{*}(t)(\tilde{b}^{\dagger})^{2}}$$

$$\dot{\beta} = k_{\downarrow}(e^{\beta} - 1) + k_{\uparrow}(e^{-\beta} - 1 + 4e^{\beta}|\gamma|^{2})$$

$$\dot{\gamma} = (k_{\downarrow} + k_{\uparrow}) \gamma - 2k_{\uparrow}\gamma e^{-\beta}$$

$$\beta(0) = -\frac{\hbar\omega(0)}{k_{B}T} \quad \beta(t_{f}) = -\frac{\hbar\omega(t_{f})}{k_{B}T}$$

$$\mu(0) = \mu(t_{f}) = 0$$

$$y = e^{\beta}$$

$$y(s) = y(0) + c_{3}s^{3} + c_{4}s^{4} + c_{5}s^{5}$$

$$s = t/t_{f}$$

$$\frac{d}{dt}\tilde{\rho}_{S}(t) \Rightarrow \dot{\beta} \Rightarrow \beta(t) \Rightarrow \alpha(t) \Rightarrow \omega(t)$$

$$\hat{H}_{S} = \frac{\hat{P}^{2}}{2m} + \frac{1}{2}m\omega^{2}(t)\hat{Q}^{2}$$

R. Dann, A. Tobalina, and R. Kosloff, PRL (2019).

<u>Control</u>

Shortcuts to Equilibrium (STE)

The shortcut protocol $\hat{H}_{S}(t) \rightarrow \omega(t)$:

Overshoot

Shortcuts to Equilibrium (STE)

The fidelity
$$\mathscr{F}$$
 and $\mathscr{A} = -\log_{10}(1 - \mathscr{F})$:

3 fold improvement in time

R. Dann, A. Tobalina, and R. Kosloff, PRL 122, 250402 (2019)

STE- How much does it cost?

At last: Shortcut to four stroke Carnot cycle

Roie Dann, Ronnie Kosloff arXiv:1906.06946

Performance of Shortcut to Carnot

In the limit of small action: $s = ||\mathscr{L}t|| \ll \hbar$

$$\mathscr{U}_{cyc} = e^{\mathscr{L}_{c}t/2} e^{\mathscr{L}_{hc}t} e^{\mathscr{L}_{h}t} e^{\mathscr{L}_{c}h} e^{\mathscr{L}_{c}t/2}$$

 $\mathscr{U}_{cyc} \approx e^{(\mathscr{L}_{c}+\mathscr{L}_{hc}+\mathscr{L}_{h}+\mathscr{L}_{ch})t} + O(s^{3})$

Raam Uzdin, Amikam Levy, and Ronnie Kosloff Equivalence of Quantum Heat Machines, and Quantum-Thermodynamic .(Phys. Rev. X 5, 031044 2015 The Voyage: Seeking for quantum open system description of the Carnot cycle

- Non Adiabatic Master Equation NAME.
- The inertial theorem.

.8

1.0 1.2

• Shortcuts to non unitary maps with entropy change.

Finite time quantum Carnot cycle.

1.8 2.0

.6 ω/ω_{min}

Quantum signature!

The end

Solution of the NAME for the HO $Coh \equiv \omega^{-1} \sqrt{\langle \hat{L} \rangle^2 + \langle \hat{C} \rangle^2}$ γ_0 16 С 0.4 Protocol -g=0 14 1/ Time [10³ a.u -g=0.5 0.3 ں Coherence 1.0 C $\omega\left(t\right) =$ 12 ·g=1 $\mu < 0$ μ**=-10** 10 $\mu = -10^2$ 8 •µ=-10³ 0.1 0.2 0 Time [a.u] 5 10 Slowing down the rate Time [a.u]

R. Dann, A. Levy, and R. Kosloff, Phys. Rev. A 98, 052129 (2018).

Coherence generated "by" the bath.

Solution of the NAME for HO

Comparison to numerical simulation

R. Dann, A. Levy, and R. Kosloff, Phys. Rev. A 98, 052129 (2018).

Solution for the propagator

For $\mu = const$ can be solved in terms of $\{\hat{H}_{S}, \hat{L}, \hat{C}, \hat{I}\}^{T}$ $\mathcal{U}(t,0) = \frac{\omega(t)}{\omega(0)} \frac{1}{\kappa^2} \begin{bmatrix} 4 - \mu^2 c & -\mu\kappa s & -2\mu(c-1) & 0 \\ -\mu\kappa s & \kappa^2 c & -2\kappa s & 0 \\ 2\mu(c-1) & 2\kappa s & 4c - \mu^2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $s = \sin(\kappa \theta(t))$ and $c = \cos(\kappa \theta(t))$ where $\theta(t) = -\frac{1}{\mu} \log\left(\frac{\omega(t)}{\omega(0)}\right)$ $\kappa = \sqrt{4 - \mu^2}$

Kosloff, R., & Rezek, Y. (2017 *Entropy*, *19*(4), 136.

The NAME in Heisenberg form:

The Heisenberg picture is given by the equation of motion:

$$rac{d}{dt} \hat{O} = \mathscr{V}^{\dagger}(t,0) \mathscr{L}^{\dagger}(t) \hat{O} \quad .$$

For such a case the adjoint propagator has the form:

$$\mathscr{V}^{\dagger}(t,t_0) = \mathbf{T} \exp \int_{t_0}^t ds \mathscr{L}^{\dagger}(s)$$

where **T** is the anti-chronological time ordering. $\mathscr{V}^{\dagger}(t, t_0)$ is defines by the adjoint generator \mathscr{L}^{\dagger} by the differential equation

$$rac{\partial}{\partial t} \mathscr{V}^{\dagger}(t,t_0) = \mathscr{V}^{\dagger}(t,t_0) \mathscr{L}^{\dagger}(t)$$

Breuer, H. P., & Petruccione, F. (2002). The theory of open quantum systems. (pg. 124-125

The end

Thank you

