Semi-Supervised Inference for Optimal Treatment Decision with Electronic Medical Record Data

Wenbin Lu

Department of Statistics North Carolina State University

February 18-22, 2019

1 / 19

Background

- Traditional treatment regime: "one-size-fits-all"
- Individualized treatment regime: a set of treatment decision rules that aim to
 - account for individual heterogeneity in many aspects, such as clinical, genetic, social, environmental and behavior characteristics;
 - maximize long-term clinical outcomes;
 - reduce the risk of over- or under- treatment for individual patients.
- Develop statistical and machine learning tools for optimal treatment regime (OTR) have recently attracted much attention for complex diseases, such as cancer, AIDS and mental disorder.

Mathematical Framework

For a single treatment decision point:

- Y, the real-valued response;
- $A \in \mathcal{A}$, treatment received by patient, where \mathcal{A} is the set of available treatment methods. e.g., $\mathcal{A} = \{0, 1\}$;
- $X \in \mathcal{X} \subset \mathbb{R}^p$, p-vector baseline covariates;
- a treatment regime g: a mapping $\mathcal{X} \to \mathcal{A}$;
- $Y^*(a)$, a potential outcome that would result if a patient were assigned to the treatment $a \in A$;
- optimal treatment regime: $g^{opt}(X) = \arg\max_{g \in \mathcal{G}} E[Y^*(g(X))]$, where \mathcal{G} denote the set of all possible treatment regimes.

3 / 19

Optimal Treatment Decision using EMR data

Merits:

- Provide a wealth of de-identified clinical and phenotype data for large patient cohorts;
- Such large scale datasets give unique opportunities for addressing important questions in modern medical research, such as optimal treatment decision.

Challenges:

- Data are usually recorded not for research purpose;
- Phenotyping issues (measurement errors);
- Missing data (treatments and responses are not available for many patients);
- A variety of data types (structured or unstructured).

Our Considered Problem

Notation

- A received treatment
- X a vector of subject characteristics ascertained prior to treatment
- Y response variable of interest; larger means a better outcome

Observed Data

- Complete data: (X_i, A_i, Y_i) , i = 1, ..., n.
- Incomplete data: X_i , j = n + 1, ..., N.
- Here, N >> n ($n/N \to 0$ as n, N goes to infinity).

Problem

- How to derive an optimal treatment regime (OTR) using both complete and incomplete data?
- How to make inference for the estimated treatment rule?

Assumptions and Models

Consistency assumption:

$$Y = Y^*(1)A + Y^*(0)(1 - A)$$

No unmeasured confounders assumption (strong ignorablility):

$$\{Y^*(1), Y^*(0)\} \perp \!\!\! \perp A \mid X$$

- Positivity assumption: 0 < P(A = 1|X) < 1 for any X.
- Model: $Y = \mu(X) + A \cdot C(X) + \epsilon$.
- OTR: $g^{opt}(X) = I\{C(X) > 0\}.$
- Working model with a linear OTR: $Y = \mu(X) + A \cdot (\beta'\widetilde{X}) + \epsilon$, where $\widetilde{X} = (1, X')'$.

Estimation with Complete Data Only

Define transformed response

$$\widetilde{Y} = \frac{Y\{A - \pi(X)\}}{\pi(X)\{1 - \pi(X)\}}.$$

- Note that $E(\widetilde{Y}|A,X) = C(X)$.
- Least squares estimation (Lu, Zhang and Zeng, 2013)

$$\widehat{\beta}_{TR} = \operatorname{arg\,min}_{\beta} \sum_{i=1}^{n} (\widetilde{Y}_{i} - \beta' \widetilde{X}_{i})^{2}.$$

- Estimated OTR: $\hat{g}_{TR}^{opt}(X) = I(\hat{\beta}_{TR}'\tilde{X} > 0)$.
- $\widehat{\beta}_{TR} \to \beta^*$ almost surely, where β^* is the least false parameters.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ②

Proposed Semi-Supervised Learning with Kernel Imputation

- Define Q(X, A) = E(Y|X, A).
- Kernel estimation of Q functions:

$$\hat{Q}(X,1) = \frac{\sum_{i=1}^{n} W(\frac{X-X_{i}}{h}) A_{i} Y_{i}}{\sum_{i=1}^{n} W(\frac{X-X_{i}}{h}) A_{i}},$$

and

$$\hat{Q}(X,1) = \frac{\sum_{i=1}^{n} W(\frac{X-X_{i}}{h})(1-A_{i})Y_{i}}{\sum_{i=1}^{n} W(\frac{X-X_{i}}{h})(1-A_{i})},$$

where W is a kernel function and h is the bandwidth.

• Define $\hat{C}(X) = \hat{Q}(X,1) - \hat{Q}(X,0)$.

Estimation using Incomplete Data

Least square estimation with kernel imputation

$$\widehat{\beta}_{NP} = \operatorname{arg\,min}_{\beta} \sum_{j=n+1}^{N} \left\{ \widehat{C}(X_j) - \beta' \widetilde{X}_j \right\}^2.$$

- Estimated OTR: $\hat{g}_{NP}^{opt}(X) = I(\hat{\beta}_{NP}'X) > 0$.
- Asymptotic distribution: under certain conditions, we have

$$n^{1/2}(\widehat{\beta}_{NP}-\beta^*)=n^{-1/2}\sum_{i=1}^n \Psi_{i,NP}+o_p(1),$$

where
$$\Psi_{i,NP} = \left\{ \frac{A_i}{\pi(X_i)} - \frac{1 - A_i}{1 - \pi(X_i)} \right\} \Lambda^{-1} \widetilde{X}_i \{ Y_i - Q(X_i, A_i) \}$$
 and $\Lambda = E(\widetilde{X}\widetilde{X}')$.

Semi-Supervised Learning with Bias Correction

- Divide the complete data into $\mathcal K$ folds: $\mathcal O_1,...,\mathcal O_{\mathcal K}$.
- Let $\hat{Q}^{(-k)}(X,A)$ denote the kernel estimator of Q function based on the data excluding the kth fold.
- K-fold cross-validation with linear refitting:

$$\widehat{\theta}_1 = \mathop{\mathsf{arg\,min}}_{\theta_1} \sum_{k=1}^{\mathcal{K}} \sum_{i \in \mathcal{O}_k} \frac{A_i}{\widehat{\pi}(X_i)} \left\{ Y_i - \hat{Q}^{(-k)}(X_i, 1) - \theta_1' \widetilde{X}_i \right\}^2$$

$$\widehat{\theta}_0 = \operatorname{arg\,min}_{\theta_1} \sum_{k=1}^{\mathcal{K}} \sum_{i \in \mathcal{O}_k} \frac{1 - A_i}{1 - \widehat{\pi}(X_i)} \left\{ Y_i - \widehat{Q}^{(-k)}(X_i, 0) - \theta_0' \widetilde{X}_i \right\}^2$$

• Define $\hat{Q}_{SS}(X, A=a) = \frac{1}{\mathcal{K}} \sum_{k=1}^{\mathcal{K}} \hat{Q}^{(-k)}(X, a) + \widehat{\theta}_a' \widetilde{X}$.

Semi-Supervised Estimator

- Define $\hat{C}_{SS}(X) = \hat{Q}_{SS}(X,1) \hat{Q}_{SS}(X,0)$.
- Least square estimation with bias correction

$$\widehat{\beta}_{SS} = \operatorname{arg\,min}_{\beta} \sum_{j=n+1}^{N} \left\{ \widehat{C}_{SS}(X_j) - \beta' \widetilde{X}_j \right\}^2.$$

- Estimated OTR: $\hat{g}_{SS}^{opt}(X) = I(\hat{\beta}_{SS}'\tilde{X} > 0)$.
- Asymptotic distribution: under certain conditions, we have

$$n^{1/2}(\widehat{\beta}_{SS} - \beta^*) = n^{-1/2} \sum_{i=1}^n \Psi_{i,SS} + o_p(1).$$

Simulation Studies

- Consider two covariates (p=2)
- Set n = 500 and N = 5000
- Consider the following three models:
 - Model 1 (Linear): $Y = \mu(X) + A \cdot (\beta'\widetilde{X}) + \epsilon$
 - Model 2 (Cubic): $Y = \mu(X) + A \cdot (\beta' X)^3 + \epsilon$
 - Model 3 (Sine): $Y = \mu(X) + A \cdot \sin(\beta'X) + \epsilon$
- Consider two baseline mean functions:
 - I: $\mu(X) = (\alpha' X)^3$
 - II: $\mu(X) = (\alpha' X)(1 + \theta' X)$
- Propensity score model:

$$\pi(X) = \exp(0.5X_1 - 0.5X_2)/\{1 + \exp(0.5X_1 - 0.5X_2)\}$$

• The least false parameters β^* are calculated using Monte Carlo method based on data with size of 500,000.

Summary Statistics

- Relative efficiency in terms of MSE comparing $\widehat{\beta}_{SS}$ and $\widehat{\beta}_{TR}$;
- Percent of correct decisions (PCD), defined by

$$PCD = 1 - N^{-1} \sum_{i=1}^{N} |I(\hat{\beta}' \widetilde{X}_i > 0) - I(\beta^{*'} \widetilde{X}_i > 0)|$$

 Value function of the estimated OTR, computed using Monte Carlo method by

$$V = M^{-1} \sum_{m=1}^{M} \left\{ \mu(X_m) + \hat{g}^{opt}(X_m) \cdot C(X_m) \right\},$$

where M = 500,000.

Results I

			T	R	SS	5
$\mu(X)$	Model	V_0	V	PCD	V	PCD
	Linear	0.56	0.54 (0.04)	0.92 (0.06)	0.56 (0.01)	0.96 (0.02)
I	Cubic	0.24	0.22 (0.06)	0.87 (0.12)	0.24 (0.01)	0.93 (0.05)
	Sine	0.32	0.21 (0.12)	0.80 (0.17)	0.26 (0.06)	0.88 (0.09)
	Linear	1.31	1.29 (0.05)	0.91 (0.06)	1.31 (0.01)	0.96 (0.02)
П	Cubic	0.99	0.98 (0.05)	0.86 (0.11)	0.99 (<0.01)	0.94 (0.04)
	Sine	1.06	0.96 (0.11)	0.80 (0.16)	1.02 (0.04)	0.89 (0.06)

Results II: $\mu(X) = (\alpha' X)^3$

		TR			SS					
Model	β^*	Bias	ESE	ASE	СР	Bias	ESE	ASE	СР	RE
	0	-0.010	0.220	0.209	0.94	-0.005	0.123	0.122	0.95	3.21
Linear	1	-0.021	0.329	0.347	0.98	-0.008	0.182	0.173	0.93	3.28
	1	-0.020	0.355	0.347	0.97	-0.004	0.198	0.175	0.92	3.22
	0	-0.008	0.206	0.205	0.94	0.001	0.123	0.132	0.95	2.80
Cubic	0.41	0.002	0.352	0.338	0.95	-0.002	0.212	0.193	0.95	2.74
	0.81	0.002	0.423	0.390	0.94	-0.010	0.239	0.212	0.91	3.14
	0	-0.006	0.171	0.168	0.96	0.004	0.118	0.116	0.95	2.13
Sine	0.37	-0.007	0.282	0.270	0.94	-0.011	0.170	0.158	0.91	2.74
	0.37	0.011	0.296	0.272	0.94	0.011	0.176	0.161	0.92	2.82

Results III: $\mu(X) = (\alpha'X)(1 + \theta'X)$

		TR			SS					
Model	β^*	Bias	ESE	ASE	СР	Bias	ESE	ASE	СР	RE
	0	-0.017	0.242	0.230	0.94	-0.007	0.114	0.116	0.95	4.53
Linear	1	-0.012	0.348	0.326	0.94	0.011	0.150	0.151	0.93	5.37
	1	-0.021	0.352	0.347	0.94	-0.011	0.163	0.154	0.91	4.66
	0	-0.005	0.236	0.223	0.93	-0.026	0.121	0.122	0.95	3.77
Cubic	0.41	-0.014	0.341	0.313	0.93	0.003	0.155	0.154	0.92	4.86
	0.81	-0.004	0.432	0.392	0.91	-0.008	0.193	0.186	0.92	4.99
	0	0.003	0.210	0.202	0.94	0.009	0.117	0.113	0.95	3.14
Sine	0.37	0.002	0.296	0.289	0.94	-0.004	0.146	0.146	0.94	4.12
	0.37	-0.005	0.300	0.290	0.93	0.001	0.136	0.140	0.95	4.90

Data Application

- Consider patients undergoing a hypotensive episode (HE) in the ICU within the MIMIC-III database (Johnson et al. 2016)
- Goal: to minimize end-organ damage (measured by an increase in serum creatinine (Lehman et al. 2010))
- Treatments: IV fluid resuscitation and vasopressors (Lee et al. 2012)
- Response: pre-HE serum creatinine post-HE serum creatinine
- A total of 3,316 patients were included: 1,243 patients have complete treatment and response information; 2,073 patients have missing information in treatment and/or response
- Covariates included in the OTR: baseline serum creatinine and age
- Covariates included in the propensity score model: baseline serum creatinine, age, gender, service type, comorbidity score, total urine output, mean blood oxygen saturation, and average mean arterial pressure

Estimation Results

	TR			SS			
Covariates	\hat{eta}_{TR}	SE	P-Value	$\hat{eta}_{ extit{SS}}$	SE	P-Value	
Intercept	-0.102	0.111	0.355	-0.119	0.102	0.246	
Baseline Creatinine	-0.371	0.256	0.147	-0.508	0.197	0.010	
Age	0.196	0.146	0.178	0.114	0.133	0.392	

Table: Treatment allocation

			SS
	Treatment I	V Fluid	Vasopressors
TR	IV Fluid	1553	314
IK	Vasopressors	119	1330

Future Works

- Incorporate high-dimensional predictors
- Incorporate unstructured data, such as clinical notes
- Consider dynamic treatment regime
- Consider multiple disease outcomes of interest